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We present general formulas for the production of the spin-3/2 and
1/2 resonances by neutrinos and then specialize to the first four resonances
P33(1232), P11(1440), D13(1520) and S11(1535). The production of the
resonances is described by vector and axial form-factors. We show how
some of them could be determined from the electroproduction data and
from the theory. Then we calculate the cross section for neutrino reactions
and compare the results with the experimental data.

PACS numbers: 14.20.Gk, 13.40.Gp

1. Introduction

In the new experiments studying neutrino oscillations there is a strong
interest to go beyond the QE scattering and ∆ resonance excitations [1, 2].
In this region of invariant masses, three isospin 1/2 states, P11(1440),
D13(1520) and S11(1535) contribute. They are known as the second res-
onance region. Existing data for neutrino excitation of these resonances are
scarce and come from old bubble-chamber experiments on deuterium targets.
In the on-going and coming experiments, heavy nuclear targets like carbon,
oxygen, iron and lead are used. In obtaining neutrino–nucleus amplitudes,
the knowledge of the relevant neutrino–nucleon amplitudes is a prerequi-
site and in this paper we describe them it terms of phenomenological vector
and axial form-factors. For the ∆ resonance after many years several of
the form-factors and their Q2 dependencies became accurately known and
were found to deviate from the dipoles. For the higher resonances only the
results of the Rein–Sehgal model [3], extended recently in [4,5], are used up
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to now. At Dortmund University we analyze the second resonance region
within the phenomenological model, in which the form-factors are deter-
mined from electroproduction data and from PCAC hypothesis. Some of
our results are presented here, details can be found in [6].

Among the other approaches to the problem of ∆ resonance excitation
by neutrinos there are calculations based on dispersion relations [7], phe-
nomenological models [8, 9], superscaling approach [10], as well as model
incorporating mesonic states [11], including a cloud of pions.

2. General method to determine the vector and axial form-factors

We adopt the approach of determining the vector form-factors from he-
licity amplitudes of electroproduction data, which became recently available
from the Jefferson Laboratory [12–14] and Mainz accelerators [15].

Let us denote the nucleon as |N,Jz〉 and the resonance as |R, Jz〉 with Jz

the helicity. For the transition γN → R there are three helicity amplitudes:
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where K =
√

πα/[mN (W 2−m2
N)] and ε(i) is the photon polarization vector.

We write these amplitudes in terms of the electromagnetic form-factors
and use the resulting formulas to fit the experimental data. This allows us
to extract the form-factors, which are then related to the weak vector form-
factors that we use in neutrino reactions. This approach is general and can be
applied to any resonance provided that the corresponding electroproduction
data is available.

The axial form-factors are more difficult to determine. For each reso-
nance we appeal to PCAC which relates two form-factors, and one coupling
is determined making use of the partial decay widths R → πN . The signs of
the axial form-factors are chosen in such a way that the structure functions
W3 for all resonances are positive, as indicated or suggested by the data.
As a consequence the neutrino induced cross sections are larger than the
corresponding antineutrino cross sections.
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3. Form-factors for the first four resonances

3.1. S11(1535) resonance

For spin-1/2 resonances the parametrization for the weak vertex of the
resonance production is similar to the parametrization for quasi-elastic scat-
tering. The matrix elements of the S11 production can be written as:

〈S11|Jν |N〉= ū(p′)

[

gV
1

µ2
(Q2γν + q/qν)γ5+

gV
2

µ
iσνρqργ5− gA

1 γν− gA
3

mN
qν

]

u(p) ,

(3.1)
where we use the standard notation for the σ-matrices σνρ = i

2 [γν , γρ] and
µ = mN + MR as normalization factor.

