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The nuclear matrix elements associated with the light Majorana neu-
trino mass mechanism of the neutrinoless double beta decay of 48Ca, 76Ge,
82Se, 96Zr, 100Mo, 116Cd, 128Te, 130Te, 136Xe, and 150Nd have been cal-
culated within the self-consistent renormalized quasiparticle random phase
approximation (SRQRPA). By following a recently proposed procedure,
where data on the two-neutrino double β-decay half-lives are used to de-
rive appropriate value of particle-particle strength of nuclear Hamiltonian,
we have found that the SQRPA results are comparable with those of the
QRPA and the RQRPA approaches. This constitutes an additional argu-
ment in favor of the convergence of the QRPA-like results.

PACS numbers: 21.60.Jz, 23.40.Bw, 23.40.Hc

1. Introduction

The discovery of neutrino oscillations has opened a new excited era in
neutrino physics and represents a big step forward in our knowledge of neu-
trino properties. However, the most fundamental question whether neutrino
is a Dirac or Majorana particle remains unsolved. In order to reveal the Ma-
jorana nature of neutrinos the observation of neutrinoless double β-decay
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(0νββ-decay) is necessary. This would also allow to get important infor-
mation on the neutrino mass scale, on the hierarchy and on the Majorana
phases.

From the measurement of the half-life of the 0νββ-decay only the prod-
uct of the effective Majorana neutrino mass and the nuclear matrix element
(|mββ | |M

0ν(A,Z)|) can be determined. Thus, accurate calculation of nu-
clear matrix elements (NMEs), is necessary to reach qualitative conclusions
about neutrino masses and the type of neutrino mass spectrum [1].

Among other approaches, the Random Phase Approximation (RPA) and
its variants has been considered a very powerful tool for studying the nuclear
structure. In particular, the quasiparticle version of the theory (the Quasi-
particle Random Phase Approximation — QRPA) has been successfully ap-
plied to the nuclei far from the closed shells, and consequently extended as
the proton–neutron QRPA (pnQRPA) to the description of charge-changing
transitions in nuclei [2–9].

The main drawback in the formulation of the QRPA theory, however,
is the violation of the Pauli exclusion principle, connected with the usage
of bosonic commutation relations for the QRPA phonon operators, that are
in fact collective pairs of fermions. To overcome this shortcoming of the
QRPA framework the renormalization technique has been proposed [10] and
extended to include proton–neutron pairing [11]. This approach has been
based on the early works by Rowe [19], Hara [12], Ikeda [13] and Schuck and
Ethofer [14] in the context of RPA and QRPA. The main goal of the method,
called in the literature the renormalized QRPA (RQRPA), is to take into
account additional one-quasiparticle scattering terms in the commutation
relations by a self-iteration of the QRPA equation.

On the other hand, the calculation of the 0νββ-decay matrix elements
is a difficult problem because ground and many excited states of open-
shell nuclei with complicated nuclear structure have to be considered. Re-
cently, important progress has been achieved in the QRPA evaluation of the
0νββ-decay NMEs [17]. It was shown that when the strength of the particle-
particle interaction is adjusted so that the two-neutrino double β-decay
(2νββ-decay) rate is correctly reproduced, the dependence of |M0ν(A,Z)|
on the size of the singe-particle basis and other factors, that are not a priori

fixed, is essentially removed.

In this contribution the 0νββ-decay NMEs are evaluated within the self-
consistent RQRPA (SRQRPA) by following the procedure of fixing nuclear
structure parameter space of Ref. [17]. The SRQRPA is an extension to the
RQRPA formalism, that tries to solve the problem of non-vanishing quasi-
particle content of the ground state that in turn introduces some inconsis-
tency between RQRPA and the BCS approach. Our method [18], called
the self-consistent RQRPA (SRQRPA), is based on the reformulation of the
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BCS equations [16] and further reiteration of the BCS+RQRPA calculation
scheme. It is a more complex version of the renormalized QRPA (RQRPA),
the latter, in contrary to the QRPA, implementing the Pauli exclusion prin-
ciple in description of nuclear states. In the SRQRPA at the same time the
mean field is changed by minimizing the energy and fixing the number of
particles in the correlated ground state instead of uncorrelated BCS one as
is done in the QRPA and the RQRPA.

