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In this contribution calculations of leading and next-to-leading order
(hard photon radiation) matrix element for Drell–Yan process (qq→Z→ ll)
are presented. Two different spin amplitude formalisms are used in the
calculations. Results are compared numerically and cross-checked against
the published calculations based on the Dirac-trace methods.

PACS numbers: 11.80.Cr

1. Introduction

Higher order calculation of cross section (which can be boiled down to
calculation of matrix element (ME) squared |M|2) are crucial both for pre-
cise measurements of Standard Model parameters (W mass, the Weinberg
angle, and other) and for searches for “new physics”. Apart from multi-
loop contributions, the higher-order tree amplitudes play an essential role in
such calculations. The evaluation of tree-level Feynman diagrams by “stan-
dard algebraic techniques”, although straight-forward, becomes impractical
when both the number of external lines and the number of diagrams in-
volved become large. This lead theorists to invent spin amplitude (SA)
formalisms, through which ME can be calculated and evaluated numerically
very efficiency, even for complicated processes. In the standard method af-
ter writing down Feynman diagrams corresponding to a given amplitude M
one usually proceeds to derive an analytic expression for

∑

|M|2, with an
appropriate spin and/or color sum or average. The result, which is usually
a function of Minkowski dot products of the particle four-momenta, is then
evaluated numerically at given phase-space points. On the other hand, the
SA provides a compact expression for the matrix elements in terms of the
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so-called basic bricks. These bricks are defined for each spin formalism sepa-
rately. Subsequently, the ME is calculated numerically at given phase-space
points. The result being simply a complex number needs to be squared in
order to obtain |M|2. The spin amplitude formalism not only facilitates
calculations of matrix elements for multiparticle processes but also allows
to study polarization effects. Moreover, within this formalism one can eas-
ily incorporate “new-physics” phenomena, such as extra intermediate bosons
(e.g. Z ′-boson, Kaluza–Klein towers in extra-dimension scenarios), anoma-
lous couplings, etc. In this paper we compare results of calculations based
on two different spin-amplitude formalisms for massive particles. The first
one proposed by Hagiwara and Zeppenfeld (HZ) [1] is based on the Weyl
spinor representation and provides expression for spin amplitudes in terms
of the so-called spinorial string functions. The second method extends the
CALKUL helicity-amplitude formalism to the massive-fermion case and pro-
vides analytical results for spin amplitudes in terms of the so-called spinor
inner products and was developed by Kleiss and Stirling [2]. Both meth-
ods are widely used for tree-level calculation and exponentiations, e.g. HZ
method was used in Monte Carlo generator WINHAC [3], the KS method,
on the other hand was exploited in [4]. In this note we present analytical
formulae we have obtained using the HZ method, whereas in the case of KS
method we used expressions from Ref. [4].

2. Hagiwara–Zeppenfeld formalism

In this approach, spinors are expressed in the Weyl basis, the vector–
boson polarizations in the Cartesian basis, and the spin amplitudes are eval-
uated numerically for arbitrary four–momenta and masses of fermions and
bosons. This evaluation amounts, in practice, to multiplying 2×2 c-number
matrices by 2-dimensional c-number vectors. The basic brick of this method
is the spinorial string function:

S(pi, a1, . . . , an, pj)
α
λi,λj

= χ
†
λi

(pi)[a1, . . . , an]αχλj
(pj), (1)

where

χ+(p) =
1

2|~p|(|~p| + pz)

[

|~p| + pz

px + ipy

]

,

χ−(p) =
1

2|~p|(|~p| + pz)

[

−px + ipy

|~p| + pz

]

(2)

are the two-component Pauli spinors corresponding to an external fermion
with four-momentum p. The internal part of the above string function:

[a1, a2, . . . , an]α = (/a1)α(/a2)−α . . . (/an)(−1)n+1α (3)
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is the product of 2 × 2 c-number matrices, where

(6a)± =

[

a0 ∓ a3 ∓(a1 − ia2)
∓(a1 + ia2) a0 ± a3

]

, (4)

with a = (a0, a1, a2, a3) being the four-vector in the Minkowski space. In
this section we present analytical calculation which we performed using the
HZ formalism1. Results of the calculations are compared numerically with
other methods.

