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The fusion dynamics is studied in heavy-ion collisions over wide range of
neutron content (0.5 ≤ N/Z ≤ 2.0) by employing several different theoret-
ical models such as Skyrme energy density model and proximity potential,
as well as parameterized potentials due to Bass, Christensen and Winther,
Ngô and Ngô and Denisov. We find that all these potentials give simi-
lar isotopic dependence for the fusion barrier heights, positions as well as
cross-sections. Fusion barrier heights and positions follow a second order
non-linear isotopic dependence whereas fusion cross-sections follow a linear
dependence. The collision of neutron-deficient nuclei results into a reduced
fusion cross-section whereas collision of neutron-rich nuclei leads to an en-
hanced fusion probability. The maximal isotopic dependence is obtained for
the near barrier energies that reduces to insignificant level for higher inci-
dent energies. Our normalised observations are almost model independent
indicating the universality in these predictions.

PACS numbers: 24.10.–i, 25.70.Jj, 25.60.Pj, 25.70.–z

1. Introduction

It is now well accepted that the nuclear potential is the key factor in
deciding the fate of a colliding pair of any size. Depending on the incident
energy and (geometrical) impact parameter, the dominance of the nuclear
potential can be judged [1]. When the colliding nuclei are mildly excited
(for example, when either incident energy of the projectile is very low or
impact parameter is very large) the nuclear potential (i.e. the real part of
the G-matrix) plays a dominant role [1]. On the other hand, when either the
incident energy is very high or impact parameter is very small, the violent
nature of the reaction pushes the nuclear potential to insignificant level. In
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this situation, the sub-atomic degrees of freedom start appearing and sev-
eral new phenomena (like the multifragmentation, nuclear flow, stopping as
well as sub-threshold particle production etc.) start dominating the reac-
tion dynamics [1]. Since, our present interest is in the low incident energy
phenomena such as fusion and compound nucleus formation, the contribu-
tion of the nucleon–nucleon scattering is neglected. A deeper and accurate
understanding of the nuclear potential is vital for the accurate fusion analy-
sis. Several recent studies have shown that the outcome of these phenomena
depends strongly on the nucleus–nucleus interaction potential one is using.
Further, the Coulomb potential alone cannot define the barrier. The nuclear
potential plays an equally important role while defining the barrier. This
is evident from the fact that lots of efforts are put recently to understand
the nuclear part of the potential at an accurate level [2–8]. In this series of
recent attempts, the well-known proximity potential has been restructured
to remove the gray parts of its first version [8].

This renewed interest in the nuclear potential is also linked with the dis-
coveries of large number of proton as well as neutron-rich nuclei that give
unique possibility to test the structural models as well as nuclear potentials
at the extremes. The properties of neutron-rich nuclei like 9−10

2He (N/Z =
3.50–4.00), 8−11

3Li (N/Z = 1.667–2.667), 11,14
4Be (N/Z = 1.75, 2.5),

14,17,19
5B (N/Z = 1.8, 2.4, 2.8), 17,19,22

6C (N/Z = 1.83, 2.167, 2.667), 17,22
7N

(N/Z = 1.429, 2.143), 22,26,28
8O (N/Z = 1.75, 2.25, 2.50), 27,29,31

9F (N/Z =
2.0, 2.22, 2.44), 29,34

10Ne (N/Z = 1.9, 2.4), 20,32,37
11Na (N/Z = 0.818, 1.909,

2.364), 40
12Mg (N/Z =2.333), 29,31

13Al (N/Z =1.231, 1.385), 38
16S (N/Z =

1.375), 49−51
18Ar (N/Z = 1.722–1.833), 60

20Ca (N/Z = 2.0), 68−78
28Ni

(N/Z = 1.429–1.786), 123
47Ag (N/Z = 1.617), 123−128

48Cd (N/Z = 1.563–
1.667), 132

50Sn (N/Z = 1.64) etc. are well understood [9–15]. Lots of efforts
are also made to analyse the proton-rich nuclei like 6

4Be (N/Z = 0.50),
10

7N (N/Z = 0.429), 12
8O (N/Z = 0.50), 17

9F (N/Z = 0.889), 17
10Ne

(N/Z = 0.70), 22
14Si (N/Z = 0.571), 31

18Ar (N/Z = 0.722), 34
20Ca (N/Z =

0.70), 38,39
22Ti (N/Z = 0.0.727, 0.773), 45

26Fe (N/Z = 0.731), 48,49
28Ni

(N/Z = 0.714–0.75), 54
30Zn (N/Z = 0.80) etc. [16–24]. A large numbers of

these isotopes are also available as primary and secondary nuclear beams.

