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I discuss the theoretical treatment of the electroweak nuclear response
based on nonrelativistic nuclear many-body theory. This approach allows
for a unified parameter-free description of a variety of kinematical regions
relevant to many neutrino experiments. Selected applications to electron-
and neutrino–nucleus scattering in the impulse approximation regime are
analyzed.
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1. Introduction

In view of the rapid development of neutrino physics, leading to signif-
icant improvements in the experimental accuracy, the treatment of nuclear
effects in data analysis is now regarded as one of the main sources of sys-
tematic uncertainty [1, 2].

Theoretical descriptions of the nuclear response to electroweak probes
necessarily imply two different sources of uncertainty. First, due to the
complexity of the fundamental theory of strong interactions, one has to rely
on dynamical models, based on nucleon and meson degrees of freedom and
effective interactions. Second, the calculation of transition matrix elements
between nuclear states necessarily involves approximations for targets having
nuclear mass number A > 4.

In Nuclear Many-Body Theory (NMBT) the nucleus is viewed as a col-
lection of pointlike protons and neutrons, whose dynamics are described by
the nonrelativistic Hamiltonian

H =
∑

i

p
2
i

2m
+

∑

j>i

vij +
∑

k>j>i

Vijk , (1.1)
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where pi and m denote the momentum of the i-th nucleon and the nucleon
mass, respectively. The two body potential vij is determined by fitting
deuteron properties and ∼ 4000 precisely measured nucleon–nucleon (NN)
scattering phase shitfs [3], while inclusion of the three-nucleon interaction
Vijk ≪ vij is required to account for the binding energy of the three-nucleon
systems [4].

The many body Schrödinger equation associated with the Hamiltonian
of Eq. (1.1) can be solved exactly, using stochastic methods, for nuclei with
mass number up to 10. The resulting energies of the ground and low-lying
excited states are in excellent agreement with experimental data [5].

It is very important to realize that in NMBT the dynamics is fully de-
termined by the properties of exactly solvable system, and does not suffer
from the uncertainties involved in many-body calculations. Once the nuclear
Hamiltonian is fixed, calculations of nuclear observables for a variety of sys-
tems, ranging from deuteron to neutron stars, can be carried out without
making use of any adjustable parameters.

The theoretical description of the electroweak nuclear response based on
NMBT is outlined in Section 2, whereas Section 3 focuses on the region
of high momentum transfer, where the impulse approximation (IA) scheme
becomes applicable. Sections 4 and 5 are devoted to the analysis of se-
lected applications to electron– and neutrino–nucleus scattering processes,
respectively, while conclusions and prospects are stated in Section 6.

2. The nuclear electroweak response

The scattering cross section of the process

ℓ + A → ℓ′ + X , (2.1)

where ℓ and ℓ′ denote either a charged lepton or a neutrino and X represents
the undetected hadronic final state, can be written in the form

dσA ∝ LµνW µν
A . (2.2)

In the above equation, the tensor Lµν is determined by the lepton kinematics,
whereas all the information on nuclear dynamics is contained in the response
tensor

W µν
A (q) =

∑

n

〈0|Jµ
A
†
(q)|n〉〈n|Jν

A(q)|0〉δ(4)(p0 + q − pn) , (2.3)

whose calculation requires the knowledge of the target ground and excited
states, |0〉 and |n〉, as well as of the nuclear electroweak current Jµ

A.
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At moderate momentum transfer ( |q| < 500 MeV) exact calculations of
W µν

A can be carried out for A ≤ 4 using integral transform techniques [6,7].
Accurate results can also be obtained in the A → ∞ limit using Correlated
Basis Function (CBF) perturbation theory [8, 9].

The CFB approach is based on the use of the complete set of correlated
states

|n〉 = F |nMF〉 , (2.4)

where |nMF〉 is a state obtained from the mean-field approximation, e.g. a
nuclear shell-model wave function, while the operator F , which takes into
account NN correlations induced by the strong nuclear forces, is generally
written in the form

F = S
∏

j>i

fij . (2.5)

The structure of the two-nucleon correlation operator fij reflects the com-
plexity of the NN potential, which is known to be non spherically symmet-
ric and strongly spin–isospin dependent. The symmetrization operator S is
needed to preserve the symmetry of the state |n〉, as in general [fij , fjk] 6= 0.

