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The paper presents the capability of a Liquid Argon TPC to distin-
guish between electrons and π0’s and also between proton, kaon and pion.
Neutral pions are very dangerous background in the study of neutrino oscil-
lations while hadronic identification is important to look for proton decay.
The analysis was based on the data from Monte Carlo simulation and was
achieved by means of Neural Networks. Two methods of analysis focus
on the particle energy loss by ionization. One concerns electrons inside
electromagnetic cascades, the other one decaying hadrons.

PACS numbers: 14.60.Pq, 12.10.Dm, 07.05.Mh, 29.40.Gx

1. Introduction

The ICARUS experiment [1] will start next year at the Gran Sasso lab-
oratory in Italy. Its detector was first proposed by Carlo Rubbia in 1977 [2]
and is based on Time Projection Chambers (TPC) filled with Liquid Argon.
The two modules of the ICARUS detector are being installed and in the
next step will be filled with 600 tons of Liquid Argon. The technology of
this detector was checked in several tests and the results are very promising.
Thanks to high energy resolution and very good granularity ICARUS will
provide 3D imaging for tracking and calorimetric measurements. The high
sensitivity of this type of detector will make it ideal to explore oscillations
of neutrinos while a bigger detector would be perfect to look for nucleon
decay [3].
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The Liquid Argon TPC was also proposed for the T2K experiment [4,5]
which will be realized at the Japanese Proton Accelerator Research Com-
plex (J-PARC). T2K will be a second generation long-baseline neutrino-
oscillation experiment. The most important measurement carried out there
concerns the mixing angle θ13.

The detector technique based on Liquid Argon is so interesting that there
are many ideas for building a much bigger detector of this type in the future.
They were presented at the dedicated workshop recently organized at Gran
Sasso [6].

In order to study neutrino oscillations it is essential to distinguish be-
tween electromagnetic cascades produced by electrons and those which ap-
pear from π0 decays which are the most dangerous background. In searching
for proton decay the hadronic identification is important. These two prob-
lems will be discussed in the following chapters.

In the second chapter the software needed to perform the analysis is
described. The third chapter focuses on the details of the electron/π0 dis-
crimination while the fourth concentrates on the proton decay identification.
Finally, the last part of the paper is a summary and outlook.

2. Description of the method

All events used in our analysis were generated and reconstructed by the
T2K-LAr software, which is a dedicated tool for a proposed Liquid Argon de-
tector in T2K experiment. This software was mostly developed by A.Rubbia
and his group. Generation of the Monte Carlo data was performed using
a G4T2K generator based on the Geant4 environment [7]. Generated events
were mono-energetic, with no additional particles in the initial state and no
noise. Particles were shot into the detector along one direction and events
were fully contained. Reconstruction was done using the T2K-LAr Qbatch

program.
In our analysis events were classified using the neural network library

from the ROOT package [8]. We used simple Multilayer Perceptron networks
with:

• Input layer — containing a number of neurons (inputs) which is de-
pendent on the number of parameters used for classification.

• One hidden layer — the number of neurons in this layer was adjusted
empirically (to maximize the quality of classification).

• Output layer — containing a number of neurons (outputs) which de-
pends on how many types of particles we want to distinguish among.
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Before starting the whole procedure, the set of the generated events was
divided into two parts: training set and testing set. The training set con-
tains, apart from parameters used as inputs for the neural network, also a
value of true network output for each of the events. This set is used to
train the neural network. The testing set is used to test the quality of the
classification.

A very convenient way of testing the quality of the classification by a
neural network is to use purity-efficiency plots (cf. Fig. 2). By gathering the
network answers for all the events in the testing set, we get the distribution
for the network output. To distinguish between two classes of events: signal
(one of the particles) and background (the other ones), we need to establish
a cut (threshold) on the distribution of the network output. Let us define
the two variables for a given threshold applied to the network output:

1. Purity:

Purity = 100%
Nsig(Output)

Nbg(Output) + Nsig(Output)
. (2.1)

2. Efficiency:

Efficiency = 100%
Nsig(Output)

Nsig(Input)
. (2.2)

Nsig(Set) and Nbg(Set) are the numbers of signal and background events
in a given set. Input is the set of the events which is being classified and
Output is the set of the network answers which are above a given threshold.
If the purity–efficiency curve is located higher on the plot — the quality of
classification is better and the network can separate better the signal from
the background.

