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We investigate some cylindrically symmetric nonstationary and non-
static solutions of Einstein field equations. We first study some physical
properties of a solution which can be considered as Kasner generalization
of static Levi-Civita vacuum solution. Then we generalize this metric to
include a solution where a space-time is filled with null dust or a stiff fluid.

PACS numbers: 04.20.Jb

1. Introduction

One of the most important differences of the spherically and the cylindri-
cally symmetric vacuum solutions of General Relativity is that, according
to the Birkhoff theorem, there is a time-like Killing vector in the spheri-
cally symmetric vacuum solution. Thus, it can be said that the spherically
symmetric vacuum is necessarily static. However, the situation drastically
changes when we consider the cylindrically symmetric systems since there is
no analogue of Birkhoff’s theorem in cylindrical symmetry. During the grav-
itational collapse of a cylindrically symmetric system, gravitational waves
can be emitted and the exterior region of a collapsing cylindrical body is
not static [1]. This fact has important consequences in the studies of grav-
itational waves, cosmological models, quantum gravity and numerical rela-
tivity.

If ∂z and ∂φ are the axial and the angular Killing vectors describing
cylindrical symmetry, then the most general cylindrically symmetric non-
stationary metric can be written in the canonical form as [2]:

ds2 = e2(K−U)(−dt2 + dr2) + e2Udz2 + e−2UW 2dφ2 , (1)
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where K,U and W are the functions of r and t, in general. Here r is the
radial, t is the time, z is the axial and φ is the angular coordinate with the
ranges 0 ≤ r < ∞, −∞ < z, t < ∞, 0 ≤ φ ≤ 2π.

The static solution of the metric (1) represents the exterior gravitational
field of a general static cylindrical line source and was found by Levi-Civita
in 1919 [3]:

ds2 = −ρ4sdt2 + ρ4s(2s−1)(dρ2 + dz2) + α2ρ2(1−2s)dφ2, (2)

where s and α are constant parameters. These parameters in general cannot
be removed by a coordinate transformation if φ is an angular coordinate.
Research on this solution was mainly focused on the understanding of these
parameters and finding physically acceptable sources generating this metric
since in order to understand the meaning and the behavior of the metric
parameters s and α, one may need to match it with an interior solution.
Static cylinders [4] and cylindrical shells [5] have been constructed as a
source of this metric. Shells composed of various matter sources satisfying
some energy conditions for certain ranges of s have also been studied [6].
The parameter s is related to the energy density of the source and α is an
angular deficit parameter.

The nonstatic vacuum solutions of (1) have also been studied extensively.
They have important consequences on cosmology, gravitational waves and
also on quantum gravity. For a discussion of these solutions we refer to the
book of Stephani et al. [2].

Furthermore, the time dependent cylindrically symmetric nonvacuum so-
lutions of Einstein equations were studied for different cylindrical systems.
An expanding cylindrical radiation filled Universe [7], a radiation Universe
with heat and null radiation flow [8], nonstatic cosmic strings with a time
dependent vacuum exterior [9–11], nonstatic global strings [12] are some
examples of such solutions. Some of these solutions have an interesting
property that their exterior vacuum solutions correspond to some particu-
lar values of the parameters the Levi-Civita metric having also a Kasner
type time dependence. This fact motivates us to study the Kasner gener-
alization of the Levi-Civita solution with the full range of its parameters.
Thus in this paper, we will study the properties of cylindrically symmet-
ric time dependent vacuum solutions in Kasner form. This solution can be
considered as a Kasner generalization of the Levi-Civita (LC) solution since
for every constant time slice it reduces to the LC solution. These kind of
generalized Kasner solutions having more than one variable are well known
and studied by different authors [13]. This solution is also equivalent to the
Einstein–Rosen soliton wave solutions [14] by a coordinate transformation.
Although this solution is well known, we will establish a direct relation be-
tween the parameters of the LC solution with the parameters of its Kasner
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generalization. We will also perform a detailed comparison of the LC so-
lution and its nonstatic Kasner generalization by studying their singularity
behavior, geodesic structure and radial acceleration of test particles in these
space-times.