2.1. Born level calculations

The Born-level Feynman diagram for single-Z production in quark–quark
collisions

q(p1, σ1) + q̄(p2, σ2) −→ Z(Q,λ),

is depicted in Fig. 1 (first diagram on the r.h.s.) where (pi, σi) denotes the
four-momentum and helicity (σi = ±1) of the corresponding quark, while
(Q, λ) is the four-momentum and polarization of the Z-boson (λ = 1, 2, 3).
The spin amplitudes for this process, in the convention of [1], read

Z(Q, λ)

f̄

f

q̄

q

=
1

Z(s)

∑

λ

q̄

q

+

f̄

f

Fig. 1. The Born-level Feynman diagram.

M
(0)
P (σ1, σ2;λ) = ie

[

cLω−σ1
(p1)σ2ωσ2

(p2)S(p2, ǫ
∗
Z(Q,λ), p1)

−
−σ2,σ1

−cRωσ1
(p1)τ2ω−σ2

(p2)S(p1, ǫ
∗
Z(Q,λ), p2)

+
−σ2,σ1

]

, (5)

where e is the positron electric charge, cL and cR are coupling constants for
left and right handled fermions, respectively, ω±(p) =

√

p0 ± |~p|, ǫZ(Q,λ) is
the Z-boson polarization vector (∗ denotes the c-number conjugation); and
S(. . .) is the spinorial string function. The spin amplitudes for the Born-level
Z-boson decay:

Z(Q,λ) −→ f(q1, τ1) + f̄(q2, τ2) ,

1 Only the final formulae and the numerical results are shown. Detailed calculations
were presented in [5].



2212 A. Siódmok

Z
γ

f̄

f

+
Z

f̄

f

γ

Fig. 2. The Feynman diagrams for Z-boson decay including single real-photon

radiation.

shown diagrammatically in Fig. 1 (second diagram on the r.h.s.), are given
by

M
(0)
D (λ; τ1, τ2) = ie

[

cLω−τ1(q1)τ2ωτ2(q2)S
(

q1, ǫZ(Q,λ), q2

)−

τ1,−τ2

−cRωτ1(q1)τ2ω−τ2(q2)S
(

q1, ǫZ(Q,λ), q2

)+

τ1,−τ2

]

, (6)

where τ1,2 denote the helicities of the final-state fermions. Then, the Born-
level matrix element for the single-Z production and decay is given by the
coherent sum of the above spin amplitudes over the Z-boson polarizations
multiplied by the Breit–Wigner function corresponding to the Z propagator:

M0(σ1, σ2; τ1, τ2) =
1

Q2 − M2
Z + iMZΓZ

∑

λ

M
(0)
P (σ1, σ2;λ)M

(0)
D (λ; τ1, τ2) ,

(7)
where MZ and ΓZ are mass and width of the Z-boson.

2.2. Real hard-photon radiation

In this subsection we present the scattering amplitudes for single hard-
photon radiation in fermionic Z-boson decays using the spin-amplitude for-
malism of Ref. [1] and the notation introduced in the previous subsections.
For the process

Z(Q,λ) −→ f(q1, τ1) + f̄(q2, τ2) + γ(k, κ), (8)

in this case we need only to calculate amplitude
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M
(1)
D (λ; τ1, τ2, κ) =

−ie2Qf

2

×

[

cLω−τ1(q1)τ2ωτ2(q2)

{(

2q2 · ε
∗

q2 · k
−

2q1 · ε
∗

q1 · k

)

S(q1, εZ , q2)
−
τ1,−τ2

+
1

q2 · k
S(q1, εZ , k, ε∗, q2)

−
τ1,−τ2

−
1

q1 · k
S

(

q1, ε
∗, k, εZ , q2

)−

τ1,−τ2

}

−cRωτ1(q1)τ2ω−τ2(q2)

