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The Random Phase Approximation theory is used to calculate the to-
tal cross sections of electron neutrinos on 12C nucleus. The role of the
excitation of the discrete spectrum is discussed. A comparison with elec-
tron scattering and muon capture data is presented. The cross section of
electron neutrinos coming from muon decay at rest is calculated.

PACS numbers: 21.60.Jz, 23.40.Hc, 25.30.Dh, 25.30.Pt

The Random Phase Approximation (RPA) is an effective theory con-
structed to study the excitations of many-body systems. The RPA assumes
that the exited states of these systems can be described as linear combi-
nations of one-particle one-hole (1p–1h) and one-hole one-particle (1h–1p)
excitations. The goal of the theory is to find the coefficients of the linear
combinations for a given interaction between particles and holes.

In nuclear physics, the RPA has been applied to study excitations on a
wide energy range, from a few MeV, the discrete spectrum, up to hundreds of
MeV, in a regime called quasi-elastic where the emission of a single nucleon is
the dominant process. One of the great successes of the RPA is the prediction
of collective surface vibrations, called giant resonances, appearing at energies
between 15 and 30 MeV in all the nuclei with more than 10 nucleons.

The inputs required by the RPA are the set of single particle energies
and wave functions, and the effective interaction between particles and holes.
In our calculations the single particle basis, which properly includes the
continuum, has been obtained by solving the one-body Schrödinger equation
with a spherical Woods–Saxon potential. The parameters have been taken
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from the literature [1], and have been fixed to reproduce the rms charge
radii and the single particle energies close to the Fermi level. The theoretical
uncertainty has been studied by using various ph interactions, specifically the
LM1, LM2, and PP interactions of Ref. [1]. The LM1 and LM2 interactions
are zero-range forces of Landau–Migdal type with slightly different values of
the parameters. The PP interaction is a finite-range interaction. A common
characteristic of the three interactions is that they have been rescaled to
reproduce the excitation energy of the low lying 3− state in 16O at 6.13 MeV.
Even though the three interactions produce the same excitation energy, they
give different descriptions of the 3− state. This is shown in Fig. 1 where we
compare the 3− charge form factors with the data of Ref. [2] measured in
inelastic electron scattering experiments. The difference between the various
results indicates the magnitude of the theoretical uncertainty.
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Fig. 1. Charge form factors (left panel) and transition densities (right panel) of the

low lying 3− state in 16O at 6.13 MeV calculated in RPA by using three differ-

ent interactions which reproduce the excitation energy value. The data are form

Ref. [2].

In recent years, we have used the continuum RPA to study neutrino
induced excitations of the 12C and 16O nuclei in the discrete low-lying region,
in the giant resonance and in the quasi-elastic regions. Since a detailed
presentation of our results in the giant resonance and in the quasi-elastic
regions can be found elsewhere [1, 3–6], in this contribution we discuss the
role of the discrete excitation region.
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In the evaluation of the total neutrino cross section, the excitation of
bound states cannot be neglected, even for neutrino energies well above the
continuum emission threshold. As an example of the relevance of the discrete
excitations, we consider here the case of the isovector triplet formed by the
1+ excited states in the spectrum of 12C.

The energies of both charge conserving and charge exchange excitations
obtained in RPA are compared in Table I with the experimental values. None
of the interactions above presented, well tuned to describe natural parity
states, is able to reproduce the experimental energies. We have rescaled
the LM1 interaction to obtain the energy of the charge conserving 1+ state.
Even with this interaction, that we called NI05, the RPA cannot reproduce
the energies of the charge exchange states.

TABLE I

Energies, in MeV, of the isospin triplet 1+ excited states referred to the 12C ground
state.

12C 12N 12B

LM1 17.2 20.2 14.3
LM2 18.8 21.7 15.9
PP 16.7 19.6 13.8
NI05 15.1 18.0 12.2
exp 15.1 17.3 13.4

The difficulties of the RPA in the description of unnatural parity excita-
tions are even better shown in Fig. 2 where we compare the magnetic form
factors of the 1+ state at 15.1 MeV with the data of Ref. [7] measured in
inelastic electron scattering experiments. The bare RPA results are shown
in the left panel. The spreading of these results is much larger than that
shown in Fig. 1 for the 3− state of 16O. In any case, none of the curves
reproduces the peak of the experimental form factor, where the data are
more reliable. This is a common feature of almost all the electron scattering
magnetic form factors in medium-heavy nuclei [8,9]. The source of this defi-
ciency of the RPA has been widely investigated and various studies indicate
that the problem has to be ascribed to the restriction of the configuration
space to 1p–1h excitations [10] rather than to the absence of correlations of
short-range type [9].

We overcome this difficulty of the RPA by using quenching factors whose
values are fixed to best fit the peak of the data. In the right panel of Fig. 2
we show the curves obtained in this manner. The values of the quenching
factors are given in the labels.
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Fig. 2. Magnetic form factors of the 1+ in 12C calculated with various interactions

and compared with the data of Ref. [7]. The results of the left panel has been

obtained by using the quenching factors indicated in the labels.

The muon capture is an interesting case where the excitation of both
bound and continuum states should be considered. In Fig. 3 we show the
muon capture rate of the 12C nucleus calculated with the various interac-
tions, as a function of the nuclear excitation energy. The largest contribution
to the total rate is given by the excitation of the continuum, dominated by
the giant resonances, but the contribution of the bound states cannot be
neglected. In the figure the result obtained by a mean-field (MF) calcula-
tion is represented by the full thin line. While all the other results predict
a collective resonance behavior at about 19 MeV, the MF results does not
show this characteristic.