Although, the above mentioned nuclear potentials have been employed
to study the fusion of stable symmetric isotopes, no study is yet available
that focuses on comparing these potentials for the collision of β-unstable nu-
clei. A comparative study employing variety of nuclear potentials may give a
model independent view of the role of isotopic dependence in fusion probabil-
ities. It is worth mentioning that most of fusion studies have been performed
using either Ca or Ni isotopes [25–36] and recently, we have reported a sys-
tematic study of the isotopic dependence of fusion cross-sections within the
Skyrme energy density model [37]. Here our present aim is at least two folds:
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(i) to compare the different nuclear potentials based on different assumptions
and to analyse whether they are similar at the surface or not and (ii) to study
the isotopic dependence of fusion probabilities using different potentials and
to obtain a model independent isotopic dependence. In Section 2, we shall
discuss the theoretical framework. Section 3 yields a comparative study of
the fusion barriers and cross-sections, whereas our results are summarised
in Section 4.

2. Formalism

The total interaction ion–ion potential comprises of nuclear and Coulomb
parts:

VT(R) = VN(R) + VC(R) ,

= VN(R) +
Z1Z2e

2

R
. (1)

Since fusion happens at a distance larger than the touching configuration
of the colliding pair (> (R1 + R2), Ri is the radius of either projectile or
target), the above form of the Coulomb potential is justified. Once VT(R) is
known, one can extract the barrier height VB and barrier position RB using

dVT(R)

dR

∣

∣

∣

∣

R=RB

= 0 , and
d2VT(R)

dR2

∣

∣

∣

∣

R=RB

≤ 0 . (2)

The shape of the barrier gives us possibility to calculate the fusion cross-
section accordingly [38]:

σfus(mb) =
10R2

B
~ω0

2Ecm

ln

[

1 + exp 2π

(

Ecm − VB

~ω0

)]

, (3)

where Ecm is the center-of-mass energy and ~ω0 is the barrier curvature
parameter which measures the width of the fusion barrier. Since our present
interest is in the incident energies above the Coulomb barrier, Eq. (3) can
be replaced by:

σfus(mb) = 10πR2
B

[

1 −
VB

Ecm

]

. (4)

From Eq. (4) it is also evident that the variation in RB has a stronger
effect on fusion cross-section compared to barrier height VB. The role of
different nuclear potentials VN(R) can be studied through Eq. (1). We shall
use the following potentials in present analysis.
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2.1. Skyrme energy density model

One of the most extensively used formalism to study the heavy-ion prob-
lems at low as well as intermediate energies is the Skyrme energy density
formalism, where energy expectation value is given by [39–41]

E =

∫

H(~r )d~r (5)

leading to the interaction potential

VN (R) = E (R) − E (∞) , (6)

i.e. a difference of the expectation values at a distance R and at complete
isolation ∞. Following the formalism of Vautherin and Brink [41], the Hamil-
tonian density is a function of nucleonic density ρ, kinetic energy density τ
and spin density ~J . Among all parameters, the kinetic energy density τ
and spin density ~J are of main interest. Following Refs. [39–41], the kinetic
energy density τ can be replaced by:

τ = τTF + λ

(

~∇ρ
)2

ρ
=

3

5

(

3

2
π2

)2/3

ρ5/3 + λ

(

~∇ρ
)2

ρ
, (7)

where λ is a constant whose value varies between 1/36 and 9/36. This ap-
proximation, reduces the Hamiltonian dependence to two-parameters,
namely, ρ and ~J . Therefore, one can write the Hamiltonian as:

H
(

ρ, τ, ~J
)

= H (ρ) + H
(

ρ, ~J
)

. (8)

The first part, which is independent of the spin density, is called spin-
independent part whereas second part is labelled as spin density dependent
part which contains the terms of spin density part [39]. The correspond-
ing potentials are marked as spin-independent potential VP (R) and spin-
dependent potential VJ(R), respectively. In the present study, we use two-
parameter Fermi mass density distribution whose parameters are taken from
Ref. [38]. A straight-line interpolation is used where data is not available.
At present, we do not distinguish between different isotone as remarked in
Ref. [39]. It is worth mentioning that we are the first one to extend the spin

density part ~J to any even number of valance nucleons outside a closed core.
This potential has been shown to explain the fusion data accurately [41].
For the details, the reader is referred to Refs. [39–41]. This potential and
calculations are labelled as EDF.
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Other potentials, the proximity potential [42], Bass potential [43], Ngô–
Ngô potential [44], Christensen and Winther [45], and Denisov [4] are well
described in the cited literature and reader is referred to these publications.
Note that all the above-mentioned six potentials are well known and have
been used successfully in the different problems of nuclear structure and
heavy-ion reactions. The common factor in all potentials is that these can
be divided as a product of geometrical factor (proportionate to radii) and
a universal function which is the same for all colliding nuclei. A study of
isotopic dependence of fusion cross-sections with these six potentials will give
us possibility to generate a model free and independent conclusion about the
isotopic dependence of fusion cross-section in heavy-ion collisions above the
Coulomb barrier energies.