The matrix element of the electromagnetic current has the same structure
as the vector part in Eq. (3.1)

〈S11|Jν
em|N〉 = ū(p′)

[

gem
1

µ2
(Q2γν + q/qν) +

gem
2

µ
iσνρqρ

]

γ5u(p) . (3.2)

The two form-factors gem
1,2 are different for protons and neutrons because

the electromagnetic current has isovector and isoscalar components. In the
difference

a
1/2
γn→R0 − a

1/2
γp→R+ = a

1/2(iV )
(W+n→R+)

the isoscalar component of the current drops out and the isovector part
coincide with the vector part of the weak amplitude. Furthermore, since
the S11 has spin 1/2, only two helicity amplitudes contribute. Substituting
the current (3.2) into expressions (2.3) and using explicit representation of
the spinors for the nucleon and resonance in the laboratory frame yields the
amplitudes

AS11

1/2
=

√
2N

[

gem
1

µ2
Q2 +

gem
2

µ
(MR − mN )

]

, (3.3)

SS11

1/2 =
√

Nqz

[

−gem
1

µ2
(MR − mN ) +

gem
2

µ

]

, (3.4)

where N = παem/[mN (W 2 − m2
N )] 2mN (p′0 + MR).

For the S11(1535) the helicity amplitudes were measured only for protons.
To obtain the neutron form-factors we assume the relation An

1/2 ≈ −Ap
1/2,

which implies that the contribution from the isoscalar photon is small. We
use recent experimental data [14,16] to make a numerical fit, which is shown
in Fig. 1. This fit yields the following form-factors
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gp
1 =

2.0/DV

1 + Q2/1.2M2
V

[

1 + 7.2 ln

(
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1GeV2
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,

gp
2 =

0.84

DV

[

1 + 0.11 ln

(

1 +
Q2

1GeV2

)]

, (3.5)

where DV = (1+Q2/M2
V)2 denotes the dipole function with the vector mass

parameter MV = 0.84GeV. Notice, that one of the form-factors, at least
for Q2 < 3.5GeV2, falls down slower than the dipole function. The weak
vector form-factors gV

i reduce in our case to gV
i ≈ −2gp

i ≈ 2gn
i .
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Fig. 1. Helicity amplitudes for the S11(1535) resonance, calculated with the form-

factors from Eq. (3.5).

The determination of the axial form-factors relies on PCAC, which allows
to express one of the axial form-factors via the strong πNR coupling gS.

gA
3 (Q2)=

mN (MR−mN)

Q2+m2
π

gA
1 (Q2) , gA

1 (0)=−
√

2

3

gSfπ

MR−mN
=−0.21. (3.6)

The coupling gS is in turn defined through the elastic resonance width

ΓS11→πN =
g2
S

8πM2
R

[

(MR + mN )2 − m2
π

]

|pπ| . (3.7)

With the experimental value ΓS11→πN (W = MR) = Γ
(S)
0 = 0.4× 0.150GeV

we obtain gS = 1.12. For details see [6].
The Q2 dependence of the form-factors can be determined either exper-

imentally (provided that the data is available) or in a specific theoretical
model. Motivated by the results on P33 resonance, we suppose, that the
form-factor gA

1 behaves as
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gA
1 =

−0.21/DA

1 + Q2/3M2
A

, (3.8)

where DA = (1 + Q2/M2
A)2 denotes the dipole function with the axial mass

parameter MA = 1.05GeV.
For the running width of the resonance we use

Γ (S)(W ) = Γ
(S)
0

pπ(W )

pπ(MR)

which is consistent with Eq. (3.7).
The above described methods for determining the vector and axial form-

factors can be used for any resonance. The Q2 dependencies of gA
1 (Q2) and

gA
3 (Q2) must be checked and determined from neutrino experiments. The

analysis of the other resonances is similar and we give here numerical values
for the couplings and the functional form of the form-factors. As a final
step we should provide the structure functions W1, . . .W5 that enter the
differential cross section in terms of the form-factors. The corresponding
expressions are given in [6].

3.2. P11(1440) resonance

For the P11 resonance we define the vertex by equation

〈P11|Jν |N〉= ū(p′)

[

fV
1

µ2
(Q2γν +q/qν)+

fV
2

µ
iσνρqρ−fA

1 γνγ5−
fA
3

mN
qνγ5

]

u(p) ,

(3.9)
For this resonance there are experimental data for the helicity amplitudes

on proton target shown in Fig. 2. For the fit of the form-factors we use
only [14, 16], which (for Q2 < 3.5GeV2) results in

fp
1 =

2.3/DV

1 + Q2/4.3M2
V

, fp
2 =

−0.76

DV

[

1 − 2.8 ln

(

1 +
Q2

1GeV2

)]

. (3.10)

The weak vector form-factors are calculated in analogy to the previous
resonance as fV

i ≈ −2fp
i , which again ignores the isoscalar contribution.