Experimentally, it has been possible to disentangle the contribution of
various 12C excited states to the total capture rate. In Table II we compare
our capture rates with the data quoted in Ref. [11]. Our calculations describe
reasonably well the contribution of the continuum but they overestimate the
capture rates of the discrete states. The main source of error is due to the 1+

excitation. For this reason we show in the rows labeled with (q) the results
obtained by multiplying the 1+ states with the quenching factors of Fig. 2.
The use of the quenching factors slightly improves the agreement with the
data.

By looking at the total rates only, the mean field calculation provides
the value that is in better agreement with the experimental one. However,
a more detailed analysis of the various contributions shows that this result
is obtained as a sum of a too large discrete contribution with the too small
contribution of the continuum.
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Fig. 3. Muon capture rates calculated with various interactions as a function of the

nuclear excitation energy.
TABLE II

Muon capture rates of 12C in 103 s−1. The rows labeled with (q) shows the results
obtained by using the quenching factors given in Fig. 2. The experimental values
have been taken from Ref. [11].

LM1 LM2 PP NI05 MF exp

1+ 34.93 33.86 34.56 31.57 23.83 6.04
1+(q) 16.07 20.31 13.82 9.47
2+ 0.26 0.20 0.35 0.39 0.46 0.21
2− 1.40 0.79 0.52 8.09 9.04 0.18
1− 0.32 0.29 6.31 0.98 1.13 0.62

dis 36.90 35.13 41.73 41.03 34.46 7.05
dis(q) 18.04 21.48 20.99 18.93
con 31.35 37.09 28.28 31.16 12.48 30.04
tot 68.25 72.22 70.53 72.19 46.94 37.09
tot(q) 50.39 58.67 49.79 50.09

In Fig. 4 we show the total neutrino cross sections for charge conserving
and charge exchange reactions as a function of the neutrino energy. The
lower lines have been obtained by considering only the excitation to the
continuum, while the upper curves include also the excitation of the discrete
states, whose main contribution is given by the 1+ state. The lines of the
left panel are those obtained with the bare RPA calculations, while in those
of the right panels the discrete contributions have been multiplied by the
quenching factors of Fig. 2. Even in this case the contribution of the discrete
excitation is not negligible. The spreading of the various results is a measure
of the theoretical uncertainty.
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Fig. 4. Total neutrino cross sections as a function of the neutrino energies, cal-

culated with various interactions. The full lines show the results obtained with

the LM1, the dashed lines with the LM2, the dotted lines with the PP interaction

respectively. The lower, thinner, lines have been obtained by considering only the

excitation to the continuum. The upper, thicker lines include also the contribution

of the discrete excitation. The left panels show the bare RPA results, the right

panels the results obtained by using the quenching factors of Fig. 2 for the discrete

excitations.

As an example of the consequences of this uncertainty, we have calculated
the 12C(νe, e

−)12B total sections for neutrinos emitted by µ+ at rest, since
this quantity has been measured [12]. We consider the electron neutrinos
coming form the decay

µ+
→ νµ + νe + e+ .

The νe are emitted with the energy distribution shown in the upper panel of
Fig. 5. The cross sections as a function of the neutrino energy are calculated
by multiplying W (ǫi) with the cross sections of panels (b) and (e) of Fig. 4.
These cross sections are shown in the lower panel of Fig. 5, where the upper,
thinner, lines indicate the bare RPA cross sections, and the lower, thicker,
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Fig. 5. The upper panel shows the energy distribution of the electron neutrinos

coming from muon decay at rest, Michel spectrum. In the lower panel we show the

neutrino the cross sections obtained by multiplying the energy distribution W (ǫi)

with the total cross sections of the panels (b) and (e) of Fig. 4. The upper, thinner,

lines show the RPA results, the lower, thicker, lines have been obtained by using

the quenching factors of Fig. 2.

lines the quenched cross sections. The total cross sections are obtained by
integrating these curves. We obtain the values of 36.0, 42.0 and 46.0 ×

10−16 fm2 for the bare RPA calculations, and 7.0, 19.2 and 21.3×10−16 fm2

for the quenched calculations. These results should be compared with the
experimental value of 14.0 ± 1.2 × 10−16 fm2 [12]. The spreading of the
various theoretical results is much larger than the experimental uncertainty.

In summary, we can conclude that the contribution of the excitation of
discrete states to the total neutrino-nucleus cross section is not negligible,
even for neutrino energies of a few hundred MeV. There are large theoret-
ical uncertainties in the description of the low-lying discrete spectrum of
medium-heavy nuclei, especially for unnatural parity states. These uncer-
tainties have large effects on the cross sections of neutrinos of energies up
to several tens of MeV, such as the neutrinos coming from muon decay or
supernovae neutrinos [1].
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In order to obtain a satisfactory description of the low-lying discrete
spectrum, and, hopefully, to reduce the theoretical uncertainties, it is neces-
sary to use theories which goes beyond the RPA framework by considering
more complicated excitations, such as 2p–2h degrees of freedom [10,13, 14].
Furthermore, in the specific case of the 12C nucleus, there are indications
that deformation effects are important [15].

This work has been partially supported by the MURST through the
PRIN: Teoria della struttura dei nuclei e della materia nucleare.
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