3. Results and discussion

As stated in the introduction, the extensively used systems for the fusion
analysis are the isotopes of Ca and Ni nuclei, which are also the magic nuclei.
Therefore, we also use these systems for our present analysis. Here we start
with the symmetric 40Ca+ 40Ca, 56Ni+ 56Ni and 40Ca+56Ni reactions using
the above mentioned different nuclear potentials. The isotopic dependence
is investigated by either adding or removing the neutrons gradually from
either (or both) the colliding pair and calculating the interaction barrier
using different potentials. In the present analysis, the domain of neutron–
proton ratio is chosen to be 0.5 ≤ N/Z ≤ 2.0.

In figure 1, we display the nuclear, Coulomb and total potentials as a
function of the inter-nuclear distance R. We display in (a), (b) and (c) parts
of the figure, the potentials using different Skyrme forces and surface cor-
rection factors λ. The (a) and (b) parts display the effect of variation in the
surface correction λ (with λ = 5/36 and λ = 9/36, respectively) whereas
part (c) shows the potential with Skyrme force Ska. This comparison gives
us possibility to look for the role of different Skyrme forces in isotopic depen-
dence of interaction potentials. It is worth mentioning that the Skyrme force
Ska is widely used in recent years for studying the low energy phenomena.
Since the present formalism, allows us to analyse each and every term of
the Hamiltonian density separately, we display in figure 1(d) the potential
due to spin density part of the Hamiltonian only. From parts (a)–(c), it
is evident that the well-known isotopic dependence exists for the cases of
λ = 5/36 and λ = 9/36. The nuclear potential becomes deeper with the
addition of neutrons whereas inverse is true with the removal of neutrons.
As a result, barrier height increases with the removal of neutrons, and bar-
rier positions are pushed inward. One may say that due to the shifting of
barrier positions inwards, the barrier heights get affected accordingly. One
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Fig. 1. The nuclear potential VN(R), Coulomb potential VC(R) and total interaction

potential VT(R) as a function of the inter-nuclear distance R. The (a), (b), (c) and

(d) parts are using Skyrme force SIII, respectively, λ = 5/36, λ = 9/36, Ska force

as well as spin density potential only. Here neutron-rich as well as neutron-deficient

nuclei are considered.
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also sees that different values of surface correction coefficient λ do not alter
the picture significantly indicating a smaller role for the surface correction
coefficient in isotopic dependence studies. From figure 1(c), one notices that
the change of force parameters has no bearing on the above drawn conclu-
sions. A well-known feature of the Skyrme force Ska can also be seen where
no pocket exists. The part (d) displays the spin dependent potential VJ(R)
which reveals a significant isotopic dependence. As has been discussed in
our earlier publications [39–45], this contribution depends on the number
of valance particles of reacting partners. We see that 40Ca+40Ca, being a
double closed shell pair, has zero contribution towards spin density poten-
tial VJ whereas contribution increases as one adds or removes neutrons from
40Ca+40Ca core. This is in contrast to the nuclear potential that changes
monotonically with the neutron content. From the figure, it is evident that
the isotopic spin density dependent potential can have different structural
dependence.

For a model independent analysis, we also studied the other nucleus–
nucleus potentials due to Blocki et al. [42], Bass [43], Ngô and Ngô [44] and
Christensen and Winther [45] (not shown here). All these potentials (includ-
ing the Skyrme energy density potential) show similar isotopic dependence:
the barrier heights are enhanced with removal of neutrons whereas barrier
positions are shifted outwards with the addition of neutrons. Since fusion
occurs at the surface of the colliding pair, it is immaterial to look for the
shape of the potentials in the interior parts. Some differences in various
potentials, however, were noticed at the surface regions. One should, how-
ever, keep in mind that the model ingredients such as the nuclear radii (of
projectile and target), nuclear density parameters or even the nature of the
forces etc. can also have a drastic effect on the interaction potential as well
as on the fusion cross-sections. Different potentials use different radii and
geometrical factors leading to different mass dependences on the potential.