The Hamiltonian of Eq. (1.1) can be split according to

H = H0 + HI , (2.6)

where H0 and HI denote its diagonal and non diagonal part in the correlated
basis, respectively, i.e.

〈m|H0|n〉 = δmn〈m|H|n〉 , (2.7)

〈m|HI |n〉 = (1 − δmn)〈m|H|n〉 . (2.8)

If the correlated states have large overlaps with the eigenstates of H, the
matrix elements (2.8) are small and the perturbative expansion in powers of
HI is rapidly convergent.

CBF perturbation theory has been used to calculate the electromag-
netic response of infinite nuclear matter for momentum transfers up to
∼ 500 MeV [9]. The results, obtained including the contributions of one
particle-one hole and two particle–two hole intermediate states in Eq. (2.3),
clearly show that the effects of short range NN correlations are large.

Long range correlations are also known to be important at low momen-
tum transfer (|q| < 200 MeV), but their description within CBF involves
severe difficulties. However, implementation of effective interactions ex-
tracted from the CBF results in the standard Random Phase Approximation
scheme [10] may provide a computationally viable approach allowing for a
consistent treatment of short and long range correlations.
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3. The impulse approximation regime

At large momentum transfer the nonrelativistic approximation breaks
down. However, when the space resolution of the beam particle, ∼ 1/|q|,
becomes much smaller than the average distance between nucleons in the
target, the IA regime sets in. Under these conditions, the nuclear cross
section reduces to the incoherent sum of elementary scattering processes
involving individual bound nucleons. Neglecting final state interactions (FSI)
between the struck particle and the spectator nucleons one can then rewrite
Eq. (2.3) in the simple form

W µν
A (q) =

∑

i

∫
d4k

(
m

Ek

)
Pi(k)w̃µν

i (k, q) , (3.1)

where the spectral function Pi(k) yields the energy and momentum distri-
bution of the i-th nucleon, whose electroweak structure is described by the
tensor w̃µν

i .
Accurate calculations of the spectral function have been carried out for

light nuclei [11–13] and infinite nuclear matter [14, 15]. The proton spec-
tral functions of medium-heavy nuclei have also been modeled using the
Local Density Approximation (LDA) [16,17], in which the experimental in-
formation obtained from electron-induced nucleon knock out measurements
is combined with the results of theoretical calculations of the nuclear matter
spectral function carried out at different densities.

The tensor w̃µν
i can be expressed in terms of the proton and neutron

structure functions obtained from lepton–proton and lepton–deuteron data,
the effects of nuclear binding being accounted for through a shift of the
energy transfer [18].

The effect of FSI, neglected in Eq. (3.1), has long been recognized to
be sizable. In inclusive processes it amounts to (i) an energy shift of the
cross section, due to the fact that the struck nucleon moves in the average
potential generated by the spectator particles and (ii) a redistribution of
the strength, leading to the quenching of the quasi-elastic peak and the
enhancement of the tails, to be ascribed to the occurrence of NN scattering
processes coupling the one particle-one hole final state to more complex n
particle–n hole configurations.

A theoretical approach to describe FSI, based on NMBT and a gener-
alization of Glauber theory of high energy proton scattering [19], has been
proposed in the early 90s [20]. This treatment of FSI, generally referred
to as Correlated Glauber Approximation (CGA) rests on the premises that
(i) the struck nucleon moves along a straight trajectory with constant ve-
locity (eikonal approximation), and (ii) the spectator nucleons are seen by
the struck particle as a collection of fixed scattering centers (frozen approx-
imation).
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4. Electron–nucleus scattering

The approach outlined in Section 3 has been widely and successfully ap-
plied to the analysis of electron–nucleus scattering data (for a recent review
see, e.g., Ref. [21]).

In Ref. [22], it has been employed to calculate the inclusive electron scat-
tering cross sections off oxygen at beam energies ranging between 700 and
1200 MeV and electron scattering angle 32◦. In this kinematical region, rele-
vant to many neutrino experiments, single nucleon knock out is the dominant
reaction mechanism and both quasi-elastic and inelastic processes, leading
to the appearance of hadrons other than protons and neutrons, must be
taken into account.

