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The ICARUS and future liquid argon neutrino experiments generate
demand for evaluating the spectral function of argon. In this paper we use
oxygen nucleus as a testing ground for our phenomenological approach to
the spectral function and probe the influence of momentum distribution
and treatment of the mean field spectral function on the differential cross
sections. The obtained model reproduces very well results of the exact
spectral function of oxygen and can be applied to heavier nuclei, such as
calcium or argon.

PACS numbers: 13.15.+g, 25.30.Pt

1. Motivation and outline of the paper

Thanks to experience already gained with the ICARUS T600 TPC [1]
one knows that liquid argon (LAr) has many advantages in neutrino experi-
ments. They make LAr technology interesting for planned detectors, e.g. for
T2K [2] and NuMI [3]. To use them fully, one has to reduce uncertainties
by evaluating nuclear effects as precise as possible. From (e, e′) scattering
it is clear that the Fermi gas model can only be the first approximation.

More elaborate approach is the spectral function (SF) formalism. Where
the impulse approximation is valid (i.e. when neutrino energy Eν is greater
then a few hundred of MeV [4]), the SF describes nuclei most accurately.
It was applied to (l, l′) scattering previously [5]. The problem is that the
exact SFs exist only for a few double closed shell nuclei, 3He, and nuclear
matter [6–8]. For argon 40

18Ar exact computations cannot be performed, so
one is forced to seek for the best possible approximation. Opportunity to
verify the quality of given approximation is provided by oxygen nucleus,
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where the exact SF exists [7]: applying the same method to calculation of
the oxygen SF and comparing the result to the exact SF can give a notion
of discrepancies between them.

The first attempt at constructing the argon SF is Ref. [9]. Presented
there approximation gives the differential cross sections which somewhat
differ from the corresponding ones for the exact SF (compare Fig. 1). In the
paper presumption was made that the discrepancies come from:

— oversimplified treatment of the mean field spectral function,

— different momentum distributions in the spectral functions.

This work is devoted to detailed study of the two effects. After a brief
introduction into the SF approach in Sec. 2 and describing the simplest
approximation of the SF in Sec. 3 (i.e. the approach of [9]), we consider in
Sec. 4 an influence of NN -correlations on the mean field SF. Then in Sec. 5
the sensitivity of the SF on the momentum distribution is discussed.

νµ + 16O → µ + X
Eν = 800 MeV
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Fig. 1. Differential cross section dσ/dEµ of quasielastic νµ scattering off 16O ob-

tained from the Fermi gas model (dotted line), the Benhar’s spectral function

(dashed line) and the simplest approximation of the spectral function [9] (solid line).

Left: Pauli blocking is absent. Right: Pauli blocking included.

Conclusions allowed for working out in Sec. 6 a satisfactory approxima-
tion of the exact spectral function of oxygen, which can be applied to argon
and other nuclei.

2. Basic information on the spectral function

The spectral function (SF) of a given nucleus P (p, E) is the probability
distribution of finding a nucleon with momentum p and removal energy E.
Formal definition can be expressed as [10]

P (p, E) ≡ 〈i(MA)|a†(p)δ(Ĥ − MA + M − E)a(p)|i(MA)〉, (1)
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where Ĥ is the intrinsic Hamiltonian of the (A−1)-nucleon system, |i(MA)〉
denotes the state of the initial nucleus of mass MA (assumed to be at rest),
and M is nucleon mass.

Oxygen nucleus is isoscalar (N = Z), therefore its SF consists of only
two parts: the mean field and the short-range correlation one:

P (p, E) =
N + Z

2
[PMF(p, E) + Pcorr(p, E)] . (2)

All the knowledge about low-energy and low-momentum nucleons (i.e.
the shell model information) is included in the mean field term PMF(p, E).
Corrections to the independent-particle behavior of nucleons are described
by the correlation part Pcorr(p, E). From the nuclear matter calculations one
knows that at high energy and momentum such correlations are dominated
by the two-nucleon interactions [11].

The mean field SF consists of contributions of every shell model state α
below the Fermi level αF [12]:

PMF(p, E) ≡ 1

A

∑

α<αF

cαAα|φα(p)|2δ
(

Eα + ER(p) − E
)

. (3)

In the above equation Eα is the energy of the state α described by the single-
nucleon wave function φα(p) (normalized to 1) with the occupation proba-
bility cα, and the number of particles Aα, whereas ER(p) = p

2/(2MA−1) is
the recoil energy of the residual nucleus.

Interactions between nucleons cause their partial redistribution from the
states below the Fermi level to the levels of higher energy, and occurrence
of non-zero width of each level. It means that when NN -correlations in the
MF part are taken into account, delta function in Eq. (3) should be replaced
by appropriate distribution [7]. We shall return to this issue in Sec. 4.