Before we discuss the isotopic dependence in interaction barriers and
fusion cross-sections, using various models, let us compare the outcome of
various theoretical fusion barrier positions and heights with empirical val-
ues. In Table I, we list the reactions where experimental information about
the isotopic dependence is known. For a wider understanding, we also list
the reactions involving Ti and Ar isotopes. One can see immediately that
our approach with SIII force (λ = 0) is closest to the experimental data
compared to all other theoretical models. In all the approaches, the barrier
heights show systematical reduction with the addition of neutrons. The bar-
rier positions also follow a coherent pattern except in couple of cases where
experimental data are questionable [27]. A reasonable agreement between
experimental values and theoretical models gives faith in various potentials.
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TABLE I

Fusion barrier heights VB and position RB using Skyrme Energy Density Model (SEDM) and other theoretical models along with

experimental data.

Theoretical Models

Reaction SEDM Blocki et al. Ngô and Ngô

No. [42] [44]
Skyrme Force Skyrme Force
SIII, λ = 0 SIII, λ = 5/36

VB(MeV) RB(fm) VB(MeV) RB(fm) VB(MeV) RB(fm) VB(MeV) RB(fm)

1. 40Ca+40Ca 54.3 9.73 ± 0.05 50.5 10.28 ± 0.05 57.6 9.18 ± 0.00 57.7 9.21 ± 0.05

2. 40Ca+44Ca 53.4 9.92 ± 0.05 49.7 10.47 ± 0.05 56.6 9.38 ± 0.00 56.7 9.40 ± 0.00

3. 40Ca+48Ca 52.6 10.06 ± 0.05 48.9 10.66 ± 0.05 55.7 9.51 ± 0.05 55.8 9.58 ± 0.00

4. 48Ca+48Ca 51.1 10.40 ± 0.10 47.4 11.00 ± 0.05 54.0 9.89 ± 0.05 54.1 9.94 ± 0.05

5. 40Ca+ 58Ni 73.2 10.07 ± 0.05 68.4 10.62 ± 0.05 77.1 9.67 ± 0.05 77.6 9.61 ± 0.05

6. 40Ca+62Ni 72.3 10.19 ± 0.10 67.7 10.79 ± 0.05 76.1 9.78 ± 0.00 76.6 9.77 ± 0.05

7. 40Ca+ 46Ti 58.8 9.89 ± 0.05 54.8 10.44 ± 0.05 62.2 9.39 ± 0.05 62.4 9.41 ± 0.05

8. 40Ca+ 48Ti 58.4 9.96 ± 0.05 54.3 10.51 ± 0.05 61.7 9.46 ± 0.00 61.9 9.47 ± 0.00

9. 40Ca+ 50Ti 58.0 10.03 ± 0.05 54.0 10.63 ± 0.10 61.2 9.52 ± 0.05 61.4 9.59 ± 0.05

10. 48Ti + 58Ni 78.8 10.25 ± 0.05 73.7 10.85 ± 0.05 82.7 9.89 ± 0.05 83.2 9.87 ± 0.05

11. 48Ti + 60Ni 78.4 10.34 ± 0.05 73.3 10.94 ± 0.05 82.2 10.00 ± 0.05 82.7 9.93 ± 0.00

12. 48Ti + 64Ni 77.5 10.51 ± 0.00 72.5 11.06 ± 0.05 81.2 10.11 ± 0.00 81.7 10.09 ± 0.00

13. 46Ti + 64Ni 78.0 10.39 ± 0.10 73.1 10.99 ± 0.05 81.8 10.04 ± 0.05 82.3 9.97 ± 0.00

14. 50Ti + 60Ni 77.8 10.40 ± 0.05 72.8 11.00 ± 0.05 81.6 10.06 ± 0.00 82.1 10.04 ± 0.05

15. 40Ar+ 58Ni 65.3 10.17 ± 0.10 60.9 10.77 ± 0.05 68.8 9.72 ± 0.05 69.2 9.71 ± 0.00

16. 40Ar+ 60Ni 64.9 10.25 ± 0.05 60.6 10.85 ± 0.05 68.4 9.82 ± 0.05 68.7 9.82 ± 0.05

17. 40Ar+62Ni 64.6 10.34 ± 0.05 60.3 10.89 ± 0.05 68.0 9.88 ± 0.05 68.3 9.87 ± 0.05

