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THE TUNNEL-EFFECT

IN THE LOBACHEVSKY SPACE
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The problem of the tunnel-effect in the three-dimensional Lobachevsky
space is formulated and solved. It is shown that the tunneling probability
essentially decreases when radius of the space curvature is of the same order
as linear sizes of the well in which a particle is locked.
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1. Introduction

It is well known, that processes using the mechanism of quantum tun-
neling are abundant in different areas of physics. The tunnel-effect can be
met in various physical processes, such as chemical reactions at low tem-
peratures, nuclear alpha and cluster decays, fission and fusion processes in
thermonuclear reactors, shortly after the Big Bang and inside stellar matter
that proceed through the Coulomb barrier.

However, as far as it is known to the authors, the problem of the tunnel-
effect in spaces of constant curvature was not investigated.

Quantum-mechanical problems in the spaces of constant positive and
negative curvature have been the object of interest of researchers since 1940,
when Schrödinger [1] was first to solve the quantum-mechanical problem of
the hydrogen atom on the three-dimensional sphere S3 (Einstein’s universe).
The analogous problem in the three-dimensional Lobachevsky space 1S3 was
first solved by Infeld and Shild [2]. In recent years the quantum-mechanical
problems in the spaces of constant curvature have attracted considerable
attention due to their interesting mathematical features as well as the pos-
sibility of applications to physical problems. These problems are discussed
in the monograph [3], reviews [4–6] and articles [7–12]. Thus, the quantum-
mechanical models based on the geometry of spaces of constant curvature
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are used for the description of the phenomena in nuclear physics [13–15],
particle physics [16] and nanostructure physics [18–21].

In this paper the tunnel-effect in the three-dimensional Lobachevsky
space is considered. The dependence of tunneling on the space curvature
is investigated. In conclusion the model of Lobachevsky’s space inside the
sphere of the three-dimensional space of Euclid is given. This model can be
used as a model for description of the states in quantum dots with the dis-
crete and continuous spectrum which are localized in the three-dimensional
Euclidean space.

2. The quantum-mechanical tunneling in the Lobachevsky space

Let us consider a freely moving particle which, at a given time, meets
a potential barrier higher than its energy. As it is known, quantum mechan-
ics implies a non-vanishing probability for the particle to cross the barrier
(i.e. the tunnel-effect).

We use embedding of the Lobachevsky space in four-dimensional pseudo-
Euclidean space with Cartesian coordinates xµ, µ = 1, 2, 3, 4, given by the
formula

xµxµ = x
2 + x2

4 = x
2 − x2

0 = −ρ2 ,

x = {x1, x2, x3} , x4 = ix0 , (1)

where ρ denotes the radius of curvature.
We introduce the spherical coordinates in the Lobachevsky space as [2]

x0 = ρcoshβ , x1 = ρsinhβ sin θ cos ϕ,

x2 = ρsinhβ sin θ sinϕ , x3 = ρsinhβ cos θ ,

0 ≤ β < ∞ , 0 ≤ θ ≤ π , 0 ≤ ϕ < 2π . (2)

Metric of the Lobachevsky space in these coordinates is given by

dl2 = ρ2
(

dβ2 + sinh2 β dθ2 + sinh2 β sin2 θ dϕ2
)

. (3)

The Laplace–Beltrami operator is

∆LB =
1

ρ2

(

1

sinh2 β

∂

∂β
sinh2 β

∂

∂β
−

1

sinh2 β
L2

)

, (4)

where L2 is the squared angular momentum operator in spherical coordinates

L2 = −

(

1

sin θ

∂

∂θ
sin θ

∂

∂θ
−

1

sin2 θ

∂

∂ϕ2

)

. (5)
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Then the Schrödinger equation for motion of a particle in the centrally
symmetric field U(β) in the three-dimensional Lobachevsky space is

HΨ = EΨ , (6)

where

H = −
~

2

2m
∆LB + U(β) . (7)

Now we shall analyze the tunneling of a particle through a potential bar-
rier in the three-dimensional Lobachevsky space. Let us assign the potential
of the barrier as follows

U(β) =

{

UC = α coth β
ρ

, for β ≥ β0 ,

0 , for β ≤ β0 ,
(8)

where UC is the Coulomb potential in the Lobachevsky space.
We note that this potential differs from the potential originally used

by Infeld and Schild [2] by a constant term α/ρ and does not vanish as
β −→ ∞. This choice was motivated by the wish to retain similarity of
expressions between the cases of positive and negative curvature.

