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Neutrinos coming from the distant astrophysical objects reach the Earth
in incoherent mass states. Simple approximations for transitions between
mass and flavour states in the Earth are given.
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1. Introduction

Supernova are very strong sources of neutrinos. Almost 99 % of the
Supernova’s binding energy is carried away by neutrinos. All types of neu-
trinos are produced during the burst. Theoretical models [1] describe some
important properties for them, for instance, their energy spectrum has been
confirmed by an observation of the energy spectrum of neutrinos connected
with explosion of Supernova SN1987A. Each neutrino with a given flavour is
produced in the Supernova core as a coherent superposition of mass states.
Due to convection and diffusion they are further transported to the outer
region from which they are emitted.

Oscillations between different neutrino flavour states are possible only if
there is an overlapping of various mass states. We can describe the coherence
between these states using so called coherence length [2]:

Lcoh =
4
√

2E2

δm2
ij

σx , (1.1)

where E is a neutrino energy, σx is a half-size of the wave packet at a produc-
tion point, δm2

ij = |m2
i−m2

j | and mi(j) is a neutrino mass. It can be said that

Lcoh is the distance beyond which neutrinos do not oscillate, no overlapping
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between different mass states occurs. The wave packet size σx for Supernova
neutrinos is estimated to be 10−15 ∼ 10−14 [m] for the Supernova core and
10−10 [m] for the neutrino-sphere. The coherence length is Lcoh ≃ 10−4 [m]
and Lcoh ≃ 10−1 [m], respectively [3]. In practice the coherence length is
much smaller than a distance between Supernova and the detection point, it
means that neutrinos reach the Earth as separated eigenmass states. When
Supernova neutrino hit the Earth and travel to a detector through the terres-
trial matter by not a very large distance L . 1000 [km], the matter density
is approximately uniform with ρ = 2.5

[
g/cm3

]
.

In this case it is easy to find full analytical solutions for this problem,
however, the results are quite large at size and not too convenient for further
qualitative analysis. It is then desirable to look for some efficient approxi-
mations, they are presented in the next section.

2. Approximation

To get the amplitudes Ai→α from which the probabilities are calculated,
the eigenproblem for the effective Hamiltonian H in the terrestrial matter
in the effective mass base (δn m = 〈νn|νm〉) must be solved:

H |νm〉 =
λ2

m

2E
|νm〉 . (2.1)

The effective Hamiltonian takes the form:

H =
δm2

31

2E

(
UM0U

+ + ΛV
)
, (2.2)

where M0 is a diagonal matrix:

M0 =
∆M

δm2
31

=




0 0 0
0 α 0
0 0 1


 . (2.3)

U is a standard mixing matrix, V has only one non zero element V11 = 1
and Λ is defined by the equation:

Λ =
2E

√
2GFNe

δm2
31

=
1.54 × 10−4 Ye

δm2
31

ρ
[ g

cm3

]
E [MeV] . (2.4)

In Eq. (2.4) the numerator (in the literature denoted by ACC) describes the
interaction of the charged current of electron neutrinos with the terrestrial
matter. Ne is an electron number, GF is the Fermi constant and Ye ∼ 1/2.
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If Wαm = 〈να|νm〉 is the matrix which diagonalises the Hamiltonian (2.2) in
the flavour base, then each element of the amplitude receives the form:

Ai→α =
∑

m

Wαm W̃ ∗

im e−i
λ
2

m

2E
L , (2.5)

where
W̃ ∗

im =
∑

γ

UγiW
∗

γm . (2.6)

In a standard neutrino oscillations’ model there are defined two small factors
useful in perturbation calculations:

α =
δm2

31

δm2
21

≃ 0.028 , sin2 2θ13 < 0.05 . (2.7)

In the case of Supernova neutrinos oscillating in the terrestrial matter an
additional small factor Λ is presented. This term is proportional to the
density ρ (for terrestrial matter: 2 < ρ < 11

[
g/cm3

]
) and to the neutrino

energy E. As one can see (Fig. 1), Λ is the smallest of all these factors
and is the best parameter to use as a perturbation parameter. Let us take
the first term in (2.2) as a non-perturbated Hamiltonian and the second
one, which depends on the matrix V as the first order correction, we can
make a non-degenerated perturbative calculation resulting in determination

of eigenvalues and eigenvectors. In this way the terms Wiα and W̃ ∗

im can be
found. What follows, the probabilities Pi→α can be determined and, finally,
the result can be expanded in Λ

Piα = C0 + C1Λ + O(Λ) . (2.8)

Fig. 1. A range of variability of Λ as a function of the neutrino energy and the

matter density.
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The coefficient C0 reproduces an appropriate element of the mixing ma-
trix U