From PCAC we determine the axial couplings

fA
3 (Q2) =

mN (MR + mN )

Q2 + m2
π

fA
1 (Q2) , fA

1 (0) = −0.51 .

The Q2 dependence of fA
1 is arbitrary taken as

fA
1 (Q2) =

fA
1 (0)/DA

1 + Q2/3M2
A

. (3.11)
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Fig. 2. Helicity amplitudes for the P11(1440) resonance, calculated with the form-

factors from Eq. (3.10).

3.3. D13(1520) resonance

We define form-factors in analogy to those of the P33 resonance [18]. By
fitting the data from Ref. [14] for proton and predictions from Ref. [13] for
neutron we found the following form factors

C
(p)
3 =

2.95/DV

1 + Q2/8.9M2
V

, C
(p)
4 =

−1.05/DV

1 + Q2/8.9M2
V

, C
(p)
5 =

−0.48

DV
,

C
(n)
3 =

−1.13/DV

1 + Q2/8.9M2
V

, C
(n)
4 =

0.46/DV

1 + Q2/8.9M2
V

, C
(n)
5 =

−0.17

DV
.

(3.12)
To give an impression, how good this parametrization is, we plot in Fig. 3 the
helicity amplitudes for the proton. The vector form-factors are determined

in analogy to those of other isospin-1/2 resonances as CV
i = C

(n)
i − C

(p)
i .
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Fig. 3. Helicity amplitudes for the D13(1520) resonance, calculated with the form-

factors from Eq. (3.12).
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For the axial form-factors we get with the help of PCAC

CA
6 (Q2) = m2

N

CA
5 (Q2)

m2
π + Q2

, CA
5 (Q2) =

−2.1/DA

1 + Q2/3M2
A

. (3.13)

We also use CA
3 = CA

4 = 0. Further investigation is presented in [6].

3.4. P33(1232) resonance

As mentioned in Introduction, ∆ resonance has been studied extensively
and is understood better than the others. The form-factors have been de-
termined from comparison with electroproduction data and PCAC. Recent
data from Mainz accelerator [15] give helicity amplitudes as functions of
Q2, which are shown in Fig. 4. Fitting these amplitudes, we determine the
form-factors

C
(p)
3 =

2.13/DV

1 + Q2/4M2
V

, C
(p)
4 =

−1.51/DV

1 + Q2/4M2
V

, C
(p)
5 =

−0.48/DV

1 + Q2/0.776M2
V

.

(3.14)

The form-factors C
(p)
3 and C

(p)
4 agree with those, obtained within the mag-

netic dipole dominance approximation, with accuracy 5%. For this resonance

isospin relations give C
(p)
i = C

(n)
i = C

(V )
i .

-300

-250

-200

-150

-100

-50

 0

 50

 0  0.5  1  1.5  2  2.5  3

A
3/

2,
 A

1/
2,

 S
1/

2,
 1

0-3
 G

eV
-1

/2

Q2

A3/2
(p)

A1/2
(p)

S1/2
(p)

Fig. 4. Helicity amplitudes for the P33(1232) resonance, calculated with the form-

factors from Eq. (3.14).

For the axial form-factors we adopt the functional form

CA
6 (Q2) = m2

N

CA
5 (Q2)

m2
π+Q2

, CA
5 =

1.2/DA

1+Q2/3M2
A

,

CA
4 = −1

4
CA

5 , CA
3 =0 ,
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as discussed earlier [7]. The differential cross section dσ/dQ2 for the reaction
νp → µ−R++ → µ−pπ+ is calculated in our previous article [18]. Special
attention was devoted to the muon mass effects, which decrease the differ-
ential cross section at low Q2 and thereby bring better agreement with the
data.

