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Neutrino propagation in protoneutron stars requires the knowledge
of the composition as well as the dynamical response function of dense
hadronic matter. Matter at very high densities is probably composed of
other particles than nucleons and little is known on the Fermi liquid prop-
erties of hadronic multicomponent systems. We will discuss the effects that
the presence of Λ hyperons might have on the response and, in particular,
on its influence on the thermodynamical stability of the system and the
mean free path of neutrinos in dense matter.
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Core collapse supernovae appear at the last stage of the evolution of mas-
sive stars [1]. When the nuclear fuel of the star is exhausted, no more energy
is produced in the interior and the most internal iron shell collapses. When
the central density reaches the saturation density of nuclear matter ρ0, the
collapsing matter bounces and forms a protoneutron star (PNS). This pro-
tostar is expected to reach densities of the order of 2–3ρ0 and temperatures
up to 50MeV [2]. The neutrinos produced during the collapse are trapped
in the dense core. In addition, the entropy increases and thus thermal pro-
duction of neutrino pairs is enhanced. The PNS is then a neutrino-rich
environment, where neutrinos have been dynamically trapped. However,
neutrinos can diffuse out to the crust of the PNS, carrying the heat of the
inner core with them. The early cooling process of the PNS is thus driven

∗ Presented by A. Rios at the XX Max Born Symposium “Nuclear Effects in Neutrino
Interactions”, Wrocław, Poland, December 7–10, 2005.

(2403)



2404 A. Rios, A. Polls, J. Margueron

by neutrinos and it is very sensitive to neutrino interactions in dense matter.
For instance, the details of the nucleon–nucleon (NN) interaction and the
dynamical correlations in the nuclear medium are of a capital importance
for the cooling process [3]. The presence of different particles apart from
nucleons (such as hyperons) can also influence the neutrino emissivity of the
star, either because of the effects that hyperons produce on the in-medium
nucleons or because of the neutrino interactions with hyperons. In any case,
an important and illustrative measure, which might be useful for early cool-
ing process computations or supernovae evolution simulations is the neutrino
mean free path (MFP) in the hot and dense hadronic medium of the PNS.
The influence of the different baryons in this quantity has been previously
studied, mainly within relativistic mean field approaches [4].

From a theoretical point of view, Landau theory of Fermi liquids ex-
plains in a successful way the properties of quantum liquids like 3He or
nuclear matter [5]. Within Fermi Liquid Theory (FLT), the study of the
thermodynamical (TD) instabilities or the collective modes of hyper-nuclear
systems could be easily assessed. The main difficulty faced in the model-
ing of dense matter lies on our lack of knowledge of the hyperon–nucleon
(Y N) and hyperon–hyperon (Y Y ) interactions as well as on the in-medium
modifications of baryons.

The main idea underlying FLT simply states that, under certain assump-
tions, the properties of Fermi liquids are only related to the excitations of
the system close to the Fermi surface. One can easily study these excitations
(usually called quasiparticles) and find out the static and dynamic proper-
ties of the system. In FLT, a fluctuation δnk = nk −n0

k of the Fermi surface
will modify the energy E0 of the system in its ground state by an amount
δE = E[nk] − E[n0

k], which is related with the fluctuation through:

δE =
∑

~k1

ε(k1)δn(~k1) +
1

2

∑

~k1,~k2

f(~k1, ~k2)δn(~k1)δn(~k2) . (1)

One can then define the quasiparticle energy ε(k), as a first variation of the
energy with respect to the momentum distribution, while a second variation

leads to identify the function f(~k1, ~k2) to an interaction between quasipar-
ticles:

f(~k1, ~k2) =
δ2E

δn(~k1)δn(~k2)
. (2)

Since we are dealing with excitations around the Fermi surface, the quasi-
particle interaction is usually taken at k1 = k2 = kF. The only remaining

dependence is the one in the Landau angle θ12 between ~k1 and ~k2, which
can be accounted for by a Legendre expansion:
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f(θ12) =
∑

L

fLPL[cos(θ12)] . (3)

The Legendre coefficients fL are the so-called Landau parameters. A relevant
issue, already pointed out by Landau in his original derivation of FLT, is
that these parameters can be related to static and dynamical properties
of the system, such as the effective mass, the compressibility or the spin
susceptibility.

Up to now we have restricted ourselves to a system of spinless fermions.
When other quantum numbers, such as spin are taken into account, the
quasiparticle interaction should be properly generalized. Usually, one ex-
pands the quasiparticle interaction in the following operational form:

F(~k1σ1, ~k2σ2) = f(~k1, ~k2) + g(~k1, ~k2) ~σ1 · ~σ2 . (4)

Since 1 and ~σ1 · ~σ2 are the S = 0 and S = 1 projector operator in the
particle–hole channel, it is clear that f and g account for the S = 0 and
S = 1 spin channels of the particle–hole interaction. Finally, whenever we
deal with a system of different species of fermions (such as hadronic matter),
we will have to take into account the presence of the different Fermi surfaces
and consider a Landau parameter for each pair of species. In the case of
a system of neutrons, protons and Λ’s, the possible f parameters will be
fnn, fnp, fpp, fnΛ, fpΛ, fΛΛ.