18. 40Ar+ 64Ni 64.2 10.37 ± 0.05 60.0 10.97 ± 0.05 67.6 9.93 ± 0.00 67.9 9.92 ± 0.00

19. 58Ni+ 58Ni 99.0 10.26 ± 0.10 92.8 10.91 ± 0.05 103.5 10.10 ± 0.00 104.4 9.96 ± 0.00

20. 58Ni+ 64Ni 97.3 10.56 ± 0.05 91.4 11.16 ± 0.05 101.6 10.31 ± 0.00 102.5 10.17 ± 0.00

21. 64Ni+ 64Ni 95.7 10.82 ± 0.10 90.0 11.37 ± 0.05 99.8 10.48 ± 0.05 100.6 10.43 ± 0.05
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TABLE I continued

Theoretical Models
Reaction Christensen Denisov Bass

No. and Winther [4] [43] Expt.
[45]

VB(MeV) RB(fm) VB(MeV) RB(fm) VB(MeV) RB(fm) VB(MeV) RB (fm)

1. 40Ca+40Ca 54.3 9.91 ± 0.05 55.6 9.51 ± 0.00 54.8 9.72 ± 0.05 52.30 ± 0.5 8.8 ± 0.5(27)

50.60 ± 2.8 9.50 ± 0.5(40)

55.60 ± 0.8 9.10 ± 0.6(40)

2. 40Ca+44Ca 53.4 10.11 ± 0.00 54.6 9.68 ± 0.00 53.9 9.91 ± 0.05 51.70 ± 1.2 8.50 ± 0.5(27)

3. 40Ca+48Ca 52.6 10.29 ± 0.05 53.8 9.88 ± 0.05 53.0 10.04 ± 0.05 53.2 10.08(28)

51.30 ± 1.0 7.80 ± 0.3(27)

4. 48Ca+48Ca 51.0 10.62 ± 0.05 52.1 10.20 ± 0.05 51.4 10.42 ± 0.05 51.7 10.38(28)

5. 40Ca+ 58Ni 72.8 10.40 ± 0.05 74.8 9.94 ± 0.05 73.7 10.09 ± 0.05 73.0 9.6 ± 0.3(46)

73.36 10.20(47)

6. 40Ca+62Ni 71.9 10.56 ± 0.05 73.9 10.07 ± 0.05 72.8 10.25 ± 0.05 71.0 9.5 ± 0.2(46)

72.30 10.35(47)

7. 40Ca+ 46Ti 58.7 10.13 ± 0.00 60.1 9.68 ± 0.05 59.2 9.88 ± 0.00 58.03 ± 0.73 9.92 ± 0.08(30)

8. 40Ca+ 48Ti 58.2 10.19 ± 0.00 59.6 9.76 ± 0.05 58.8 9.94 ± 0.05 58.17 ± 0.62 9.97 ± 0.07(30)

9. 40Ca+ 50Ti 57.8 10.31 ± 0.05 59.2 9.88 ± 0.05 58.3 10.06 ± 0.05 58.71 ± 0.61 10.05 ± 0.07(30)

10. 48Ti + 58Ni 78.1 10.68 ± 0.00 80.3 10.19 ± 0.05 79.1 10.36 ± 0.05 78.8 ± 0.3 9.8 ± 0.3(34)

11. 48Ti + 60Ni 77.6 10.74 ± 0.05 79.8 10.25 ± 0.00 78.6 10.47 ± 0.05 77.3 ± 0.3 10.0 ± 0.3(34)

12. 48Ti + 64Ni 76.7 10.90 ± 0.00 78.9 10.37 ± 0.05 77.7 10.58 ± 0.05 76.7 ± 0.3 10.2 ± 0.3(34)

13. 46Ti + 64Ni 77.3 10.83 ± 0.05 79.5 10.30 ± 0.05 78.3 10.51 ± 0.05 76.9 ± 0.1 9.7 ± 0.2(35)

14. 50Ti + 60Ni 77.1 10.85 ± 0.05 79.2 10.33 ± 0.05 78.1 10.53 ± 0.00 77.1 ± 0.1 9.8 ± 0.2(35)

15. 40Ar+ 58Ni 65.1 10.50 ± 0.05 66.7 10.03 ± 0.05 65.7 10.24 ± 0.05 65.3 ± 0.5(32)

16. 40Ar+ 60Ni 64.7 10.56 ± 0.00 66.2 10.09 ± 0.10 65.3 10.30 ± 0.00 65.5 ± 0.6(32)