4. Cross sections in the second resonance region

Now, that the form-factors are known, we calculate the cross section for
the channels νn → R → pπ0 and νn → R → nπ+, where both I = 3/2
and I = 1/2 resonances contribute. The experimental data, available in this
region, show that the BNL [19] points are consistently higher than those of
ANL [20, 21] and SKAT [22]. This is also evident in earlier compilations
of the data. For instance, Sakuda [23] used the BNL data and his cross
sections are larger that those of Paschos et al. [24] where ANL and SKAT
data were used. The error bars in these early experiments are rather large
and it should be the task of the next experiments to improve them and settle
the issue.

The solid curves in Fig. 5 show the theoretically calculated cross sections
with the cut W < 2.0GeV and the dashed curve with the cut W < 1.6GeV.
For pπ0 the solid curve goes through most of the experimental points except
for those of the BNL experiment, which are consistently higher than data of
the two other experiments.

For the nπ+ channel our curve is a little lower than the experimental
points. This means that there are contributions from higher resonances
or additional axial form factors. Another possibility is to add a smooth
background which grows with energy. An incoherent isospin-1/2 background
of approximately 5×10−40(Eν/1GeV– 0.28)1/4 cm2 would be sufficient to fit
the data, as it is shown in Fig. 5 by a double-dashed curve. This background
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Fig. 5. Integrated cross section for the µ−pπ0 and µ−nπ+ final states.
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may originate from various sources. By isospin conservation it will give
one half of this value to the pπ0 channel. Since experimental points are
not consistent with each other, it is premature for us to speculate on the
additional terms.

OL thanks the organizers of the Max Born Symposium for the opportu-
nity to present our results and for the financial support. The support of the
BMBF under contract 05HT4PEA/9 is gratefully acknowledged.

REFERENCES

[1] J.G. Morfin, M. Sakuda, Nucl. Phys. Proc. Suppl. 149, 215 (2005).

[2] J.G. Morfin, Nucl. Phys. Proc. Suppl. 149, 233 (2005).

[3] D. Rein, L.M. Sehgal, Ann. Phys. 133, 79 (1981).

[4] K.S. Kuzmin, V.V. Lyubushkin, V.A. Naumov, Mod. Phys. Lett. A19, 2815
(2004).

[5] K.S. Kuzmin, V.V. Lyubushkin, V.A. Naumov, Nucl. Phys. Proc. Suppl. 139,
158 (2005).

[6] O. Lalakulich, E.A. Paschos, G. Piranishvili, hep-ph/0602210.

[7] S.L. Adler, Ann. Isr. Phys. Soc. 50, 189 (1968).

[8] L. Alvarez-Ruso, S.K. Singh, M.J. Vicente Vacas, Phys. Rev. C59, 3386 (1999).

[9] K. Hagiwara, K. Mawatari, H. Yokoya, Nucl. Phys. B668, 364 (2003); Erratum
B701, 405 (2004).

[10] J.E. Amaro et al., Phys. Rev. C71, 015501 (2005).

[11] T. Sato, D. Uno, T.S.H. Lee, Phys. Rev. C67, 065201 (2003).

[12] V.D. Burkert et al., Phys. Rev. C67, 035204 (2003).

[13] V.D. Burkert, T.-S.H. Lee, Int. J. Mod. Phys. E13, 1035 (2004).

[14] I.G. Azanuryan et al., Phys. Rev. C71, 015201 (2005).

[15] L.Tiator et al., Eur. Phys. J. A19, 55 (2004).

[16] I.G. Azanuryan, private communication.

[17] C.S. Armstrong et al., Phys. Rev. D60, 052004 (1999).

[18] O. Lalakulich, E.A. Paschos, Phys. Rev. D71, 074003 (2005).

[19] T. Kitagaki et al., Phys. Rev. D34, 2554 (1986).

[20] S.J. Barish et al., Phys. Rev. D19, 2521 (1979).

[21] G.M. Radecky et al., Phys. Rev. D25, 1161 (1982); Erratum D26, 3297 (1982).

[22] H.J. Grabosch et al., [SKAT Collaboration], Z. Phys. C41, 527 (1989).

[23] M. Sakuda, Nucl. Phys. Proc. Suppl. 112, 109 (2002).

[24] E.A. Paschos, Nucl. Phys. Proc. Suppl. 112, 89 (2002).