As a first step in the application of FLT to hadronic systems, we will
consider a simple case where the in-medium hadronic interaction is of the
Skyrme type. The NN , NY and Y Y in-medium interactions will then be
given by different sets of Skyrme-type parameterizations. Skyrme forces are
very well known in the NN sector, where they have implied a major break-
through in the study of both the static properties and the collective motion
of finite nuclei. In the fitting procedure of its parameters, one usually in-
cludes the properties of nuclear matter and some given properties of medium
and heavy spherical nuclei. On the other hand, the available experimental
data on heavy hyper-nuclei has triggered the extension of this kind of forces
to the Y N and Y Y sector and, in particular, several parameterizations ex-
ist for the ΛN interaction [6]. These Skyrme functionals have been usually
fitted to the single-particle binding energies of Λ’s in hyper-nuclei. To our
knowledge, there is only one ΛΛ Skyrme-type interaction, fitted to the ΛΛ
binding in double hyper-nuclei [7]. For convenience, from here on we will
restrict ourselves to a single NN parameterization, the SLy10 [8] set of the
Lyon group. In the NY sector, we will use the LN1 parameterization of
Ref. [6], while we will use the different Y Y parameterizations of Ref. [7].
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We are interested in the description of hadronic matter in astrophys-
ical environments. In a neutron star, the environment is defined by the
β-equilibrium conditions, which arise from the assumption that the weak
reactions:

p + e− ↔ n + νe , (5)

p + e− ↔ Λ + νe , (6)

are in equilibrium in the hadronic medium. In addition, a PNS is a charge
neutral system (ρp = ρe). In Fig. 1 we show some examples of the β-stable
composition of protoneutron stars at T = 20MeV (left panels) and T =
40MeV (right panels) temperatures as a function of density. The upper
(lower) panels correspond to a leptonic fraction of Yl = 0.1 (Yl = 0.3).
Different sets of NN and Y N forces, however, would produce different par-
ticle fractions and different astrophysical scenarios.
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Fig. 1. β-stable composition of a PNS formed of neutrons, protons and Λ’s as

a function of the total baryonic density. The four panels correspond to two different

temperatures, T = 20 MeV (left panels) and T = 40 MeV (right panels), and two

different leptonic fractions, Yl = 0.1 (upper panels) and Yl = 0.3 (lower panels).

As an example of the application of FLT to hadronic systems, we will
compute the response function of hadronic matter from the Landau param-
eters. If we consider diffusion reactions, in which neutrinos create a neutral
particle–hole excitation on the system, the lowest-order response function is
given in linear response theory by a 3 × 3 matrix structure:

Π0 =





Πnn
0 0 0
0 Πpp

0 0
0 0 ΠΛΛ

0



 , (7)
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where each diagonal Π ii
0 is given by the corresponding Lindhard function:

Π ii
0 (ω, ~q) =

∫

d3k

(2π)3
ni[ε(~k)] − ni[(ε(~k + ~q)]

ω + εi(~k) − εi(~k + ~q) + iη
. (8)

The long range correlations are included through the Bethe–Salpeter equa-
tion:

Π = Π0 + Π0VresΠ . (9)

This is the well-known RPA approximation. The residual particle–hole in-
teraction Vres is obtained from Eq. (2) and reduced to the monopolar Landau
parameters f (g) in the S = 0 (S = 1) channels. The Bethe–Salpeter equa-
tion becomes then a coupled set of algebraic equations where the residual
interaction is given by a 3× 3 symmetric matrix. In the S = 0 channel, one
finds:





fnn
0 fnp

0 fnΛ
0

fpn
0 fpp

0 fpΛ
0

fΛn
0 fΛp

0 fΛΛ
0



 .

The analytical expressions for the different f and g parameters can be found
from the second derivatives of the energy Eq. (2) and are explicitely given
in [9]. The solution of the Bethe–Salpeter equation is then:

Π = (1 − Π0Vres)
−1 Π0 . (10)

If the determinant of the matrix (1 − Π0Vres) becomes singular, the equa-
tion might not be solvable. In the low energy limit, one can see that this
determinant reduces to the determinant of the TD stability matrix:

det [1 − VresΠ0]ω→0 → det







∂2E
∂ρnρn

∂2E
∂ρnρp

∂2E
∂ρnρΛ

∂2E
∂ρpρn

∂2E
∂ρpρp

∂2E
∂ρpρΛ

∂2E
∂ρΛρn

∂2E
∂ρΛρp

∂2E
∂ρΛρΛ






.