We also extend our discussion into some nonvacuum generalizations of
this solution. Since the gravitational collapse of a physically reasonable
source is one of the main topics in general relativity, the cylindrical collapse
is studied extensively in the literature [1, 15]. The radiating Levi-Civita
space-time [16], a space-time filled with a radially oriented null radiation in
an otherwise empty static background is generally employed in these con-
cerns and others [17], since this metric can represent the exterior region of
a collapsing cylindrical body. However, since there is no analogue of Birkoff
theorem in cylindrical symmetry, it might be reasonable to discuss a non-
static generalization of this radiating Levi-Civita solution. We also present
a nonstatic stiff fluid as an another example of this form.

The paper is organized as follows. In the next section we present the Kas-
ner generalization of the LC solution. In Section 3 we discuss some physical
properties of this solution. Section 4 discusses the radiating generalization
of this solution and its some physical properties. In Section 5 we present a
solution representing a Universe filled with a nonstatic isotropic stiff fluid.
Lastly, we give a brief conclusion.

2. Levi-Civita–Kasner solution

Let us consider the following ansatz for the functions of the metric (1):

W = α(c1r + c2)(c3t + c4) , (3)

U = k ln(c1r + c2) + q ln(c3t + c4) , (4)

K = k2 ln(c1r + c2) + q2 ln(c3t + c4) , (5)

where k, q, α and ci’s are constants. Here, when c3 = 0, c4 6= 0, c1 6= 0 we
get the Levi-Civita solution of the form:

ds2 = r2(k2−k)(−dt2 + dr2) + r2kdz2 + α2r2(1−k) dφ2 , (6)

where we have rescaled the coordinates r, t and z. One can recover the
conventional form of the LC solution (2) by applying the following coordinate
transformations:

R =
rκ

κ
, R =

ρS

S
, κ = k2−k+1 , S = 4s2−2s+1 , s =

k

2(k−1)
. (7)

When we choose c1 = 0, c2 6= 0, c3 6= 0 the solution reduces to well
known vacuum Kasner solution:

ds2 = t2(q
2−q)(−dt2 + dr2) + t2qdz2 + t2(1−q)dφ2 , (8)
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where q is a real constant. For this case the coordinates can be thought of
as the Cartesian coordinates. The coordinate transformation t′ = (Qt)Q−1

puts the Kasner solution in its familiar form as [19]:

ds2 = −dt2 + t2adr2 + t2bdz2 + t2cdφ2 , (9)

where we have again rescaled the metric, removed prime for clarity and
a = (q2 − q)Q−1, b = q Q−1, c = (1 − q)Q−1 with Q = q2 − q + 1. Kasner
solution corresponds to an anisotropic homogeneous cosmology. Here the
constants a, b, c satisfy the Kasner constraints:

a + b + c = 1 = a2 + b2 + c2 . (10)

Also, for c1 = c3 = 0 and others nonvanishing we get flat Minkowski
space-time. Notice that c1 and c2 cannot vanish simultaneously in (3). The
same is true also for c3 and c4.

If one calculates the Ricci tensor of the metric (3), the only nonvanishing
term is

R01 = −c1c3(−1 + k2 − 2kq + q2)(c1r + c2)
(−1+2k−2k2)(c3t + c4)

(−1+2q−2q2) .
(11)

Here we see that when c1 or c3 vanish we have a vacuum solution as it should
be. Assuming they do not vanish, equaling (11) to zero we get q = k ± 1
which results (hereafter, we choose c2 = c4 = 0 and we absorb c1 and c3 in
the coordinates r, t, z by redefining them):

ds2 = r2(k2−k) t2((k+ε)2−k−ε)(−dt2 + dr2)

+ r2k t2(k+ε)dz2 + P 2 r2(1−k) t2(1−k−ε) dφ2 , (12)

with ε = ±1. Thus, we have obtained the desired Kasner generalization
of the LC solution, where we can call it as Levi-Civita–Kasner space-time
(LCK). It is better to express them with the Levi-Civita parameter since we
want to compare them with the static solution. The transformations:

R = rκ κ−1 , τ = Q−1tQ , k =
2s

(2s − 1)
,

Q = (k + ε)2 − (k + ε) + 1 , (13)

leads to the following metric:

ds2 = −R2Ddτ2 + τ2AdR2 + R2Eτ2Bdz2 + α2 R2F τ2Cdφ2, (14)
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where we again rescaled the coordinates τ,R, z, absorbed all constant into
α and

H = ε(4s2 − 1) + (1 − 2s)2 , A =
2s + H

S + H
, (15)

B =
(2s − 1)(2s + ε(2s − 1))

S + H
, C =

(1 − 2s)(1 + ε(2s − 1))

S + H
, (16)

D =
2s

S
, E =

2s(2s − 1)

S
, F =

1 − 2s

S
. (17)

For any value of s we have in general two different solutions depending on
ε = ±1. These solutions are in the form of the generalized Kasner space-
times [13] and the metric functions A,B,C and E,F,G satisfy the Kasner
constraints separately:

A + B + C = A2 + B2 + C2 = 1 , (18)

D + E + F = D2 + E2 + F 2 = 1 . (19)

The LCK solution (12) is also equivalent to Einstein–Rosen soliton wave
solutions [2, 14] by a transformation:

r =

√

T −
√

T 2 − %2 , t =

√

T +
√

T 2 − %2 , (20)

which puts the metric functions into the form:

W = rt = % , (21)

U = k ln % +
ε

2
ln
(

T +
√

T 2 − %2
)

, (22)

K = k2 ln %+

(

εk+
1

2

)

ln
(

T +
√

T 2−%2
)

− 1

2
ln
(

2
√

T 2−%2
)

. (23)

This transformation is valid only for t2 > r2. For r2 > t2 we need the
following transformation:

r =

√

% +
√

%2 − T 2 , t =

√

% −
√

%2 − T 2 , (24)

which gives:

W = rt = T , (25)

U = k lnT +
ε

2
ln
(

%−
√

%2−T 2
)

, (26)

K = k2 lnT−
(

εk+
1

2

)

ln
(

%−
√

%2−T 2
)

− 1

2
ln
(

2
√

%2−T 2
)

. (27)

Here the first metric is not valid at % > T and the other is not valid at % < T .
Then we need to extend one to join with the other. After achieving this, the
resulting space-time is the solution we consider in this article. Hence, the
metric we discuss covers both regions.
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3. Some physical properties of LCK solution

3.1. NP spin and Weyl coefficients

The static Levi-Civita metric is in general Petrov type I except it is flat
for s = 0, 1/2 and it is Petrov type D for s = −1/2, 1/4, 1 (see da Silva
et. al. in [4]). Let us compare with LCK space-time.

Here, using a NP tetrad, we will present the nonvanishing spin and Weyl
scalars of this space-time since in this formalism some of the curvature com-
ponents have direct physical meaning [20]. The canonical form of the metric
(12) is more appropriate for our purposes. We chose the NP tetrad as follows:

ds2 = l ⊗ n − m ⊗ m̄ , (28)√
2 l = e

0 + e
1 ,

√
2 n = e

0 − e
1 ,

√
2 m = e

2 + ie3 , (29)

e
0 = rk2−kt(k+ε)2−k−εdt , e

1 = rk2−kt(k+ε)2−k−εdr , (30)

e
2 = rktk+εdz, e

3 = αr1−kt1−k−εdφ . (31)

For ε = 1 the nonvanishing components of spin coefficients and Weyl scalars
are:

σ = −(1 + 2k) r + (1 − 2k) t

2
√

2rk2−k+1tk2+k+1
, λ =

(1 + 2k) r − (1 − 2k) t

2
√

2 rk2−k+1 tk2+k+1
, (32)

ρ =
t − r

2
√

2 rk2−k+1 tk2+k+1
, µ =

t + r

2
√

2 rk2−k+1 tk2+k+1
, (33)

ε =
k((1 + k) r + (1 − k) t)