The main uncertainty in the determination of the purity–efficiency curves
comes from the uncertainty in the purity:

σpurity =

√

σ2
Nsig(Output)

(

∂purity

∂Nsig(Output)

)2

+σ2
Nbg(Output)

(

∂purity

∂Nbg(Output)

)2

.

(2.3)

In both parts of the analysis, e/π0 discrimination and proton decay
search, the basic parameter used as input for the neural network was the
ionization signal from the wires. It is very well measured by the Liquid
Argon detector [1].



2190 D. Stefan, T. Wąchała

3. Electron/π
0 discrimination

The best way to get the neutrino’s signature in the charged current (CC)
reactions is to measure the signal from the charged lepton in the final state.
In the case of an electron in the final state, an electromagnetic shower is
produced. The energy of the shower can be precisely measured due to the
good energy resolution of LAr TPC. This is the reason why the CC events
with the electron in the final state are the so called ”golden channel” for
Liquid Argon TPCs.

The electron signature is used to recognize CC interactions of neutrinos
of two flavors:

• Electron neutrinos and their interactions:

νe + n → e− + p (3.1)

which are important in the T2K experiment where the very low
νµ → νe oscillation signal will be searched for.

• Taon neutrinos and the:

ντ + N → τ + X (3.2)

reaction, where τ decays into an electron and two neutrinos occur
with an 18% branching ratio. This reaction will be important in the
ICARUS experiment (CNGS beam) where the νµ → ντ oscillations
will be searched for.

A considerable background for charged current reactions are the neutral
current (NC) interactions, where π0 mesons are produced:

νµ + n → νµ + π0 + X . (3.3)

In 98.8% of cases the π0 in the final state of this reaction decays after
traveling an infinitesimal way into two photons. Photons give rise to elec-
tromagnetic showers and can imitate electron or taon signals when one of
the showers starts close to the interaction vertex. Confusion is possible
especially in two situations:

1. One of the photons coming from a π0 decay has very low energy and
only the second one initiates the electromagnetic shower.

2. Showers produced by the two photons overlap.
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Fig. 1. Electromagnetic showers in the Liquid Argon TPC initiated by electron

(upper part) and π0 (lower part).

The mistake may also be made when a neutral pion decays into an e+e−

pair and a photon (Dalitz decay in 1.2% of cases). Examples of electron and
π0 events in the T2K Liquid Argon TPC are shown in figure 1. Electron/π0

discrimination has its aim to separate charged current and neutral current
neutrino interactions.

A set of Monte Carlo electron and π0 events was divided into two com-
parable parts: training set and testing set. The energy of the generated
particles was set to 1 GeV because the average energy of the T2K experi-
ment beam will be close to that value. The neural network discrimination
method was applied by extracting some parameters from electron and π0

events and feeding a simple neural network with them. The network has
one output which gives us information which particle was recognized. Test-
ing the quality of the classification by a neural network was performed using
purity-efficiency plots. The basic parameter which was used was an average
energy loss on several wires from the cascade beginning:

〈

dE

dx

〉

=
1

N

∑

i

(

dE

dx

)

i

. (3.4)

An electron gives an immediate ionization signal unlike the π0 meson. π0

decays into two photons that convert into e+e− pairs after an average dis-
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tance equal to the radiation length in liquid argon (X0 = 14cm). Before
the shower starts to develop, the signal from an e+e− pair created by the
conversion of a photon coming from a π0 decay should be twice as high as
the signal from a single electron. This fact is the main motivation for using
the dE

dx
as a parameter. The number of wires taken into account in calculat-

ing the average energy loss was adjusted to have the purity and efficiency
as high as possible. Results of the neural network analysis (2-2-1 network)
using only dE

dx
information are represented by the lowest purity-efficiency

curve in Fig. 2. They are promising but one can obtain better results by
extracting more information from the events in the detector.