The SRQRPA was first applied to the 0νββ-decay of 76Ge and a con-
siderable reduction of the SRQRPA NME in comparison with the QRPA
and RQRPA results was found [18]. Our present analysis shows that this
suppression is due to a consideration of bare G-matrix elements of realistic
nucleon–nucleon potential dictated by a numerical complexity of the prob-
lem. Here, we have avoided this simplification by introducing a schematic
proton and neutron pairing interactions, which were fixed to fit the observed
mass differences.

2. Calculation procedure

Since the formalism of the SRQRPA has been presented in detail in our
previous publications [15,18], here we present only the basics of the theory.
Since we are interested in the charge-changing transitions only, from now
on we restrict ourselves to the proton–neutron version of the theory. In the
RQRPA and SRQRPA one introduces the so-called renormalization matrix
Dpn, defined by the expectation value of the commutator of the angular-
momentum coupled bi-quasifermion operators:

Dpn ≡
〈

0
∣

∣

∣

[

A(pn)JπM , A
†

(pn)JπM

]
∣

∣

∣
0
〉

= (1 − np − nn) , (1)

where np and nn are the RPA ground state quasiparticle densities:
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p

〈
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∣
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∣
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]

00
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,
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〈

0
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∣

∣
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a
†
nãn

]

00

∣

∣

∣
0
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. (2)

With the help of the Dpn matrix, one can introduce the renormalized
angular-momentum coupled two-quasiparticle creation operators [20]:

A†

(pn)JπM ≡ D−1/2
pn

[

a†pa
†
n

]

JπM
, (3)

that behave as bosons, as far as the ground-state expectation value of their
commutator is concerned. Assuming the harmonicity of the nuclear motion
the excited-state creation phonon operators can be written as [19, 21]:

Q
m†
JπM =

∑

pn

[

Xm
(pn)JπA

†

(pn)JπM − Ym
(pn)JπÃ(pn)JπM

]

. (4)
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Using e.g. the equation of motion (EOM) method [19], one gets the
RQRPA equations in the usual form, with Ω

m
Jπ ≡ Em,Jπ − Egs being the

energy of the QRPA phonon:

(

A B
B A

)

Jπ

(

Xm

Ym

)

Jπ

= Ω
m
Jπ

(

Xm

−Ym

)

Jπ

(5)

with the renormalized RPA matrices A and B:

AJπ

pn,p′n′ = (Ep + En)δpp′δnn′

− 2[gppG(pn, p′n′;Jπ)(upunup′un′ + vpvnvp′vn′)

+ gphF (pn, p′n′;Jπ)(upvnup′vn′ + vpunvp′un′)]

×
√

DpnDp′n′ , (6)

BJπ

pn,p′n′ = 2[gppG(pn, p′n′;Jπ)(upunvp′vn′ + vpvnup′un′)

− gphF (pn, p′n′;Jπ)(upvnvp′un′ + vpunup′vn′)]

×
√

DpnDp′n′ . (7)

The particle–particle (G) and the particle–hole (F ) matrix elements of the
two-body nucleon–nucleon interaction [22] are scaled by the factors gpp and
gph respectively, to account for the finite range of the nucleus and limited
model space [2]. In the calculations we have chosen two values of the gph

parameter (0.8 and 1.0) and leave gpp as a free parameter of the theory
[23, 24]. Ep and En are the proton and neutron quasiparticle energies and
the u’s and v’s are the usual BCS occupation factors.

The crucial point of the RQRPA is the calculation of the renormalization
matrix Dpn. This can be achieved with a help of the mapping [10]:

[a†pãp]00 7→ ̂−1
p

∑

JπMn

A
†

(pn)JπMA(pn)JπM ,

[a†nãn]00 7→ ̂−1
n

∑

JπMp

A
†

(pn)JπMA(pn)JπM (8)

and inversion of (4). Equations (1)–(8) became coupled and can be solved by
the iteration procedure, we call ‘inner iteration’: we start with np = nn = 0,
i.e. QRPA solution, calculate new quasiparticle densities and input them
back again, till the convergence is achieved.