A change of sign in this determinant signals the onset of a TD instabil-
ity. Thus, the Landau parameters of hadronic matter are related to its TD
stability.

Results for the values of the low-energy limits of these determinants are
shown in Fig. 2, where they are plotted as a function of the total baryonic
density in β-stable conditions. The different sets of ΛΛ interactions give dif-
ferent determinants due to both the changes in the β-stable particle fractions
and the differences on the parameters of the force. As a result, different TD
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Fig. 2. Stability criteria for hadronic matter for the spin S = 0 (right panel)

and S = 1 channels (left panel) as a function of the total baryonic density. As

illustrative examples, we have chosen a temperature and leptonic fraction of T =

20 MeV and Yl = 0.3, respectively. Different sets of ΛΛ interactions are shown with

solid (LL0), dotted (LL1), dashed (LL2) and dash–dotted lines (LL3).

instabilities arise depending on the Y Y interaction. In particular, the onset
of a ferromagnetic transition (signaled by the zero of det[1 + G0]) strongly
depends on the set of forces that is used. In this case, all the forces tend
to a zero value at high densities (all of them are thus close to a ferromag-
netic instability), but only LL3 suffers from a real ferromagnetic transition
at ρ ∼ 0.74 fm−3.

Once the Bethe–Salpeter equation is solved, we can find the structure
functions by means of the finite temperature relation (obtained from the
detailed balance relationship):

S
ij
(S)(ω, q) = −

2

1 − exp[−ω/T ]
Im Π ij

(S)(ω, q) , (11)

where (S) denotes the two possible spin channels, S = 0 and S = 1. In the
calculation of the MFP we shall use the following “generalized” structure
function, where all the channels are taken into account by the following
matrix product:

S(S) =
(

cn
(S) cp

(S) cΛ
(S)

)







Snn
(S) S

np
(S) SnΛ

(S)

S
np
(S) S

pp
(S) S

pΛ
(S)

SnΛ
(S) S

pΛ

(S) SΛΛ
(S)













cn
(S)

cp
(S)

cΛ
(S)






, (12)

and where the ci
(S) are the corresponding weak charges of the particles which

can be found in [9].
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Fig. 3. Structure functions for the S = 0 (right panel) and S = 1 (left panel)

channels as a function of energy for a transferred momentum of q = 30 MeV. The

calculations have been performed in the same β-stable conditions as for the previous

figure at four different densities.

In the left (right) panels of Fig. 3 we show the structure function for the
S = 0 (S = 1) channel as a function of the energy, for a fixed momentum of
q = 30MeV. For the spin dependent channel, a collective mode around ω ∼ 0
is observed when the density increases: this is again a signal of a close-by fer-
romagnetic transition. One can see that when such a strong collective mode
dominates the structure function, the neutrino MFP is strongly suppressed.
Thus, a different choice of NL and LL interactions which modifies the TD
instabilities of the system, might have a great influence on the neutrino
MFP.

Finally, the mean free path is given by the following integral [10]:

1

λ
=

G2
F

4π2

Eν
∫

∞

dω
E′

ν

Eν

2Eν−ω
∫

|ω|

dq q [1 − n(E′
ν)]

×
[

(1 + cos θ)S(0)(ω, q) + (3 − cos θ)S(1)(ω, q)
]

. (13)

We show in Fig. 4 the results for the mean free path of neutrinos in dense
matter for a leptonic fraction of Yl = 0.3 and two temperatures, T = 20MeV
and T = 40MeV. The left panels correspond to the mean-field MFP com-
puted from the non-correlated response functions Π ii

0 . The solid lines corre-
spond to β-stable matter composed by nucleons, electrons and Λ’s, while the
dashed lines correspond to matter without hyperons. The neutrino energy
is Eν = 3T MeV. For both temperatures, a clear reduction of the MFP is
observed when Λ’s are included in the system. This is due to the opening
of a new channel of interaction, with which neutrinos can interact, thus in-
creasing their cross section (and reducing the corresponding MFP).
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The right panel of Fig. 4, on the other hand, illustrates the ratio between the
MFP computed with RPA correlations and the mean field MFP. The density
ranges explored for each MFP correspond to the ranges where no instabili-
ties are observed for the corresponding β-stable matter. A spin instability is
observed for the matter formed by nucleons and electrons at densities above
ρ ∼ 0.5 fm−3. The presence of Λ’s pushes the ferromagnetic instability to
higher densities, and thus a non-zero neutrino MFP is observed in the high
density range. This kind of effects, where the presence of Λ’s in the system
result in a suppression of the instabilities of matter, are probably the most
relevant ones for the neutrino propagation in hot and dense hadronic matter.
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Fig. 4. Left panel: neutrino MFP in the mean field approximation for β-stable

matter with Yl = 0.3. The full (dashed) lines correspond to matter with (without)

Λ’s. Right panel: ratio of the RPA and mean field approximations of the neutrino

MFP for the same conditions.
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