2
√

2 rk2−k+1 tk
2+k+1

v, γ =
k((1 − k) t − (1 + k) r)

2
√

2 rk2−k+1 tk
2+k+1

, (34)

κ = ν = τ = π = α = β = 0 , (35)

Ψ0 =
k
(

(1 + k)(1 + 2k) r2 + 4(1 − k2) r t + (1 − k)(1 − 2k) t2
)

2 r2k2−2k+2 t2k2+2k+2
, (36)

Ψ2 =
k((1 + k) r2 + (1 − k) t2)

2 r2k2−2k+2 t2k2+2k+2
, (37)

Ψ4 =
k
(

(1 + k)(1 + 2k) r2 − 4(1 − k2) r t + (1 − k)(1 − 2k) t2
)

2 r2k2−2k+2 t2k2+2k+2
. (38)

This shows us that the LCK space-time with ε = 1 is again Petrov type I
in general except it is flat for k = 0 (s = 0) and k → ∞ (s = 1/2) and
Petrov type D for k = 1 (s → ∞) and k = −1 (s = −1/4). Also, since
κ = 0, l is geodesics but it is not affinely parameterized since ε 6= 0 except
k = 0 (s = 0). It also has expansion (−ρ 6= 0) and shear (|σ| 6= 0) but it is
not twisting.
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For ε = −1 we have

σ =
(3 − 2k) r + (2k − 1) t

2
√

2 rk2−k+1 tk2−3k+3
, λ =

(2k − 3) r + (2k − 1) t

2
√

2 rk2−k+1 tk2−3k+3
, (39)

ρ =
t − r

2
√

2rk2−k+1 tk2−3k+3
, µ =

t + r

2
√

2rk2−k+1 tk2−3k+3
, (40)

ε =
(k − 1)((k − 2)r − k t)

2
√

2rk2−k+1 tk
2−3k+3

, γ =
(k − 1)((2 − k)r − k t)

2
√

2rk2−k+1 tk
2−3k+3

, (41)

κ = ν = τ = π = α = β = 0 , (42)

Ψ0 =
(k − 1)

(

(6 − 7k + 2k2) r2 − 4k(k − 2) r t + k(2k − 1) t2
)

2r2k2−2k+2 t2k2−6k+6
, (43)

Ψ2 =
(k − 1)

(

(k − 2) r2 − kt
)

2r2k2−2k+2 t2k2−6k+6
, (44)

Ψ4 =
(k − 1)

(

(6 − 7k + 2k2) r2 + 4k(k − 2) r t + k(2k − 1) t2
)

2r2k2−2k+2 t2k2−6k+6
. (45)

Thus, LCK with ε = −1 is also Petrov type I in general except k = 1
(s → ∞) and k → ∞ (s = 1/2) where it is flat and Petrov type D for
k = 0 (s = 0) and k = 2 (s = 1). Again, the vector l is geodesics but not
affinely parameterized except k = 1. Also, it has nonvanishing expansion
and shear but it is not twisting. Thus, the LC and LCK solutions have
common Petrov types in general, but they differ for some particular values
of the parameter s.

3.2. Singularity behavior

The Kretschmann scalar K = RabcdR
abcd of the metric (14) are

K = 64s2 (1 − 2s)2
(

(1 − 4s)2r−8s/(1−2s+4s2)

(1 − 6s + 12s2)3 t4
+

t8s(1−4s)/(1−6s+12s2)

(1 − 2s + 4s2)3 r4

− 2 (1−4s)2 r−4s/(1−2s+4s2) t4s(1−4s)/(1−6s+12s2)

(1 − 2s + 4s2)2(1 − 6s + 12s2)2 r2 t2

)

, (ε = 1) , (46)

K = 64(1 − 2s)2

(

(s − 1)2 r−8s/(1−2s+4s2)

(3 − 6s + 4s2)3t4
+

s2 t4(1−2s)2/(3−6s+4s2)

(1 − 2s + 4s2) r4 t4

− 8s2(s−1)2r4s/(1−2s+4s2)t2(1−2s)2/(3−6s+4s2)

(3 − 6s + 4s2)(1 − 2s + 4s2)r2t4

)

