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In this paper we have studied upper bound of time derivative of in-
formation entropy for colored cross-correlated noise driven open systems.
The upper bound is calculated based on the Fokker–Planck equation and
the Schwartz inequality principle. Our results consider the effect of the
noise correlation strength and correlation time due to the correlation be-
tween additive and multiplicative white noises on the upper bound as well
as relaxation time. The interplay of deterministic and random forces re-
veals extremal nature of the upper bound and its deviation from the time
derivative of information entropy.

PACS numbers: 02.50.Ey, 05.40.–a

The study of dynamical system subject to a noise perturbation has be-
come a recurrent theme in physics, chemistry and biology, as well as in
several other areas [1–11]. In this paper we have investigated relaxation
behavior of the noise driven dynamical system. Although in traditional
classical thermodynamics the specific nature of stochastic process is irrel-
evant, it plays an important role on the way to equilibration of a given
non-equilibrium state of a noise driven system. An appropriate tool for the
study of stationary and non-stationary states [9–15] in stochastic processes
is Shanon’s information measure [16–17]

S = −
∫

W (q, t) lnW (q, t)dq (1)
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which typically is not a conserved quantity. Here W (q, t) is the continu-
ous probability distribution function in phase space. S as defined in the
above equation is called information entropy. If one considers Boltzmann’s
constant as the information unit and identifies Shannon’s measure with the
thermodynamic entropy, then the whole of statistical mechanics can be el-
egantly reformulated by extremization of S, subject to the constraints im-
posed by the a priori information one may possess concerning the system of
interest [16–17]. The time evolution of S considers mainly the signature of
the rate of phase space expansion and contraction in the stochastic process.
This implies that the specific nature of the random process has a strong
role to play with S. Generally we consider that the noise driven system is
thermodynamically closed, which means that the noise of the medium is of
internal origin so that the dissipation and fluctuation get related through the
fluctuation–dissipation relation. However, in a number of situations the sys-
tem is thermodynamically open, i.e., the dissipation and the random force
are not related through fluctuation–dissipation relation [18]. In general, ori-
gins of the noise in the open systems which exert two or more random forces
are different.

The barrier crossing dynamics with multiplicative and additive white
noises raised strong interest in the early eighties. In most of the works
stated above, noise forces that are present simultaneously in the stochastic
systems were usually treated as random variables uncorrelated with each
other. However, cross-correlation between the random variables is possi-
ble in the noise driven dynamical systems as pointed out in Refs. [19–21].
Physically, the cross-correlation would mean that the noises are of the same
origin (the same fluctuating quantity, either intrinsic or external, influencing
two different kinetic parameters) [19]. But for the noises of different origin
cross-correlation is also possible. This was pointed out in Refs. [20–21] where
authors have assumed that external environmental fluctuation can influence
internal fluctuation changing the internal structure [20–21]. If this happens,
then the statistical properties of the noises should not be widely different,
and can be correlated. The cross correlated noises were first considered by
Fedchenia [22] in the context of hydrodynamics of vortex flows in ellipsoidal
containments with regard to fluctuations. There the author introduced cross
correlation among the noises of common origin which appear in the time
evolution equation of dimensionless modes of flow rates. Fuliński and Tele-
jko [19] also considered the interference of additive and multiplicative white
noises in the bistable kinetic model, mentioning the physical possibility of
cross correlated noises. However, very recently Madureira et al. [20] have
pointed out the possibility of cross correlated noise in realistic model (ballast
resistor) showing bistable behavior and have also discussed the influence of
correlation of additive and multiplicative white noises on the activated rate
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processes. Transport of particles caused by cross-correlation between addi-
tive and multiplicative noises in the symmetric periodic potential has been
investigated in Ref. [21]. The effect of correlation between additive and mul-
tiplicative noises is considered indispensable in explaining phenomena like
stochastic resonance, phase transitions etc. [23–31]. Our aim in the present
paper is to investigate the effect of interference of multiplicative and additive
noises on time dependence of upper bound of time derivative of information
entropy, when the coupling between two noise terms is colored with nonzero
correlation time τ .

