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The positivity constraints for hadronic tensor lead to the bounds for
τ lepton polarization in Parity Violating DIS. Another model-independent
constraints are provided by the QCD duality which may be described in
a similar way to QCD sum rules method. The Parity Conserving spin-
dependent case is considered in more detail, while several specific comments
on Parity Violating case are made. The observation is made that ∆(1232)
resonance should be excluded from duality consideration and possible rea-
son for that is offered.

PACS numbers: 12.15.Ji, 13.15.+g, 14.20.Gk, 23.40.Bw

1. Introduction

The νµ → ντ oscillation hypothesis can be tested by means of τ produc-
tion via ντ scattering through charged current interactions, namely

ντ (ν̄τ ) + N → τ−(τ+) + X , (1.1)

where N is a nucleon target. This process will be studied with under-
ground neutrino telescopes, such as: AMANDA, ANTARES, NESTOR and
BAIKAL [4], as well as long-baseline neutrino oscillation experiments, such
as: ICARUS, MINOS, MONOLITH and OPERA [5].

This process at typical Q2 ∼ 1 GeV2 corresponds to transition region of
QCD and represents therefore a serious problem for theoretical analysis. It
is highly desirable to apply the methods which are less sensitive to various
model assumptions. Here we present two such methods: positivity of den-
sity matrix and exploration of Bloom–Gilman duality, stressing the more
fundamental aspects of the latter.
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2. Density matrix positivity and scattered lepton polarization

The positivity of density matrix, which emerged from Max Born inter-
pretation of quantum mechanics, is known to provide the powerful method
of analysis of various spin-dependent processes [6]. Here we will review its
application [7] for Parity Violating DIS.

In lepton nucleon deep inelastic scattering all the observables involve the
hadronic tensor of the nucleon Wµν(p, q), where p, k and k

′

are the four mo-
menta of the nucleon, incoming ντ (ν̄τ ) and produced τ− (τ+), respectively,

and q = k − k
′

is the momentum transfer:

Wµν(p, q) = −gµνW1(ν, q2) +
pµpν

M2
W2(ν, q2) − iǫµναβ

pαqβ

2M2
W3(ν, q2)

+
qµqν

M2
W4(ν, q2) +

pµqν + qµpν

2M2
W5(ν, q2) . (2.1)

All structure functions, which are made dimensionless by including ap-
propriate mass factors, depend on two Lorentz scalars ν = p · q/M and
q2 = −Q2 (Q2 > 0), where M is the nucleon mass. In the laboratory frame,
let us denote by Eν , Eτ and pτ the neutrino energy, τ energy and momen-
tum, respectively and θ the scattering angle. We then have ν = Eν − Eτ

and Q2 = 2Eν [Eτ − pτ cos θ] − m2
τ , where mτ = 1.777 GeV is the τ mass.

Finally, the Bjorken variable x is defined as x = Q2/2p · q and the physical
region is xmin ≤ x ≤ 1, where xmin = m2

τ/2M(Eν − mτ ).
The unpolarized cross sections for deep inelastic scattering (1.1), are

expressed as
dσ±

dEτd cos θ
=

G2
F

2π

M4
W pτ

(Q2 + M2
W )2

R± , (2.2)

where GF is the Fermi constant and MW is the W -boson mass. Here

R± =
1

M

{

(

2W1 +
m2

τ

M2
W4

)

(Eτ − pτ cos θ) + W2 (Eτ + pτ cos θ)

±W3

M

(

EνEτ + p2
τ − (Eν + Eτ )pτ cos θ

)

− m2
τ

M
W5

}

, (2.3)

where the ± signs correspond to τ∓ productions.

Because of time reversal invariance, the polarization vector
−→
P of the τ

in its rest frame, lies in the scattering plane defined by the momenta of the
incident neutrino and the produced τ . It has a component PL along the
direction of −→pτ and a component PP perpendicular to −→pτ . In addition, it
is convenient to introduce also the degree of polarization defined as P =
√

P 2
P + P 2

L . As previously the ± signs correspond to τ∓ productions and it
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is clear that if W3 = 0, one has R+ = R− and τ+ and τ− have opposite
polarizations.