, (ε = −1) . (47)

We see that, this space-time has singularities as in the static case. It is
well known that the static Levi-Civita space-time is singular at r = 0, except
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for s = 0, s = ±1/2 and s → ∞. For these values of s, the solution is regular
and flat. If one compares the static solution with the nonstatic solutions,
one realizes that there are similarities and differences. For ε = 1 only when
s = 0 or s = 1/2, the solution is locally flat. For other cases, there are
singularities. For s = 1/4 we have a singularity at r = 0 whereas for s → ∞
we have singularity at t = 0. For all other values of s we have singularities
at both r = 0 and t = 0. When ε = −1 the situation is also different. For
this case when s = 0 the solution is not locally flat but contains a singularity
at t = 0. There are locally flat solutions when s = 1/2 or s → ∞. For s = 1
we have a singularity at r = 0. For other values of s we have both line and
Big Bang singularities.

As we have mentioned, for s = 0 and s = 1/2 static Levi-Civita solution
(2) is flat. Corresponding solutions for ε = ±1 are

ds2 = −dτ2 + dr2 + τ2dz2 + α2r2dφ2 , (s = 0 , ε = 1) , (48)

ds2 = −dτ2 + τ4/3dR2+τ−2/3dz2+α2R2τ4/3dφ2 , (s = 0 , ε = −1), (49)

ds2 = −R2dτ2 + τ2dR2 + dz2 + α2dφ2 , (s = 1/2 , ε = ±1) . (50)

Here the first and third metrics are flat whereas the second one is curved.
The first and third metrics can be put into standard Minkowski form with
a suitable coordinate transformation. The first solution is presented in [9]
as a possible nonstatic exterior solution corresponding to a nonstatic string.
Also, the second solution (49) was introduced in [8, 11, 12] as an exterior
vacuum solution to their interior nonstatic string-like cylindrical source. It
is not singular at r = 0 but has a Big Bang singularity at t = 0 since its
Kretschmann scalar is K ∼ t−4. Thus, for some specific values of parameters,
the LCK solution reduces to some previously known solutions.

3.3. Radial acceleration of test particles

The radial acceleration of a free test particle at rest in the coordinate
system of (14) is given by:

d2R

dτ2
= − D

R τ2A
. (51)

The radial acceleration in the static Levi-Civita space-time can be found
by taking A = 0. For the Levi-Civita space-time, when the parameter s is
positive, the axis is attractive and when s is negative, the axis is repulsive.
For a particle in a constant radius, the magnitude of the acceleration is
increasing with increasing s when 0 < s < 1/2, and decreases with increasing
s when s > 1/2. For s = 0, no radial force is exerted on a particle at rest. For
nonzero s, when the radial distance increases, radial acceleration decreases.
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As in the Levi-Civita space-time, for the Levi-Civita–Kasner space-times
(14) when s positive the axis is attractive and when s negative the axis is
repulsive. And also when s = 0, no radial acceleration is felt by a particle
at rest. However, since the solution is time dependent, the behavior of
acceleration is changing with time. A typical behavior for t = 3 can be seen
in Fig. 1. Here, for ε = 1 the magnitude of acceleration increases with
increasing s up to s ∼ 0.17, then it starts to decrease sharply up to s ∼ 0.3,
and then it decreases monotonically with increasing s. For ε = −1 situation
is different. It increases monotonically up to s = 1/2 then increases more
sharply up to s = 3/2 then starts to decrease with increasing s. When the
time evolves, the radial acceleration is getting stronger for certain ranges of
s and out of this range, particle feels very tiny force. For ε = 1 this range
is in between 0 and 0.2. For ε = −1 the situation is reverse. For small s
particle feels very small force. The region where acceleration is very strong
is near s ∼ 1. For other values of s a test particle feels very tiny radial force
on it.