To begin with, we consider a stochastic process where both multiplicative
and additive noises are present. The Langevin equation of motion for the
present problem can be written as

dq

dt
= −V ′(q)

γ
+

q

γ
ζ(t) +

1

γ
η(t) , (2)

where V ′(q) is the derivative of potential energy expressed as a function of
the particle coordinate q. γ in Eq. (2) is the dissipation parameter. ζ(t) and
η(t) are white noises. The two noise terms are characterized by their means
and variances as

〈ζ(t)〉 = 〈η(t)〉 = 0 , (3)

〈ζ(t)ζ(t′)〉 = 2Dδ(t − t′) , (4)

and
〈η(t)η(t′)〉 = 2D′δ(t − t′) . (5)

Here D and D′ are intensity of multiplicative and additive noises, respec-
tively. In general, we express the influence of the internal fluctuation on
the system as additive noise and the effect of the external environmental
fluctuation on the system as multiplicative noise. Here we assume that the
external environmental fluctuation can influence the internal fluctuation.
Because of the influence of the external environmental fluctuation on the
internal fluctuation, additive and multiplicative noise are not independent
(there is correlation between them). We assume that the correlation time of
the ζ(t) and η(t) are nonzero [25,27–31]

〈ζ(t)η(t′)〉 = 〈η(t)ζ(t′)〉 =
λ
√

DD′

τ
exp

(

−|t − t′|
τ

)

, (6)

where τ is the correlation time of the coupling between multiplicative and
additive noises. λ in Eq. (6) corresponds to the coupling strength. In the
limit τ → 0 the above equation becomes

〈ζ(t)η(t′)〉 = 〈η(t)ζ(t′)〉 = 2λ
√

DD′δ(t − t′) . (7)
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A general equation satisfied by the probability distribution of equation (2)
with (3)–(6) is given by [32]

∂

∂t
ρ(q, t) =

∂

∂q

V ′(q)

γ
ρ(q, t)− ∂

∂q

q

γ
×〈ζ(t)δ[q(t)− q]〉− ∂

∂q

1

γ
〈η(t)δ[q(t)− q]〉 ,

(8)
where ρ(q, t) = 〈δ[q(t) − q]〉; the average (8) can be calculated for Gaus-
sian noise ζ(t) and η(t) by the Novikov theorem [33]. The Fokker–Planck
equation for (2) is obtained following Refs. [25,29–30].

∂ρ

∂t
=

[

∂

∂q

V ′(q)

γ
− ∂

∂q

(

g(q)
∂g(q)

∂q

)

+
∂2g(q)2

∂q2

]

ρ , (9)

where

g(q) =

[

D′ + 2λ
√

DD′

1+2τ2
q + Dq2

]1/2

γ
. (10)

The above Fokker–Planck equation can be written in the form

∂ρ

∂t
=

∂

∂q

V ′(q)ρ

γ
+

∂lqρ

∂q
+

∂l1ρ

∂q
+ Q

∂2ρ

∂q2
− 2Dρ

γ2
(11)

with

l =
3D

γ2
, (12)

l1 =
3λ

√
DD′

γ2(1 + 2τ2)
(13)

and

Q =
D′ + 2λ

√
DD′

1+2τ2
q + Dq2

γ2
. (14)

Now multiplying exp(2Dt/γ2) on both sides of the Fokker–Planck equa-
tion, (11), followed by the transformation

W (q, t) = ρ(q, t) exp

(

2Dt

γ2

)

, (15)

we get
∂W

∂t
=

∂

∂q

V ′(q)W

γ
+

∂lqW

∂q
+

∂l1W

∂q
+ Q

∂2W

∂q2
. (16)

Eq. (15) implies that W (q, t) is not normalized if ρ(q, t) is a normalized
probability distribution function. It also implies that a factor exp(−2Dt/γ 2
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has to be multiplied with ρ(q, t) exp(−2Dt/γ2) for W (q, t) to be normalized.
Hence normalized W (q, t) and ρ(q, t) are the same. For mathematical con-
venience we will use Eq. (16) and W (q, t) for further calculations. Eq. (16)
can be rearranged as

∂W

∂t
= −∂FW

∂q
+ Q

∂2W

∂q2
, (17)

where
F = −Γq − l1 (18)

and

Γ =
V ′(q)

γ
+ l . (19)

The Fokker–Planck equation (17) can be rearranged into the general form
of continuity equation

∂W (q, t)

∂t
= −∂j

∂q
, (20)

where the current j is defined as

j = FW − Q
∂W

∂q
. (21)

We shall now define the upper bound for the time derivative of information
entropy using Eqs.(1) and (20). The time evolution equation for S can be
written as

dS

dt
=

∫

dq
∂j

∂q
lnW . (22)

Performing partial integration on the right hand side of the above equa-
tion and then putting natural boundary conditions [10], j|boundary = 0, and
j lnW |boundary = 0, one obtains

dS

dt
= −

∫

dq
1

W
j
∂W

∂q
. (23)

In the next step an application of the Schwartz inequality |
∫

dqAB|2 ≤
∫

dq|A|2
∫

dq|B|2 to the integral(23), where A and B can be appropriately
identified, yields an upper bound for the rate of entropy change

ds

dt
≤ UB ,

UB =

(
∫

dq
j2

W

)1/2 (
∫

dq
1

W
(
∂W

∂q
)2

)1/2

. (24)
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It is to be noted here that the second integral is the same as the trace of
Fisher information matrix [10]. Thus the maximum rate of increase of S for
an isolated system, is limited by the Fisher information level.