Due to Eq. (1) the momentum distribution of nucleons reads

n(p) ≡ 〈i(MA)|a†(p)a(p)|i(MA)〉 =

∫

P (p, E) dE (4)

and as a consequence of Eq. (2) consists of two contributions [12]:

n(p) =
N + Z

2
[nMF(p) + ncorr(p)] . (5)
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3. Simplest approximation of the SF

Firstly note that Eq. (3) simplifies significantly when one replaces Eα in
the argument of the delta function by the average separation energy E(1) =
∑

α<αF
cαEαAα/A [14]:

P SSF
MF (p, E) = nMF(p) δ

(

E(1) + ER(p) − E
)

, (6)

because then only the momentum distribution

nMF(p) =
∑

α<αF

cα|φα(p)|2 Aα

A
(7)

occurs, which is averaged over single-particle levels.
Secondly, as it was mentioned in the previous section, major contribution

to the correlations between nucleons comes from the two-nucleon process. It
consists in forming a cluster by two nucleons with high relative momentum
while the other (A − 2) nucleons remain soft [13]. When we restrict ourself
to such an interactions, the correlation SF can be expressed as [14]:

Pcorr(p, E) = ncorr(p)
M

|p|

√

α

π

[

exp(−αp
2
min) − exp(−αp

2
max)

]

. (8)

Occurring here α = 3/(4〈p2〉β) is inversely proportional to the mean value
of the MF momentum squared 〈p2〉 times β = (A − 2)/(A − 1) and

p
2
min =

[

β|p| −
√

2Mβ[E − E(2) − ER(p)]
]2

,

p
2
max =

[

β|p| +
√

2Mβ[E − E(2) − ER(p)]
]2

. (9)

The threshold value E(2) is interpreted as the two-nucleon separation energy
averaged over low-energy configurations of the (A − 2)-nucleon system and
can be approximated by E(2) = MA−2 + 2M − MA.

We will refer to the described approach as “the simplest approximation
of the spectral function” or “the simplest spectral function” (SSF).

Figure 1 illustrates that the cross section dσ/dEµ of both SFs clearly
differs from the one of the Fermi gas. As long as Pauli blocking (PB) is not
included, the SSF reproduces the result of the Benhar’s (i.e. exact) SF quite
well. Presence of PB enlarges difference between them, because it changes
the shape of the peak in other way.

In the next section we investigate whether more elaborate approximation
of the mean field SF removes this discrepancy.
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4. Improved treatment of the mean field SF

In Sec. 2 we mentioned that NN -correlations broaden energy levels, so in
Eq. (3) instead of delta function an appropriate distribution should occur [7]:

PMF(p, E) ≡ 1

A

∑

α<αF

cαAα|φα(p)|2Fα

(

Eα + ER(p) − E
)

. (10)

In order to simplify it, let us replace the single-particle momentum distribu-
tion |φα(p)|2 by the average nMF(p) defined in Eq. (7):

PMF(p, E) = nMF(p)
1

A

∑

α<αF

cαAαFα(Eα + ER(p) − E) . (11)

We decided to use the Gaussian distribution

Fα(x) =
1√
πDα

exp

[

−
(

x

Dα

)2
]

. (12)

To describe a level α we need to now its diffuseness Dα and its “mean
field” occupation probability cα. If one used the “raw” cα’s (given for example
in [15]), partial double counting would occur due to contribution of the
correlation term of the SF (raw value says only that the nucleon can be
found in given state with certain probability, not how it get there: whether
it happened due to “natural placement” or due to “correlation kick”).

For 16O we shall determine the value of Dα from the Benhar’s SF, for
other nuclei one should get them from direct calculations (e.g. for 40

20Ca the
data is available in [16]). Oxygen is a quite heavy nucleus in the sense that
its recoil energy for the mean value of momentum |p| = 180 MeV/c [9] is
∼ 1 MeV. When we neglect it, the separation

PMF(p, E) = nMF(p)SMF(E) . (13)

holds, and we easily get that

SMF(E) ∝
∫

PMF(p, E) d3p =

∫

[P (p, E) − Pcorr(p, E)] d3p. (14)

We inserted in the above relation the Benhar’s SF and calculated the en-
ergy distribution SMF(E). By fitting Eq. (12) successively to every peak
corresponding to the energy level, we determined all Dα’s, see Figure 2.

Note that SMF(E) shown in Fig. 2 vanishes for E & 87 MeV. For oxygen
Pcorr(p, E) appears above the threshold energy E(2) = 26.33 MeV higher
then the energy of quite sharp levels 1p3

2 and 1p1
2 , hence the correlations
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Fig. 2. Our fit of the Gaussian distribution of the level 1s 1

2
(solid line) to appropri-

ate region of the energy distribution SMF(E) calculated from the Benhar’s spectral

function of 16O (dotted line).

admixes only to cα of 1s1
2 level. After subtracting calculated value of

∫

Scorr(E)dE over E ∈ [26.33; 87] MeV from cα of 1s1
2 , we get the proper

“mean field” value. Now we have all the indispensable parameters to obtain
predictions for the model.