The Coulomb barrier height can be estimated as

B =
α cothβ0

ρ
. (9)

Separating in the solution of the Schrödinger equation the dependence on
the angles θ and ϕ by using spherical harmonics, namely Ψ = Sl(β)Y m

l (θ, ϕ)
we obtain the radial equation as follows

[

~
2

2mρ2

(

−
1

sinh2β

d

dβ
sinh2β

d

dβ
+

l(l + 1)

sinh2β

)

− E + U(β)

]

Sl(β) = 0 . (10)

Using the substitution S(β) = f(β)/sinhβ we have

d2f(β)

dβ2
+

[

2mρ2

~2
{E − U(β)} −

l(l + 1)

sinh2 β
− 1

]

f(β) = 0 . (11)

Then introducing the effective potential

V (β) = U(β) +
~

2

2m

l(l + 1)

ρ2 sinh2 β
+

~
2

2mρ2
, (12)

equation (11) can be rewritten in the form

d2f(β)

dβ2
+

[

2mρ2

~2
{E − V (β)}

]

f(β) = 0 . (13)
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As a result the centrally symmetric problem was reduced to one-dimen-
sional one. Thus, the barrier penetration factor in the WKB semiclassical
approximation is

G =











−2

β1
∫

β0

√

2mρ2

~2
[V (β) − E] dβ











, (14)

where β0 and β1 are the two turning points.
The condition of applicability of the semiclassical approximation in our

case has the form
(sinhβ1 − sinhβ0)ρ

λ
� 1 , (15)

i.e. the barrier width is significantly larger than the de Broglie wavelength.
As a result in the WKB approximation for the tunneling probability in

the Lobachevsky space we have

D∼exp











−2

β1
∫

β0

ρ

√

2m

~2

[

α coth β

ρ
+

~2

2m

l(l + 1)

ρ2 sinh2 β
+

~2

2mρ2
−E

]

dβ











. (16)

We note that in the limit of the flat space, i.e. when ρ → ∞, the expression
(16) transforms to the barrier penetration factor in the flat space

D ∼ exp







−2

r1
∫

r0

√

2m

~2

[

α

r
+

~2

2m

l(l + 1)

r2
− E

]

dr







. (17)

From (16) we can see that with the growth of angular momentum l the
probability of tunnel-effect in the Lobachevsky space decreases as in the flat
space.

In the case when the particle has nonzero orbital angular momentum, it
possesses the centrifugal energy

Ul =
~

2

2mρ2

l(l + 1)

sinh2 β
. (18)

This energy is added to the Coulomb energy UC and thus it increases the
potential barrier. However, as can be seen from comparison (16) and (17)
there is a difference from analogous problem in the flat space. In the case of
the Lobachevsky space that it appears additional constant is proportional
to the curvature of the space,

Uρ =
~

2

2mρ2
, (19)
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which is not present in the Hamiltonian in the flat space. This constant
appears when we get rid of first-order derivative using the replacement
S(β) = f(β)/sinhβ in equation (10). We note that this constant can be
removed after redefinition of the Hamiltonian as follows

H = −
~

2

2m
∆LB −

~
2

2mρ2
. (20)

3. The α-decay in the three-dimensional Lobachevsky space

Let us consider the phenomenon of α-decay in the Lobachevsky space.
In the phenomenon of α-decay there should be distinguished two stages:

1. The formation of α-particle inside the nucleus.
2. The nucleus-decay via α emission.
We will examine idealization when parent nucleus consists of the daughter

nucleus with chargeZe andα-particle. To emerge from the nucleus α-particle
should penetrate through the potential barrier (8), where α=2Ze2.

As a result from (16) in case when l = 0 for the probability of α-decay
in the three-dimensional Lobachevsky space we have

D ∼ exp











−2

β1
∫

β0

ρ

√

2m

~2

[

2Ze2 coth β

ρ
+

~2

2mρ2
− E

]

dβ











. (21)

Let us illustrate α-decay with the concrete example. Namely, we estimate
the tunneling probability for 238U. Let Z = 92 and β0 = arcsinh (r0/ρ),
where r0 = 0.10−11cm is the radius of the daughter nucleus in the flat space
and turning point β1 is

β1 = arccth

(

Eρ − ~
2/2mρ

2Ze2

)

.

Now for s-states we find the value of G. In the case of the flat space when
l = 0 the fist energy level for our example is E1 = 4.008MeV. This energy
corresponds to the value G = −94.478. In case of the Lobachevsky space we
have the following equation for the energy levels of the system [22]

√

k2 − 1 cot(β0

√

k2 − 1) = −
√

λ2 + 1 , (22)

where

λ =

√

2mρ2

~2
E , k =

√

2mρ2

~2
(B − E) . (23)

We use equations (21), (22) to find the values of the first energy level E1

and the tunneling probability D for various values of the curvature radius.
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These data are shown in Table I. We see from Fig. 1 and Table I that the
tunneling probability slump when radius of the space curvature is of the
same order as linear sizes of the system.