To find the explicit time dependence of the above quantity we consider
a simple external force field. In this context we choose V (q) in Eq. (2) as
potential energy of a simple harmonic oscillator, having frequency ω. For
this linear stochastic process we then search for the Green’s function or
conditional probability solution [34–36] for the system at q, at time t given
that it had the value of U ′ at t = 0. This initial condition may be represented
by the δ-function

δ(q − q′) = lim
ε→∞

√

ε

π
exp[−ε(q − q′)2] . (25)

√

ε/π is the normalization constant. We now look for a solution of Eq. (17)
of the form

W (q, t|q′, 0) = exp[G(t)] , (26)

where G(t) = − 1
σ(t) (q − α(t))2 + ln ν(t) .

We will see that by suitable choice of α(t), σ(t), ν(t) one can solve Eq. (17)
subject to the initial condition

W (q, 0|q′, 0) = lim
ε→∞

√

ε

π
exp[−ε(q − q′)2] . (27)

Comparing Eq. (26) with (27) and G(0) we have σ(0) = 1
ε , α(0) = q′, ν(0) =

√

ε/π.
If we put (26) in (17) and equate the coefficients of equal powers of q we

obtain after some algebra

σ̇(t) = −2Γσ(t) + 4Q , (28)

α̇(t) = −Γα(t) − l1 (29)

and
1

ν(t)
ν̇(t) = − 1

2σ(t)
σ̇(t) . (30)

Here it is to be noted that in the above calculation we have used approximate
values of q and q2 in the diffusion coefficient Q as < q >eq and < q2 >eq

respectively. < q >eq and < q2 >eq are the average values of q and q2 at
equilibrium. Now we consider the relevant solutions of σ(t) and α(t) for the
present problem which satisfy the above initial conditions and are given by

σ(t) =
2Q

Γ
[1 − exp(−2Γt)] + σ(0) exp(−2Γt) (31)
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and

α(t) =

(

α(0) +
l1
Γ

)

exp(−Γt) − l1
Γ

. (32)

Now making use of Eqs. (26), (31) and (32) in Eq. (24) we finally obtain the
explicit time dependence of the upper bound UB(t) for the rate of entropy
change as

UB =
(2α2Γ 2σ + 4αΓ l1σ + 2l21σ + Γ 2σ2 + 4Q2 − 4QΓσ)1/2

σ
. (33)

Similarly, one can calculate the rate of change of information entropy with
time using Eq. (26) in Eq. (22)

dS

dt
= −Γ +

2Q

σ
. (34)

Since the information entropy is the negative of the Shannon information,
the rate of change of entropy can be interpreted as the rate of information
transmission. So the upper bound for (33) is interesting in the sense that
the amount of information transmitted per unit time cannot exceed this
quantity. Deviation(dUB) of the bound from dS

dt can be calculated from
Eqs.(33)–(34) as

dUB = UB − dS

dt
=

2(αΓ + l1)
2

(2σ(αΓ + l1)2 + (Γσ − 2Q)2)1/2 − Γ + 2Q
σ

. (35)

Now we explore how these quantities vary with time and other system pa-
rameters. First, we calculate both UB and dUB at different time and plot
in Fig. 1. It shows that the upper bound and its deviation from the rate of
change of entropy with time decrease monotonically as system approaches
the stationary state. This is due to the fact that at very short time the
motion of the particle is mainly governed by the deterministic force and
gradually random force becomes effective i.e., the random force has maxi-
mum tendency to expand the phase space against the deterministic one at
t → 0 and it reduces with progress of time. Finally they balance each other
at equilibrium. Thus the rate of change of width of distribution function
and entropy decreases regularly. Since possibility of the deviation(dUB) at
large value of dS

dt is greater, the upper bound and its deviation are maximum
at t → 0 and superpose at long time.
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Now we consider the relaxation time. Eqs. (31)–(32) show that the
relaxation time increases with increase of damping constant(γ), because Γ
decreases here. Γ , on the other hand, rises for increase of system frequency
or strength of multiplicative noise and as a result of that, the non-equilibrium
system relaxes more rapidly with increase of ω or D.