-1 -0.5 0 0.5 1 1.5 2
s

-1.25

-1

-0.75

-0.5

-0.25

0

0.25

0.5

R
Ð LCKHΕ=1L

LC

LCKHΕ=-1L

Fig. 1. The radial acceleration of a particle at r = 1, t = 3 for the static Levi-

Civita and Levi-Civita–Kasner space-times with ε = ±1. Dotted line represents

static Levi-Civita space-time, the solid line represents the solution with ε = 1 and

dashed line represents ε = −1 case.

An important difference between LC and LCK space-times is that for
s = 1/2 the radial acceleration of test particles becomes maximum for LC
metric. This fact has been discussed in previous studies of LC metric since
when the parameter s increases the energy density increases for 0 < s < 1/2
but decreases for s > 1/2. This fact suggested that the parameter s is
somehow related with the energy density of the source but not proportional
to it. For the LCK space-time the maximum value of the radial acceleration
is different than 1/2 (Fig. (1)). Thus they have different gravitational fields.
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3.4. Circular geodesics

Here we study the equations of a test particle following a circular geodesics
in the space-time (14). The circular geodesics in the LC space-time is dis-
cussed in detail by da Silva et. al. [4].

Let us denote the angular velocity of a particle moving along a geodesics
as ω = dφ/dτ and its tangential velocity as W µ = (0, 0, 0,W φ) with W φ =
ω/

√−gtt, then we have (here τ is the time coordinate, not the proper time
and dot represents derivation with respect to an affine parameter η):

(

ds

dτ

)2

= −R2D + R2F τ2C

(

dφ

dτ

)2

, (52)

ω2 =

(

φ̇

τ̇

)2

=
D

α2F
R2(D−F )τ−2C , (53)

τ̈ = −Cα2R2(F−D)τ2C−1φ̇2 , (54)

ṙ = 0 , ż = 0 . (55)

Then,

W 2 =
D

F
. (56)

Replacing this into the first and the third equations, we get

(

ds

dτ

)2

=
(

W 2 − 1
)

R2D , (57)

τ̇ =
dτ

dη
=

τ0

τC
√

W
. (58)

Thus, the circular geodesics are time-like for W < 1 (s < 1/4), space-like for
W > 1 (s > 1/4) and null for W = 1 (s = 1/4). We have the same conditions
with the static Levi-Civita space-time. Thus the time dependence does not
affect the circular geodesics. Also, as in the static case, for a given s the
tangential velocity of a particle is constant. The only difference between LC
and LCK space-times that is ∂τ is not a Killing vector for LCK space-times.
This does not affect the dependence of the character of the circular geodesics
to the parameter s, although they have different gravitational fields, since τ̇
is not constant for this metric and also since the previous section suggests.

4. Radiating Levi-Civita–Kasner space-time

It is well known [2, 18] that for any Einstein–Rosen wave solution with
(K = K0, U = U0, W = W0) solving vacuum Einstein equations for this
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metric, there is a corresponding radiative solution (K =F (r−t)+K0, U = U0,
W = W0) satisfying:

Tµν = η kµkν , (59)

where kµ is a null vector satisfying kµk
µ = 0 and η is energy density of the

pure radiation (null dust). Using this property we can easily construct the
Kasner generalization of radiating Levi-Civita solution. For the functions
K0, U0,W0 we will use the functions K,U,W of LCK solutions, namely have
the metric

K = F (r − t) + k2 ln (c1r + c2) + q2 ln (c3t + c4) ,

U = k ln (c1r + c2) + q ln (c3t + c4) ,

W = α(c1r + c2)(c3t + c4) ,

q = k + ε , ε = ±1 , (60)

which are solutions of (59) with the energy density:

η =
(c2c3 − c1(c4 + c3(t − r))) Ḟ

(c1r + c2)(c3t + c4)
. (61)

Notice that both c1 and c2 cannot vanish simultaneously. This is also true
for c3 and c4. When F = const. this solution reduces to the LCK space-time.
Also, when we take c3 = 0, c4 6= 0 we get the radiating Levi-Civita solution
of the form:

ds2 = e2F r2(k2−k)(−dt2 + dr2) + r2kdz2 + α2r2(1−k)dφ2 , (62)

The energy density is

η = − Ḟ

r
. (63)