Now we proceed with the SRQRPA ‘outer iteration’. This is necessary,
since RQRPA ground state has a non-vanishing quasiparticle content, while
the BCS ground state is the quasiparticle vacuum. We relax the latter
requirement and rewrite the BCS equations, by recalculating the density
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matrix ρ and the pairing tensor κ:

ρa ≡
〈

0
∣

∣

∣
c†αcα

∣

∣

∣
0
〉

= v2
a + (u2

a − v2
a)na , (9)

κa ≡ 〈0 |c̃αcα| 0〉 = uava(1 − 2na) . (10)

The u and v coefficients and quasiparticle energies are then obtained by
minimizing the BCS ground-state energy. To solve the SRQRPA equations
we start with the ordinary BCS equations, putting np = nn = 0, than
proceed with the corresponding RQRPA problem (inner iteration), that gives
us new quasiparticle densities and loop with them back to BCS until the
convergence is achieved (outer iteration).

3. Results and conclusions

We calculated SRQRPA NMEs for nuclei of experimental interest. We
essentially used the same approach, as described in [15, 18], except that
gA = 1.25 was adopted and the overlap matrix of the intermediate nu-
clear states was calculated more accurately in comparison with the previous
study [17]. The experimental uncertainties in the measured 2νββ-decay
half-lives were not taken into account. The two-body matrix elements were
calculated from the Bonn-B nucleon–nucleon one boson exchange poten-
tial [25] within the Brueckner theory [22]. The single-particle energies were
calculated from the Coulomb-corrected Woods–Saxon potential with Bertsch
parametrization [26]. As previously, we have found weak dependence of the
RQRPA and the SRQRPA results on the dimension of the single-particle
basis, the contrary to the QRPA behaviour (Fig. 1). The conclusion is, that
the most suitable single-particle basis for all the nuclei in the mass range
100 < A ≤ 150 should contain 16 nlj shells (both for protons and neu-
trons) with 40Ca as an inert core: 1p1/2, 1p3/2, 0f5/2, 0f7/2, 2s1/2, 1d3/2,
1d5/2, 0g7/2, 0g9/2, 2p1/2, 2p3/2, 1f5/2, 1f7/2, 0h9/2, 0h11/2, 0i13/2. The
obtained results are displayed in Fig. 2 and compared with the RQRPA
and SRQRPA NMEs. We see that if data on the 2νββ-decay are used to
extract a more accurate value for NMEs, very similar NMEs for all con-
sidered many-body approaches are obtained. We note that for the closed
and partially closed shell nuclei (48Ca, 116Sn and 136Xe) a further improve-
ment in description of pairing interaction is needed. We can conclude that,
the RQRPA and the SRQRPA are more stable with growing dimension of
the single-particle model space and that the RQRPA reproduces the exper-
imental data for higher values of the particle–particle force. The SRQRPA
behaves like QRPA, but the collapse is pushed forward towards higher gpp

values. For all nuclei we have studied, 0νββ nuclear matrix elements can be
accurately reproduced within QRPA, RQRPA and SQRPA by fixing the gpp

value using 2νββ experimental data.
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Fig. 1. Dependence of the 76Ge → 76Se two-neutrino nuclear matrix elements M2ν

on the dimension of the single-particle basis within the QRPA, the RQRPA and
the SRQRPA.
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Fig. 2. Average neutrinoless nuclear matrix elements M0ν and their variance within
the QRPA, the RQRPA and the SRQRPA.

In summary, the 0νββ-decay NMEs were systematically evaluated using
the SRQRPA. The important role of pairing interaction was stressed. It was
found that the SQRPA results agree suprisingly well with those of the QRPA
and the RQRPA approaches, thus giving more confidence to the whole set
of various QRPA-like methods.
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