From Eq. (2.1) clearly the hadronic tensor Wµν(p, q) is semi-positive:

a∗µWµν(p, q)aν ≥ 0 , (2.4)

for any complex 4-vector aµ. The 4 × 4 matrix representation of Wµν(p, q)

in the laboratory frame, where p = (M, 0, 0, 0) and q = (ν,
√

ν2 + Q2, 0, 0)

reads

(

M1 0
0 M0

)

, where M1 and M0 are the following 2 × 2 Hermitian

matrices:

M1 =





−W1 + W2 + ν2

M2 W4 + ν
M

W5

√
ν2+Q2

M

(

ν
M

W4 + 1
2
W5

)

√
ν2+Q2

M

(

ν
M

W4 + 1
2
W5

)

W1 + ν2+Q2

M2 W4



,(2.5)

and

M0 =





W1
−i
√

ν2+Q2

2M
W3

+i
√

ν2+Q2

2M
W3 W1



. (2.6)

The necessary and sufficient conditions for Wµν(p, q) to satisfy inequal-
ity (2.4) are that all the principal minors of M1 and M0 should be positive
definite. So for the diagonal elements we have three inequalities linear in
the Wi’s namely

W1 ≥ 0 , (2.7)

−W1 + W2 +
ν2

M2
W4 +

ν

M
W5 ≥ 0 , (2.8)

W1 +
ν2 + Q2

M2
W4 ≥ 0 , (2.9)

and from the 2 × 2 determinants of M0 and M1 we get two inequalities
quadratic in the Wi’s namely

W 2
1 ≥ ν2 + Q2

4M2
W 2

3 , (2.10)

or equivalently

W1 ≥
√

ν2 + Q2

2M
|W3| , (2.11)

and
(

−W1 + W2 +
ν2

M2
W4 +

ν

M
W5

)(

W1 +
ν2 + Q2

M2
W4

)

≥ ν2 + Q2

M2

(

ν

M
W4 +

1

2
W5

)2

. (2.12)
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By imposing the last condition, only one of the two inequalities (2.8) or (2.9)
is needed, the other follows automatically.

In order to test the usefulness of these constraints to restrict the allowed
domains for PP and PL, we proceed by the following method, without refer-

Fig. 1. For τ+ production, PP versus PL in a domain limited by R+ ≥ 0, P ≤
1 (grey area) plus non trivial positivity constraints (black area). From top to

bottom and left to right, Eν = 10 GeV, Q2 = 1 GeV2, x = 0.25, 0.6, 0.9, Eν =

10 GeV, Q2 = 4 GeV2, x = 0.4, 0.6, 0.9, Eν = 20 GeV, Q2 = 1 GeV2, x =

0.25, 0.6, 0.9, Eν = 20 GeV, Q2 = 4 GeV2, x = 0.25, 0.6, 0.9.
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ring to a specific model for the Wi’s. We generate randomly the values of
the Wi’s, in the ranges [0,+1] for W1 and W2, which are clearly positive and
[−1,+1] for i = 3, 4, 5. The most trivial positivity constraints are R± ≥ 0,
but in fact they are too weak and do not imply the obvious requirements
|PL| ≤ 1 and |PP| ≤ 1 or P ≤ 1 1. So we first impose R± ≥ 0 and P ≤ 1 for
different values of Eν , Q2 and x and as shown in Fig. 1, for τ+ production,
the points which satisfy these constraints are represented by grey dots inside
the disk, P 2

L + P 2
P ≤ 1.

If we now add the non trivial positivity constraints Eqs. (10)–(15), which
also guarantee that P ≤ 1, we get the black dots, giving a much smaller area.
In Fig. 1, the top row corresponds to Eν = 10 GeV and Q2 = 1 GeV2, the
row below to Eν = 10 GeV and Q2 = 4 GeV2 and the next two rows to
Eν = 20 GeV and Q2 = 1, 4 GeV2. Going from left to right x increases from
a value close to its minimum to 0.9. It is interesting to note that the black
allowed area increases with Q2 and becomes smaller for increasing incident
energy and increasing x. For τ− production, the corresponding areas are
obtained by symmetry with respect to the center of the disk. For increasing
x, since PL is more and more restricted to values close to +1 for τ+ (−1 for
τ−), it is striking to observe that the non trivial positivity constraints lead to
a situation where the τ+ (τ−) is almost purely right-handed (left-handed),
although it has a non zero mass.