To improve the quality of classification, additional parameters were used
as input variables for neural network. These parameters are the results of the
shape analysis of electromagnetic showers produced by electrons and π0’s.
Some of the variables which were added to the analysis are listed below:

1. Average width of the event in the wire plane.

2. Total number of reconstructed electron tracks in the electromagnetic
cascade.

3. Length of the track with the largest number of hits.

4. Average radius of the event in the space.

5. Average angle between the direction of the primary particle and the
reconstructed hits in the space.

Adding the parameters from topological analysis of events gave a con-
siderable improvement in the quality of the classification. Results of using
the 7-2-1 network with

〈

dE
dx

〉

and topological parameters used as inputs are
represented by the middle purity-efficiency curve in Fig. 2.

Assuming that we know the location of the primary vertex of the neutrino
interaction (the point where the electron or π0 was produced) we can further
improve the quality of classification. This was done by using an additional
parameter to feed the neural network: xion. The value of xion is the distance
between the location of the primary vertex and the point where the first
ionization signal was registered by the detector. Using the xion parameter
gives us very big improvement in classification. It is illustrated by the highest
purity–efficiency curve in Fig. 2. Although adding xion is essential, we should
stress that the information about the location of the primary vertex is often
unavailable, especially at low neutrino energies.
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Fig. 2. Purity-efficiency plots for three levels of the analysis.

4. Proton decay

Proton decay is predicted by many Grand Unification Theories. Al-
though the newest data from Super-Kamiokande confirm the exclusion of
the simplest group SU(5) [10], there are many other interesting symmetries
in which proton decays very naturally [11]. The golden channel for Liquid
Argon is p− > K+ν [12] which is favored by SUSY. For this channel one
event observed in the LAr TPC is enough to prove that proton decays.

Initially 2000 of events for each particle type (proton, K+ and π+) were
generated inside the detector. In the simulation particles with kinetic energy
of 1 GeV were traveling in the direction of the longest side of the detector.
They were allowed to loose their energy until they stopped only via ionization
of Liquid Argon. All the particles were fully contained inside the detector.

As was mentioned before, a standard three layer perceptron of neural
network was used. In that case there were three output nodes, related
each to one particle type. The input layer consisted of 9 neurons, each
one corresponding to the energy loss on one wire, starting from the track
end. For improving the quality of the network’s result the last wire was not
taken into account. For this wire the area from which ionization electrons
are collected was often smaller than the one for other wires.
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The correction for energy loss in each of the 9 wires was made by consid-
ering the angle between the particle track and the wires. Figure 3 shows the
energy distribution for the total energy loss. For each particle the network
efficiency recognition was always above 90% and the contamination from
other particles was below 10% when the electronic noise was not taken into
account.
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Fig. 3. Energy distribution for the total energy loss in 9 wires for the three particles

(π+, K+, p) using the corrected energy loss.

Finally, the influence on particle identification by changing the geometry
of neural network was checked. In order to receive faster response only one
input instead of nine was used. It turned out that the sum of six energy
losses in six wires, was enough for the net to give a good result and optimized
the calculation time.

5. Summary and outlook

In our analysis we applied neural network techniques — a very efficient
way of classification of events. These techniques were used for e−/π0 discrim-
ination and particle identification for proton decay. We found that the dE

dx
information is crucial for the discrimination of the particles. We also found
that some additional parameters describing the topology of the events can
be very useful, especially in electron/π0 distinction.

The preliminary results are promising. Our plan is to improve the anal-
ysis by using some other classification algorithms: in particular more ad-
vanced types of neural networks (ontogenic neural networks). It is also im-
portant to apply our classification techniques to the ICARUS T600 detector
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where the wire geometry is different from that of the T2K-LAr detector. The
first data from running the T600 detector on the CNGS beam are expected
in 2007 and will give a great opportunity to test our analysis. Making the
algorithms useful for analysis using real data requires knowledge of the detec-
tor noise. It is our purpose to test the quality of classification on events with
noise. Applying our techniques to Monte Carlo data for the T600 detector
implies using a different event generation software. Adjusting our software
to accept FLUKA [9] generated data is then one of our future tasks.
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