Comparison between theoretical results and the experimental data of
Ref. [23] shows that, while the data in the region of the quasi-elastic peak
are accounted for with an accuracy better than ∼ 10 %, theory fails to
explain the measured cross sections at larger electron energy loss, where ∆
production dominates.

As an example, Fig. 1 shows the results of Ref. [22] at beam energy 700
and 1200 MeV. For reference, the results of the Fermi gas (FG) model cor-
responding to Fermi momentum pF = 225 MeV and average removal energy
ǫ = 25 MeV are also shown. Theoretical calculations have been carried out
using the Höhler–Brash parameterization of the nucleon form factors [24,25]
in the quasi-elastic channel and the Bodek and Ritchie parametrization of
the proton and neutron structure functions in the inelastic channels [26].

Fig. 1. Cross section of the process 16O(e, e′) at scattering angle 32◦ and beam

energy 700 MeV (left panel) and 1200 MeV (right panel). Solid lines: full calcu-

lation, carried out within the approach described in Section 3. Dot-dashed lines:

IA calculation, carried out neglecting FSI effects. Dashed lines: FG model with

pF = 225 MeV and ǫ = 25 MeV. The data are taken from Ref. [23].
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The authors of Ref. [22] argued that the disagreement between theory
and data in the ∆ production region is likely to be imputable to deficien-
cies in the description of the nucleon structure functions at low Q2. This
conclusion is supported by the analysis recently carried out in Ref. [27].

The results of Fig. 1 clearly illustrate the inadequacy of the FG model,
often employed in the analysis of neutrino experiment, to describe the data.
Fixing the model parameters to reproduce the quasi-elastic peak at 1200
MeV leads to a 40% discrepancy at 700 MeV. On the other hand, the ap-
proach based in NMBT, involving no adjustable parametes, provides a sat-
isfactory description of the quasi-elastic region for both kinematics.

5. Charged current neutrino–nucleus scattering

The approach based on NMBT can be readily generalized to describe
charged current neutrino–nucleus interactions [22]. It has to be pointed out,
however, that, while including dynamical correlations in the final state, it
does not take into account statistical correlations, leading to Pauli blocking
of the phase space available to the knocked out nucleon.

The effect of Pauli blocking, which can be included through a modifica-
tion of the spectral function [22], is hardly visible in the differential electron–
nucleus cross section discussed in Section 4, corresponding to Q2 > 0.2 GeV2

at the quasi-elastic peak. On the other hand, it appears to be very large at
lower values of Q2.

Figure 2 shows the calculated differential cross section dσ/dQ2 for scat-
tering of 1 GeV electron neutrinos off oxygen. The dashed and dot-dashed

Fig. 2. Differential cross section dσ/dQ2 for scattering of 1 GeV electron neutrinos

off oxygen. The dot-dashed line shows the IA results, while the solid and dashed

lines have been obtained taking into account Pauli blocking with and without

inclusion of dynamical FSI, respectively.
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lines correspond to the IA results with and without inclusion of Pauli block-
ing, respectively. The effect of Fermi statistic in suppressing scattering shows
up at Q2 ∼ 0.2 GeV2 and becomes dominant at lower Q2. The results of
the full calculation, in which dynamical FSI are also included, are displayed
as a full line. The results of Fig. 2 suggest that Pauli blocking and FSI may
explain the deficit of the measured cross section at low Q2 with respect to
the predictions of Monte Carlo simulations [28].

6. Conclusions and prospects

The approach based on NMBT provides a unified parameter-free descrip-
tion of the electroweak nuclear response in a variety of kinematical regions
relevant to many neutrino experiments.

Thanks to the availability of reliable spectral functions, accurate calcula-
tions of the cross sections in the IA regime can now be carried out including
the effects of short range NN correlations. Correlation effects can also be
consistenly included in the treatment of FSI between the struck nucleon and
the spectator particles.

Comparison to electron–nucleus scattering data shows that, while the re-
gion of the quasi-elastic peak is described with an accuracy of ∼ 10 %, theory
still fails to account for the measured cross sections at larger energy transfer.
Better models of the nucleon structure functions at Q2 < 0.5 GeV2 appear
to be needed for a fully quantitative understanding of the ∆ production
region. The role of meson exchange currents, which are known to provide
a significant amount of strength in the dip region between the quasi-elastic
and the ∆ production peak, also needs to be carefully investigated.