3. Bloom–Gilman duality in QCD and ∆(1232)

Let us discuss the quantitative description of Bloom–Gilman (BG) dual-
ity which requires the account [8] for the large x enhanced higher twist (HT)
terms behaving like (M2/(1 − x)Q2)n ≈ (M2/s)n. The quantitative anal-
ysis of these terms may be performed by exploring the technique of Borel
sum rules (SR), which is very popular when vacuum power corrections are
considered [9] and was recently applied [10] for studies of BG duality.

As soon as only these enhanced power corrections are considered, the
Borel SR in the variable s is especially convenient. Comparing the analysis
of BG duality to the most simple case of static meson characteristics one may
see the two complications. Namely, the BG problem contains two scales, s
and Q2, and the sum rule contains the contributions from s and u channels.
However, keeping of the leading (in 1/(1 − x)) power corrections allows
to avoid both complications. Calculating the Compton amplitude in the
asymmetric point in the non-physical region close to the s threshold, one
may keep only the enhanced power corrections and neglect the contribution
of u channel. As a result, the Borel sum rule is completely similar to the

1 Note that in the trivial case where W3 = W4 = W5 = 0, R ≥ 0 implies P ≤ 1.
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case of meson characteristics. Assuming the ansatz for spectral density

ρ(s) = θ(s − s0)ρ
pert(s) + θ(s0 − s)ρRes(s) , (3.1)

where s0 is the duality interval, and putting the Borel parameter to infinity,
which leads to the disappearance of the power corrections, one gets

s0
∫

smin

ds(ρpert(s) − ρRes(s)) = 0 , (3.2)

which is just BG duality.
Note that the calculation of s0 from QCD, which is the real problem of

QCD SR, would require the explicit account for the enhanced HT terms.
This problem was already studied in detail [11] in the case of spin-averaged
structure function F2. One may worry, whether this analysis, assuming very
large x, is applicable for studies of BG duality, corresponding to lower x. The
positive answer may result from the following simple reasoning. The large
x behavior is governed by the power dependence (1 − x)b and the exponent
b, once established at very large x, should govern also the behavior at lower
ones, relevant for BG duality. The similar reasoning may explain, why BFKL
asymptotics, requiring very small x, may be successfully applied (see [12] and
references therein) to describe data at much larger x. Namely, the Regge
behavior xa, once established at very low x, should also be applicable, with
reasonable numerical accuracy, to much larger ones. The general success of
the parametrization in the form x−a(1 − x)b may, in turn, be related to the
convexity of parton distributions, which is preserved by the specific kinetic
term of DGLAP equation [13].

It is important that some structure functions are better suited for ap-
plication of duality. In the PC spin-dependent case this is the structure
function gT [10, 14]. The related property of this function is that it is free
from the contribution of ∆(1232)-resonance.

One may ask how general is that coincidence. The possible reason for
such a generality may be the following. It is known since the seminal pa-
per of Close and Isgur [15] that only parity doublets may fit BG duality.
In (chiral-invariant) pQCD the states with opposite parity have the same
mass. At the same time, it is not so in full QCD due to the Spontaneous
Chiral Symmetry Breaking. Therefore, the opposite parity states become
essentially different, and this difference is especially pronounced when one
of the doublet components corresponds to strong low mass resonance, like
∆(1232). Therefore, one may just drop this strong component of parity
doublet from consideration, with the hope that the remaining weak one will
not essentially spoil the duality.
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This universality of ∆(1232) exclusion seems to be supported by the talk
of Lalakulich [16], as ∆ relative contribution to p+n is smaller than to p−n.
Moreover, one may try to investigate the ∆(1232)-free combination 3n − p.

Another implication of the presented approach to BG duality for PV
case may be the expected similarity of the contributions of vector and ax-
ial transition form factors, as they contribute identically to quark handbag
diagram.

4. Conclusions

The positivity of density matrix provides the important constraints for
scattered lepton polarization. There are arguments that ∆(1232) resonance
should be excluded from the consideration of BG duality. Further analysis
of this issues is highly desirable.

I am deeply indebted to organizers and participants of the Symposium,
and especially to Jan Sobczyk, for the warm hospitality in Wrocław and
many illuminating discussions. This work was supported by the Grants
RFBR 06-02-16215 and MSE RNP.2.2.2.2.6546, and Bogoliubov–Infeld Pro-
gram of JINR–Polish Collaboration.
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