The cross sections for this approximation are shown in Fig. 3: the mo-
mentum distribution is the same as in the simplest SF and so is the cor-
relation part of the SF, the only change is the different treatment of the
mean field SF. This approach causes that the shape of the cross section is
similar to one of the exact SF, regardless of including PB or not. The height
of the peak is also slightly reduced, therefore the agreement between the
approximation and the Benhar’s SF is now better.

νµ + 16O → µ + X
Eν = 800 MeV

original PMF(p, E), no PB
Benhar’s SF, no PB

Gaussian app. of PMF(p, E), no PB
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Fig. 3. Sensitivity of the quasielastic differential cross section dσ/dEµ on treatment

of the mean field spectral function. The simplest (dotted line) and the Gaussian ap-

proximation (solid line) compared to the Benhar’s spectral function. Left: Results

without Pauli blocking. Right: Pauli blocking included.
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5. Dependence on the momentum distribution

To study how the difference between the momentum distributions affects
difference between the cross sections, we divided the Benhar’s distribution
into MF and correlated part as in Fig. 4: we kept the same value of ncorr(p)
for p = 0 and took care of its smooth transition into the original distribution
for high values of p. The calculated components of the total distribution
were applied to the simplest approximation of the spectral function (SSF).
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Fig. 4. Contributions to the momentum distribution of nucleons: the mean field

(dashed) and correlation part (dotted line) sum up to the total momentum distribu-

tion (solid line). Left: Distribution from [12]. Right: Corresponding one calculated

from the Benhar’s SF, by analogy divided into two parts (details in text).
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Fig. 5. Sensitivity of the quasielastic differential cross section dσ/dEµ on applied

momentum distribution. The simplest approximation with the momentum distri-

bution used previously [9] (from [12]; dotted line) and with “the Benhar’s distri-

bution” (see Fig. 4; solid line) compared to the Benhar’s spectral function (dashed

line). Left: Without Pauli blocking. Right: With Pauli blocking included.

As it follows from Fig. 5, nearly whole discrepancy between the cross
section for SSF obtained in this way and the corresponding one for the
Benhar’s SF disappeared when Pauli blocking (PB) is absent. Inclusion of
PB reveals different behavior of the two approaches.
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We conclude that the momentum distribution is responsible for the
height of the peak, but not for its shape (compare solid and dotted line in
Fig. 5). Therefore the SSF diverges from the exact SF when PB is present.

Another important information is the high sensitivity of dσ/dEµ on n(p).
This feature is quite inconvenient, because it suggests that one should take
into account the difference between momentum distribution of protons and
neutrons, if appropriate prediction of dσ/dEµ for high Eµ is required.

6. Combination of the two effects

As we have seen in Sec. 4, the enhanced treatment of the mean field
SF affected the shape of the cross section’s peak, but it was a bit too high,
whereas the change of the momentum distribution in Sec. 5 reduced the
hump’s height, however its shape disagreed. When we combine the two
improvements, using both “the Benhar’s momentum distribution” and the
Gaussian mean field SF, discrepancy vanishes almost completely, see Fig. 6.

νµ + 16O → µ + X
Eν = 800 MeV

Simplest app., no PB
Benhar’s SF, no PB

Gaussian app., no PB

Eµ (MeV)

10
4
0
d
σ
/d

E
µ

(c
m

2
/M

eV
)

800700600500400300200100

3.0

2.5

2.0

1.5

1.0

0.5

0.0

νµ + 16O → µ + X
Eν = 800 MeV

Simplest app.

Benhar’s SF

Gaussian app.

Eµ (MeV)

10
4
0
d
σ
/d

E
µ

(c
m

2
/M

eV
)

800700600500400300200100

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Fig. 6. Gaussian approximation with “the Benhar’s distribution” (solid line) is

significantly better then the simplest approximation with the original distribution

(dotted line) and nicely reproduces results of the Benhar’s spectral function (dashed

line). Left: Without Pauli blocking. Right: With Pauli blocking.

We conclude that the remarks made in [9] were right: the cross section
of the Benhar’s SF can be satisfactory reproduced when one uses the same
momentum distribution and the refined treatment of the mean field SF.

Our approximation remains simple enough and can be applied to other
nuclei. The next goal will be 40

20Ca where the needed nuclear data is available.

The author would like to express his gratitude to Jan T. Sobczyk for
stimulating discussions on the spectral function and to Omar Benhar for
providing his spectral function of oxygen.
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