0 1 2 3 4 5
0

2

4

6
U

B
, dU

B

t

U
B

dU
B

Fig. 1. Plot of UB and dUB vs time using Eqs. (33),(35) for the parameter set

γ = 1.0, σ(0) = 0, α(0) = 1.0, D = D′ = ω = 0.25, τ = 0.0 and λ = 0.5 (units are

arbitrary).

We examine now how the upper bound is affected by noise correlation
strength λ. In Fig. 2 we have plotted UB and dUB vs λ. It shows that at large
λ the deviation increases at faster rate than the UB. This happens because
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λ

U
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dU
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Fig. 2. Plot of UB and dUB vs strength of cross-correlation(λ) using Eqs. (33),(35)

for the parameter set γ = 1.0, σ(0) = 0, α(0) = 1.0, D = D′ = ω = 0.25, τ = 0.0

and t = 2.0 (units are arbitrary).
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the effective deterministic force is dominating over the random force in the
dynamics with increase of λ as the constant force (l1) increases and the
effective noise strength (Q) decreases. Thus the greater value of λ makes
the distribution function narrower and leads to higher value of both the
UB and dUB. Whereas the deviation and the bound are found to decrease
for increase of correlation time (τ) of colored cross correlation since the l1
decreases and the Q increases as τ becomes larger. It is shown in Fig. 3.
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U
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B

τ

U
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dU
B

Fig. 3. Plot of UB, dUB vs τ using Eqs.(33),(35) for the parameter set γ = 1.0,

σ(0) = 0, α(0) = 1.0, D = D′ = ω = 0.25, λ = 0.5 and t = 2.0 (units are

arbitrary).

In the next step we explore the role of damping constant (γ) on the upper
bound. The γ affects both the deterministic force and diffusion constant
through Γ , l1 and Q respectively. Since the role of former is opposite to latter
on the upper bound and the deviation, in the interplay of damping constant,
noise strength and system frequency variation of the upper bound and the
deviation with γ show extremal nature what is shown in Fig. 4. Similarly
the variation of UB and dUB with the strength of multiplicative noise also
exhibits extremal nature. This is shown in Fig. 5. Thus in the persistence of
non-equilibrium situation γ and D have important role. The extremal nature
disappears if we increase the strength of additive noise keeping fixed other
parameters. The upper bound and the deviation decrease with increase of
D′ as the effective noise strength becomes greater.

We now examine the long time limit of the above result (33). At t → ∞
Eqs.(31) and (32) reduce to

σ(∞) =
2Q

Γ
(36)
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Fig. 4. Plot of UB, dUB vs damping constant (γ) using Eqs.(33),(35) for the pa-

rameter set τ = 0.0, σ(0) = 0, α(0) = 1.0, D = D′ = ω = 0.25, λ = 0.5 and t = 2.0

(units are arbitrary).
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Fig. 5. Plot of UB, dUB vs strength of multiplicative noise (D) using Eqs.(33),(35)

for the parameter set τ = 0.0, σ(0) = 0, α(0) = 1.0, γ = 1.0, D′ = ω = 0.25,

λ = 0.5 and t = 2.0 (units are arbitrary).

and
α(∞) = −l1/Γ . (37)

Eqs.(36) and (37) imply that at t → ∞ the numerator of the right hand side
of Eq. (33) vanishes. Therefore we obtain the equation

dS

dt
= 0 . (38)

Thus the above result satisfies our natural demand.
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In conclusions, we have studied here the non-stationary states of a noise
driven dynamical system in terms of information entropy, when the couplings
between additive and multiplicative noises are colored with noise correlation
time τ , based on the Fokker–Planck description of stochastic processes and
Schwartz inequality. We consider time evolution of the upper bound of time
derivative of information entropy and its deviation from the rate of change
of information entropy. Our main observations include the following points.

(1) The deviation and the upper bound monotonically decrease to zero
with increase of time. The relaxation time increases with increase of
damping constant and it decreases for the increase in system frequency
as well as the strength of multiplicative noise. The cross-correlation
time and the strength of cross correlation have no effect on the relax-
ation time.

(2) Rate of increase of the deviation is greater than the upper bound with
increase of λ.

(3) The UB and the dUB both decrease with increase of correlation time
of cross-correlation.

(4) The interplay of deterministic and random forces reveals extremal na-
ture of the upper bound and the deviation.

These observations are, of course, restricted to the harmonic oscillator
(HO). However, this is such an important system that HO insights usually
have a wide impact.
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