TABLE I

The values of the first energy level of the system in the case of l = 0 and tunneling
probability depending on the radius of curvature.

ρ [cm] E [MeV] G

ρ = 0.105× 10−11 E = 1.617 G = −737.692

ρ = 0.11× 10−11 E = 1.948 G = −585.275

ρ = 0.12× 10−11 E = 2.340 G = −450.361

ρ = 0.13× 10−11 E = 2.595 G = −379.435

ρ = 0.14× 10−11 E = 2.784 G = −332.963

ρ = 0.15× 10−11 E = 2.933 G = −299.398

ρ = 0.16× 10−11 E = 3.055 G = −273.767

ρ = 0.17× 10−11 E = 3.15 G = −253.465

ρ = 0.18× 10−11 E = 3.241 G = −236.953

ρ = 0.19× 10−11 E = 3.314 G = −223.252

ρ = 0.2× 10−11 E = 3.377 G = −211.700

ρ = 0.25× 10−11 E = 3.593 G = −173.550

ρ = 0.5× 10−11 E = 3.899 G = −119.086

ρ = 0.1× 10−10 E = 3.980 G = −101.962

ρ = 0.15× 10−10 E = 3.995 G = −98.104

ρ = 0.5× 10−10 E = 4.007 G = −94.855

ρ = 0.1 × 10−5 E = 4.008 G = −94.478

Fig. 1. The graph of the dependence G on ρ.
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Note that in this computing the condition (15) is fulfilled.
In conclusion, the model of Lobachevsky’s space in the sphere of the

three-dimensional space of Euclid is given. This model can be used as
a model for description of the quantum-mechanical system with the dis-
crete and continuous spectrum which is localized in the three-dimensional
Euclidean space, such as, quantum dots, nuclei, molecules and so on.

4. The model of the three-dimensional Lobachevsky space

inside the sphere of the three-dimensional Euclidean space

We realize the model of the three-dimensional space of Lobachevsky in-
side the sphere in three-dimensional Euclidean space as follows. Let us
assume that in the three-dimensional Euclidean space there is a sphere with
the center at coordinate origin and r < ρ, where r = {x, y, z} is the radius-
vector of points inside the sphere (see Fig. 2).

Fig. 2. The model of the three-dimensional Lobachevsky space inside the sphere

of the three-dimensional Euclidean space. 1 — is the region of discrete spectrum,

2 — is the region of continuous spectrum, ∆β — is the potential barrier width.

Let us carry out the transformation

r = {x, y, z} →







r

√

1 − r2

ρ2

,
ρ

√

1 − r2

ρ2







= {x, x0} ,

r = ρ
x

x0

, (24)

where it is obvious that the introduced four-dimensional coordinates coincide
with initial Cartesian coordinates xµ and satisfy the condition (1), since
these four-dimensional coordinates are independent. Therefore, we can use
coordinates of the three-dimensional dean subspace x = {x1, x2, x3}.
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Then Laplace–Beltrami operator for three-dimensional Lobachevsky
space is rewritten as

∆LB = ρ2∇2 − (x∇)2 − 2 (x∇) . (25)

So the Hamiltonian of the free particle is

H = −
~

2

2mρ2
∆LB = −

~
2

2mρ2

[

ρ2∇2 − (x∇)2 − 2 (x∇)
]

= H0 + V (x, ρ) , (26)

where

H0 = −
~

2

2m
∇2 (27)

is the Hamiltonian of the free particle in the three-dimensional Euclidean
space and the term

V (x, ρ) =
~

2

2mρ2

[

(x∇)2 + 2 (x∇)
]

(28)

may be considered as certain quasi-potential in the three-dimensional flat
space.

Thus, the exactly-solvable quantum-mechanical models in the spaces
of constant curvature expand the range of the exactly-solvable problems
in nonrelativistic quantum mechanics which can be used for describing the
physical systems in the flat space.

5. Conclusion

In this paper the quantum-mechanical problem of the tunnel-effect in
the three-dimensional Lobachevsky space is formulated and solved. It is
demonstrated that the effect of the curvature gives rise to the first energy
level shift. So, this effect can reduce to particles blocking (see Table I). The
model of Lobachevsky’s space, presented in Sec. 4, can be used as a model
for description of the quantum-mechanical system with the discrete and
continuous spectrum which is localized in the three-dimensional Euclidean
space, such as for example, quantum dots, nuclei, molecules.
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