17. 40Ar+62Ni 64.3 10.61 ± 0.05 65.9 10.15 ± 0.05 64.9 10.35 ± 0.00 65.1 ± 0.6(32)

18. 40Ar+ 64Ni 63.9 10.67 ± 0.05 65.5 10.26 ± 0.05 64.6 10.45 ± 0.05 63.9 ± 0.5(32)

19. 58Ni+ 58Ni 97.7 10.89 ± 0.00 100.7 10.32 ± 0.00 99.3 10.51 ± 0.00 97.90 8.30(33)

20. 58Ni+ 64Ni 96.0 11.11 ± 0.00 99.0 10.51 ± 0.05 97.5 10.72 ± 0.05 96.0 8.20(33)

21. 64Ni+ 64Ni 94.4 11.28 ± 0.00 97.3 10.74 ± 0.00 95.8 10.94 ± 0.05 93.50 8.60(33)
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In figure 2, we display the fusion cross-sections for the reactions involv-
ing Ca and Ni isotopes using all six potentials. In the case of SIII, we
also display the results with λ = 0 and λ = 5/36. Here a sharp cut-off
(

σfus(mb) = 10πR2
B
[1 − VB/Ecm]

)

model is used for the fusion cross-sections.
One observes that some models are able to explain the data very well whereas
others either are at the limits or fail to explain the data.

As stated in the introduction, our present interest is to understand the
isotopic dependence in fusion probabilities. Therefore, we define the reduced
fusion barrier heights, positions as well as cross-sections:

∆RB (%) =
RB − R0

B

R0
B

100 , (9)

∆VB (%) =
VB − V 0

B

V 0
B

100 , (10)

and

∆σfus (%) =
σfus

(

E0
cm

)

− σ0

fus

(

E0
cm

)

σ0

fus
(E0

cm)
100 . (11)

Here V 0
B
, R0

B
and E0

cm are, respectively, the barrier height, position and
center-of-mass energy for N = Z colliding pair. The main advantage of
these reduced quantities is that it gives a direct variation over N = Z counter
parts. In all the cases where data for N = Z colliding pair is not available,
a straight-line interpolation is used. In figure 3, we display ∆RB(%) for
all above six potentials. The corresponding barrier heights are displayed
in figure 4. Interestingly, all different potentials show a unique isotopic
dependence in ∆RB(%) and ∆VB(%). The barrier positions increase with
the addition of neutrons that reduce the barrier heights. Inverse happens for
the case of neutron-deficient nuclei. One also notices a linear relationship
between ∆RB(%)/∆VB(%) with N/Z ratio for N/Z > 1 and N/Z < 1,
separately (= α((N/Z)−1); α being a constant that depends on the potential
one is using). The point to note here is that the dependence of the ∆RB(%)
and ∆VB(%) for neutron-rich (N/Z > 1) and neutron-deficient (N/Z < 1)
regions is different. This happens because the variation in VN with neutrons
differs for proton-rich and deficient cases. The different isotopic dependences
for neutron-rich and deficient cases can also be parameterized by a single
second order non-linear form = β((N/Z)−1)+γ((N/Z)−1)2 . Interestingly,
one sees from figures 3 and 4 that the scattering around the mean values is
very small for all the cases expect for the Skyrme force SIII. This happens
because of the fact that Skyrme force includes also the spin density potential
that varies with the valance particles of the colliding pair. This variation
results in the above noticed scattering around the mean values. In all the
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Fig. 2. The fusion cross-sections σfus(mb) as a function of centre-of-mass energy

Ecm for the reactions 40Ca + 58Ni, 40Ca + 60Ni, 40Ca + 62Ni. We display theoreti-

cal results using Skyrme force SIII and proximity potential, as well as parameterized

potentials due to Bass, Ngô and Ngô, Christensen and Winther, and Denisov. The

experimental data is taken from Sikora et al. [46].

cases, our fits are quite close to the calculated ones. One also sees that the
slopes of ∆RB(%)/∆VB(%) in all different models are very close to each
other. The isotopic dependence in all theoretical models for ∆RB(%) falls
within a limit of 24.25±3.25 for N/Z < 1, 18.00±1.5 for N/Z > 1. Whereas
for ∆VB(%), it is −22.20 ± 1.80 for N/Z < 1, −15.00 ± 0.50 for N/Z > 1.
The coefficient β and γ for unified formula are within a range of 22.00±3.00
and −4.75±1.75 for ∆RB(%) and −18.75±1.25 and 6.80±1.70 for ∆VB(%),
respectively (see Tables IIa and IIb). In other words, different theoretical
models based on quite varying physical picture converge into similar results
for isotopic dependence of fusion probabilities. Experiments are called for to
verify these our predictions. This is not surprising since every potential can
be decomposed into a geometrical factor and universal function. Except for
the case of proximity potential and Denisov potential, all other potentials
do not have isotopic dependence in the universal function. Therefore, larger
part of isotopic dependence is expected from the geometrical parts. This
point will be further discussed in the following paragraphs.
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Fig. 3. The ∆RB(%) as a function of AS . We here display the results for 127