{(

2q2 · ε
∗

q2 · k
−

2q1 · ε
∗

q1 · k

)

S(q1, εZ , q2)
+
τ1,−τ2

+
1

q2 · k
S(q1, εZ , k, ε∗, q2)

+
τ1,−τ2

−
1

q1 · k
S

(

q1, ε
∗, k, εZ , q2

)+

τ1,−τ2

}

]

, (9)

where Qf is the electric charges (in units of the positron charge) of the
fermion ε = ε(k, κ) is the polarization vector of the photon with four-
momentum k (because the photon is massless, κ = 1, 2) and εZ = ε(Q,λ)
is the polarization vector of the Z-boson. The QED gauge invariance for

these amplitudes means that M
(1)
D (ε → k) = 0. We have checked both an-

alytically and numerically that after the replacement ε → k in Eq. (9) the
values of the spin amplitudes are consistent with zero (in the numerical case
within the double-precision accuracy). We have also checked the soft-photon
(k0 ≪ Q0) approximation:

M
(1)
D (q1, q2, k) ≈ M0(q1, q2)

(

q2 · ε
∗

q2 · k
−

q1 · ε
∗

q1 · k

)

. (10)

Then, the matrix element for single-Z production and radiative Z decay:

q(p1, σ1) + q̄(p2, σ2) −→ Z(Q,λ) −→ f(q1, τ1) + f̄(q2, τ2) + γ(k, κ), (11)

can be obtained through substitution in Eq. (7) for M
(0)
D (λ; τ1, τ2) by the

amplitude M
(1)
D (λ; τ1, τ2)

2.3. Numerical results

Fig. 3 shows a cross-check of spin amplitudes against analytical (trace)
calculations at Born-level. In order to compare analytical (trace) calculation
with the one based on HZ and KS methods for the hard photon radiation,
randomly selected phase-space points have been used. Cross-checks for a
few very different phase-space-points are summarized in Table I where ξ is
an angle between momentum of photon and fermion, k0 is energy of radiated
photon, M2

trace is squared matrix element calculated using trace method [6]

and δHZ and δKS are defined as follows: δx =
|M2

x−M2
trace|

M2
trace

. These results

confirm agreement with astonishing accuracy.
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Fig. 3. The histograms of the Born-level calculations in case of massive fermions.

TABLE I

The comparison of the NLO ME calculation based on the HZ and KS methods for

a few very different phase-space-points.

cos ξ k0 [GeV] M
2
trace δHZ δKS

−0.511788 25.6668 0.000328551442 1.955977 × 10
−10

1.955939 × 10
−10

−0.875777 0.17290 55.76984701199 1.607094 × 10
−10

1.607068 × 10
−10

0.355232 14.0743 0.002236807849 1.751157 × 10
−10

1.751977 × 10
−10

−0.101052 37.3339 0.000165045975 2.088114 × 10
−10

2.092016 × 10
−10

0.751291 11.2580 0.010689805713 1.430983 × 10
−10

1.431504 × 10
−10

−0.615211 0.78082 0.954606033791 1.669959 × 10
−10

1.669928 × 10
−10

0.765231 4.82919 0.057749194232 1.381154 × 10
−10

1.381294 × 10
−10

0.993571 18.2526 0.047609412950 1.618049 × 10
−10

1.625703 × 10
−10

−0.999340 41.5709 0.006670198811 1.478458 × 10
−10

1.547418 × 10
−10

−0.862227 9.89213 0.011222199139 1.672257 × 10
−10

1.671238 × 10
−10

3. Outlook

The presented matrix elements in the (HZ) Hagiwara–Zeppenfeld formal-
ism for single-photon radiation will be incorporated in the Yennie–Frautschi–
Suura exclusive exponentiation framework for multiphoton radiation effects
in the Drell–Yan process. In addition to the QED corrections, also the elec-
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troweak and QCD effects will be included in the future. The above calcula-
tion will be a basis for constructing a Monte Carlo event generator for the
Drell–Yan process at the current and future high-energy physics colliders,
such as the Tevatron and the LHC.
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