As a final remark, it has to be pointed out that the possibility of using
the approach based on NMBT in the analysis of neutrino experiments largely
depends on the ability to implement its elements in Monte Carlo simulations.

Assuming, for the sake of simplicity, that the elementary weak interaction
vertex in the nuclear medium be the same as in free space, a realistic sim-
ulation of neutrino–nucleus scattering requires the energy and momentum
probability distribution of the nucleons, needed to specify the initial state,
as well as their distribution in space and the medium modified hadronic
cross section, needed for the description of FSI.

Studies based on NMBT and stochastic methods to solve the many-
body Schrödinger equation appear to be capable of providing access to all
the above quantities for a variety of nuclear targets.



2250 O. Benhar

REFERENCES

[1] Proceedings of NuInt01, eds. J.G. Morfin, and M. Sakuda, Y. Suzuki, Nucl.
Phys. B (Proc. Suppl.) 112 (2002).

[2] Proceedings of NuInt04, eds. F. Cavanna, P. Lipari, C. Keppel and M. Sakuda,
Nucl. Phys. B (Proc. Suppl.) 139 (2005).

[3] R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C51, 38 (1995).

[4] P.S. Pudliner, V.R. Pandharipande, J. Carlson, S.C. Pieper, R.B. Wiringa,
Phys. Rev. C56, 1720 (1997).

[5] S.C. Pieper, R.B. Wiringa, Annu. Rev. Nucl. Part. Sci. 51, 53 (2001).

[6] J. Carlson, R. Schiavilla, Phys. Rev. Lett. 68, 3682 (1992).

[7] V.D. Efros, W. Leidemann, G. Orlandini, Phys. Lett. B338, 130 (1994).

[8] S. Fantoni, V.R. Pandharipande, Nucl. Phys. A473, 234 (1987).

[9] A. Fabrocini, S. Fantoni, Nucl. Phys. A503, 375 (1989).

[10] G. Co’, Acta Phys. Pol. B 37, 2235 (2006), these proceedings.

[11] A.E.L. Dieperink, T. de Forest, I. Sick, R.A. Brandenburg, Phys. Lett. B63,
261 (1976).

[12] C. Ciofi degli Atti, E. Pace, G. Salmè, Phys. Rev. C21, 805 (1980).

[13] H. Meier-Hajduk, C. Hajduk, P.U. Sauer, W. Theis, Nucl. Phys. A395, 332
(1983).

[14] O. Benhar, A. Fabrocini, F. Fantoni, Nucl. Phys. A505, 267 (1989).

[15] A. Ramos, A. Polls, W.H. Dickhoff, Nucl. Phys. A503, 1 (1989).

[16] O. Benhar, A. Fabrocini, S. Fantoni, I. Sick, Nucl. Phys. A579, 493 (1994).

[17] A.M. Ankowski, J.T. Sobczyk, nucl-th/0512004; A.M. Ankowski, Acta Phys.
Pol. B 37, 2259 (2006) these proceedings.

[18] T. de Forest, Jr., Nucl. Phys. A392, 232 (1983).

[19] R.J. Glauber, in Lectures in Theoretical Physics, eds. W.E. Brittin et al.,
Interscience, New York 1959.

[20] O. Benhar, A. Fabrocini, S. Fantoni, G.A. Miller, V.R. Pandharipande, I. Sick,
Phys. Rev. C44, 2328 (1991).

[21] O. Benhar, D. Day, I. Sick, nucl-ex/0603029, to be published in Rev. Mod.
Phys.

[22] O. Benhar, N. Farina, H. Nakamura, M. Sakuda, R. Seki, Phys. Rev. D72,
053005 (2005).

[23] M. Anghinolfi et al., Nucl. Phys. A602, 405 (1996).

[24] G. Höhler et al., Nucl. Phys. B114, 505 (1976).

[25] E.J. Brash, A. Kozlov, Sh. Li, G.M. Huber, Phys. Rev. C65, 051001(R) (2002).

[26] A. Bodek, J.L. Ritchie, Phys. Rev. D23, 1070 (1981).

[27] O. Benhar, D. Meloni, hep-ph/0604071 submitted to Phys. Rev. Lett.

[28] T. Ishida, Nucl. Phys. B Proc. Suppl., 112, 132 (2002).