C0 = |Uiα|2 . (2.9)

The second coefficient C1 can be further expanded as series of sin(2θ13) (up
to the linear term). Finally, the probability oscillation formula for the mass-
flavour transition of Supernova neutrinos induced by the terrestrial matter
can be cast into the following form:

Piα = |Uiα|2 + Λ (γiα
0 + γiα

1 sin 2θ13) . (2.10)

3. Results and conclusions

The elements γiα
0 and γiα

1 which are presented in Eq. (2.10) are:

P1e : γ1e
0 =

1

2α
sin2(2θ12)(−1 + cos[α∆]) , (3.1)

P2e : γ2e
0 = −γ1e

0 , (3.2)

P1µ : γ1µ
0 = −γ1e

0 cos2(2θ23) , (3.3)

γ1µ
1 =

1

4α
sin(2θ12) sin(2θ23)

(
− αD1 + D4

+ cos[δ]
(
2 cos2(θ12) + d1 + (−1 + 2 sin2(θ12)) cos[α∆]

))
,

P2µ : γ2µ
0 = −γ1µ

0 , (3.4)

γ2µ
1 =

1

4αd1
sin(2θ12) sin(2θ23)

(
− αD2 − d1D4

+ cos[δ]
(
cos(2θ12) + 2α sin2(θ12) + cos(2θ12)d1 cos[α∆]

))
,

P3µ : γ3µ
1 =

1

4d1
(sin(2θ12) sin(2θ23)(d1D1 + D2 − α cos[δ])) , (3.5)

P1τ : γ1τ
0 = − 1

2α
sin2(2θ12) sin2(θ23) , (3.6)

γ1τ
1 =

1

4α
sin(2θ12) sin(2θ23)

(
− αD1 + D4

+ cos[δ]
(
2 cos2(θ12) + d1 + (−1 + 2 sin2(θ12)) cos[α∆]

))
,

P2τ : γ2τ
0 = γ1e

0 sin2(2θ12) sin2(θ23) , (3.7)

γ2τ
1 =

1

4d1α
sin(2θ12) sin(2θ23)(αD2 + d1D4

+ cos[δ](−1 − 2d1 sin2(θ12) − cos(2θ12)d1 cos[α∆])) ,

P3τ : γ3τ
1 =

1

4d1
(sin(2θ12) sin(223)(−d1D1 − D2 + α cos[δ])) , (3.8)
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where

D1 = cos(δ) cos(∆) + sin(δ) sin(∆) , (3.9)

D2 = cos(δ) cos(d1∆) − sin(δ) sin(d1∆) , (3.10)

D3 = −1 + cos(α∆) , (3.11)

D4 = sin(δ) sin(α∆) , (3.12)

d1 = −1 + α , (3.13)

∆ = 2.54
δm2

31 L

2E
. (3.14)

Approximations which have been made result in a disappearance of the γiα
0

and γiα
1 coefficients for P3e. It means that this probability is effectively

equivalent to oscillations in vacuum. The terms which contain functions D1,
D2 and D4 are responsible for the CP violation effects and are presented
only in γiα

1 , they are suppressed at least by the first power of sin(2θ13). It is
also characteristic that probabilities P3µ and P3τ have only these CP terms.
It can be easily checked that in our approximation the total probabilities
are conserved:

3∑

i=1

Piα = 1 , (3.15)

∑

α=e,µ,τ

Piα = 1 . (3.16)

Each probability depends on L and E. As an example, in Fig. 2 the prob-
ability P1→e(E) as a function of the typical Supernova neutrino energies is
given. Comparing obtained analytical expressions with the exact probability
P exact

iα (calculated numerically) we can see that approximations are better
and better with decreasing E and L. Relative errors:

∆P (E,L) =
Piα(E,L) − P exact

iα (E,L)

Piα(E,L)
, (3.17)

are below 2% in the whole range of energies.
In conclusion, approximated oscillation probability formulas for neutri-

nos coming from astrophysical sources have been presented. They are com-
pact and suitable for analytical analyses at a very good confidence level.
Results presented in this paper are only a preface to some detailed stud-
ies of the problem. In the future work the whole process of production,
propagation and detection of Supernova neutrinos [5] must be considered in
details. The approximations given here can be helpful in further qualitative
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 E [MeV]

 P[%]

Fig. 2. The approximated oscillation probability P1→e(E) (dashed line), the exact

oscillation probability (solid line). L = 1000 [km], ρ = 2.5 [g/cm3].

and quantitative investigations of this issue. Certainly, it will be also in-
teresting to find another reliable approximations which would be reliable in
deeper layers of the Earth (L > 1000 [km]).
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