reactions using the isotopes Ca and Ni. The dotted line is for N/Z > 1 whereas

the dashed line is for N/Z < 1. The solid line is a fit over full range of neutron as

well as proton content.
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Fig. 4. Same as figure 3, but for ∆VB(%).
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TABLE IIa

The coefficient (α) appearing in the parametrization of isotopic variations in fusion

barrier heights ∆VB(%) and positions ∆RB(%).

SEDM Blocki Ngô & Ngô Christensen Denisov Bass

Skyrme Force et al. & Winther

SIII [42] [44] [45] [4] [43]

λ = 0 λ = 5/36

α α α α α α α

∆RB

“h

N

Z
− 1

i

≤ 0
”

27.0 27.5 26.0 25.5 21.0 25.0 24.0

∆RB

“h

N

Z
− 1

i

≥ 0
”

19.0 17.5 17.5 19.5 17.0 16.5 18.0

∆VB

“h

N

Z
− 1

i

≤ 0
”

−23.0 −22.0 −24.0 −22.0 −20.4 −23.0 −21.4

∆VB

“h

N

Z
− 1

i

≥ 0
”

−14.5 −14.5 −15.3 −15.5 −14.5 −14.5 −14.5

TABLE IIb

Various coefficients appearing in the parametrization of isotopic variations in fusion

barrier heights ∆VB(%) and positions ∆RB(%), Nuclear and Coulomb potential at

barrier, ∆VN(%) and ∆VC(%), respectively.

SEDM Blocki Ngô Christensen Denisov Bass

Skyrme Force et al. & Ngô & Winther

SIII [42] [44] [45] [4] [43]

λ = 0 λ = 5/36

β γ β γ β γ β γ β γ β γ β γ

∆RB

“

−0.5 ≤
h

N

Z
− 1

i

≤ 1
”

25 −6.5 22.6 −6.2 22.0 −6.0 23.0 −4.5 19.0 −3.0 21.0 −5.8 21.4 −4.5

∆VB

“

−0.5 ≤
h

N

Z
− 1

i

≤ 1
”

−19.4 6.5 −18.8 6.2 −20.0 8.5 −19.0 5.7 −17.5 5.1 −19.5 7.0 −18.9 5.9

∆VN

“

−0.5 ≤
h

N

Z
− 1

i

≤ 1
”

- - - - −46.6 22 - - - - - - - -

∆VC

“

−0.5 ≤
h

N

Z
− 1

i

≤ 1
”

- - - - −23.1 9.8 - - - - - - - -

Let us now further examine the above second order non-linear behaviour
of ∆RB(%)) and ∆VB(%). As stated above, all theoretical potentials can be
written in terms of a product comprising of geometrical factor (R); being
reduced radius and a universal function φ. Since φ is a universal func-
tion, therefore, the above isotopic dependence could results from the (R)
variation that happens due to the mass variation with addition or remov-
able of neutrons. Therefore, we parameterized ∆R(%) as a function of
AS = ((N/Z) − 1) ratio (radius taken from Ref. [44]) and noted a monotonic
variation with the change in the neutron contents which is given by a second
order non-linear fit with ∆R(%) = βAS + γA2

S ; with β = 19.60, γ = −2.80
which is quite close to what has been noticed in the case of ∆RB(%) vari-
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ation, respectively. In other words, it seems that major part of ∆RB(%)
variation emerges from the geometrical factors of the potentials rather than
from the structural effects. Let us also examine the variation in the nuclear
part of the potential with neutron content. In figure 5, we display the univer-
sal function φ as well as complete nuclear part using proximity potential of
Blocki et al. [42]. As the name suggests, φ is indeed universal throughout the
neutron variation and has no structural effects for the isotopic dependence.
On the other hand, nuclear potential (that also includes the geometrical
factor) has a monotonic isotopic dependence. Naturally, nuclear potential is
different for different colliding series like Ca+Ca, Ca+Ni and Ni+Ni; being
deepest for Ni+Ni and shallow for Ca+Ca. Interestingly, nuclear part in-
creases with the removal of neutrons. This is in contradiction to the couple
of earlier calculations where it was concluded that the nuclear part of the po-
tential is more attractive with the addition of neutrons leading to reduced
barrier [46]. Note that for the cases of neutron-deficient nuclei, not only
the nuclear potential becomes more attractive, but at the same time, the
Coulomb forces become stronger, therefore, their mutual dominance decides

Fig. 5. (a) The universal as well as absolute nuclear potential as a function of AS

for A1Ca + A2Ca, A1Ni + A2Ni and A1Ca + A2Ni within proximity potential. (b)

∆VN(%) and ∆VC(%) variation within proximity potential.
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about the barrier height. However, the increase in the Coulomb potential
(due to the removal of neutrons) is much more than the corresponding nu-
clear potential, therefore, enhancing the fusion barriers when neutrons are
removed.

Let us now examine how fusion cross-section varies with the neutron
content. Since, the fusion cross-section depends also on the incident en-
ergies, we shall discuss these systematics in terms of the reduced incident
energies E0

cm that correspond to the N = Z symmetric pair. In figure 6,
we display the variation in the fusion probabilities with the change in the
isotopic content. For an illustrative example, we took E0

cm = 1.25V 0
B

. Inter-
estingly, a linear isotopic dependence occurs for the fusion probability in all
the cases. This is important, since in spite of the different dependences of
∆RB(%) and ∆VB(%) for N/Z > 1 and N/Z < 1 region, a linear variation
occurs for the fusion probabilities. All fusion variation ∆σfus(%) lie within
112.50 ± 6.50 justifying the universality in these theoretical studies. The
energy dependence of the isotopic slope in different theoretical models was
also examined in similar manner. From the analysis, we concluded that:
(i) the impact of isotopic dependence in the fusion cross-sections is drastic
for the near Coulomb barrier energies, which decreases with the increase in
the incident energy. At very high incident energies, the isotopic dependence
reduces to insignificant level. This observation is independent of the the-
oretical models and is also in agreement with other findings. It is worth
mentioning that the maximal effect of isotopic dependence is found at sub-
barrier region. (ii) Since, all theoretical models yield similar dependence,
one may predict universal values to be 948.00± 42, 645.25± 29.25, 493.85 ±

22.85, 342.40 ± 16.40, 281.85 ± 13.85, 221.30 ± 11.30, 185.05 ± 9.65, 160.85 ±

8.55, 112.50±6.50, 100.25±6.05, 88.10±5.50, 82.45±5.25, and 76.00±5.00 for
E0

cm = 1.02V 0
B

, 1.03V 0
B

, 1.04V 0
B

, 1.06V 0
B

, 1.075V 0
B

, 1.10V 0
B

, 1.125V 0
B

, 1.15V 0
B

,
1.25V 0

B
, 1.30V 0

B
, 1.375V 0

B
, 1.425V 0

B
, and 1.50V 0

B
. It is further interesting to

note that all theoretical models converge to ±14.01%. The experiments are
called for to verify these predictions.
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Fig. 6. Same as figure 3, but for ∆σfus(%) as a function of AS .
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4. Summary

In this paper, we presented a unified description of isotopic dependence of
fusion barriers and cross-sections. This was done by analysing three series of
colliding nuclei namely, Ca+Ca, Ca+Ni and Ni+Ni, which have been studied
extensively for the study of fusion dynamics. The isotopic dependence was
examined by either adding neutrons gradually to either of nuclei (neutron-
rich nuclei N/Z > 1) or by removing neutrons from colliding nuclei (neutron-
deficient nuclei N/Z < 1). For a model independent analysis, we employed
Skyrme energy density model extended to spin-unsaturated nuclei with two
typical forces SIII and Ska, the proximity potential that divides the potential
into a universal function and geometrical factor; as well as parameterized
potentials due to Ngô and Ngô, Christensen and Winther, Denisov and Bass.
Our findings reveal that a second order non-linear isotopic dependence exists
for the variation in normalised fusion barrier positions and barrier heights,
independent of the theoretical approach. This dependence can be explained
in terms of geometrical factors. As a consequence, a linear dependence exists
for the isotopic variation in fusion probabilities. The fusion probabilities are
maximal near the fusion barrier energies that diminish to insignificant level
at higher incident energies. Summarising, a model independent and unified
isotopic dependence of normalised fusion probability is given in terms of a
second order non-linear behaviour.

This work is supported by the Department of Atomic Energy, Board of
Research in Nuclear Sciences Grant No. 2005/37/32/BNRS.
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