To have a positive energy density, here we need Ḟ < 0. Also for c1 = 0
c2 6= 0 we get the radiating Kasner solution with the metric:

ds2 = e2F (t−r)t2(k
2−k)(−dt2 + dr2) + t2kdz2 + t2(1−k)dφ2 . (64)

For this radiating Kasner solution it is better to think the coordinates as the
Cartesian coordinates. This metric describes a pure radiation moving in the
r direction in the Kasner space-time. The energy density is the negative of
the Levi-Civita case and Ḟ must be positive in order to have positive energy
density since for this case

η =
Ḟ

t
. (65)
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At t = 0 this metric has a Kasner type cosmological singularity except k = 0
and k = 1.

If we have

c2c3 − c1c4 ≥ 0 , c1c3(r − t)Ḟ > 0 , Ḟ > 0 , (66)

or
c2c3 − c1c4 ≤ 0 , c1c3(r − t)Ḟ < 0 Ḟ < 0 , (67)

in (61) then the energy density of the solution (60) is positive.
For example the following choice

c2 = c4 = 0 , c1 = c3 = 1 , F = −a(t − r)n , n = 1, 2, 3 . . . , (68)

where a > 0 is a constant leads to positive energy solutions when n is even.
This space-time (60) contains in general a Kasner type cosmological sin-

gularity at t = 0 and also it is singular at the axis (we take c2 = c4 = 0 in
(60)). The space-time is not singular for the particular values of the param-
eters ε = 1, k = 0 and ε = −1, k = 1. The cosmological singularity seems to
be unavoidable but if one is able to find a regular interior radiating solution
containing the symmetry axis, then we can avoid having a line singularity at
r = 0 since our solution could be an exterior solution of a radiating nonstatic
cylindrical source. The space-time is well behaved for t > 0 and r > 0.

4.1. Some properties of the solution

4.1.1. NP coefficients

Here we analyze Ricci and Weyl scalars of the metric (60) using a null
tetrad. For ε = 1 we have the spin coefficients:

Φ00 =
(t − r)F ′

e2F r2k2
−2k+1 t2k2+2k+1

, (69)

Ψ0 =
(

k((1 + k)(1 + 2k)r2 − 4(k2 − 1)rt + (k − 1)(2k − 1)t2) (70)

− ((1+2k)r+(1−2k)t)2rtF ′
)/(

2e2F r2k2−2k+2 t2k2+2k+2
)

, (71)

Ψ2 =
k((1 + k)r2 + (1 − k)t2)

2e2F r2k2−2k+2 t2k2+2k+2
, (72)

Ψ4 =
k((1 + k)(1 + 2k)r2 + 4(k2 − 1)rt + (k − 1)(2k − 1)t2

2e2F r2k2−2k+2t2k2+2k+2
. (73)

This shows that only for ε = 1 case, for k = 0, Ψ2 and Ψ4 vanish and
the space-time is Petrov type N. For other values of k, Ψ0, Ψ2 and Ψ4 are
nonvanishing and Petrov type is I. For ε = −1 we have:
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Φ00 =
(t − r)F ′

e2F rk2−2k+1 t2k2−6k+5
, (74)

Ψ0 =
(

(k − 1)((k − 2)(2k − 3)r2 − 4k(k − 2)rt + k(2k − 1)t2) (75)

− ((2k−3)r+(1−2k)t)2rtF ′
)/(

2e2F r2k2−2k+2t2k2−6k+6
)

, (76)

Ψ2 =
(k − 1)(k − 2)r2 − kt2

2 e2F r2k2−2k+2 t2k2−6k+6
, (77)

Ψ4 =
(k − 1)(k − 2)(2k − 3)r2 + 4k(k − 2)rt + k(2k − 1)t2

2 e2F r2k2−2k+2 t2k2−6k+6
. (78)

For the ε = −1 case, Ψ0, Ψ2 and Ψ4 are nonvanishing and the space-time
is Petrov type I except for k = 1 where Ψ2 and Ψ4 are vanishing and the
space-time is Petrov type N.

4.1.2. Radial acceleration of test particles

The radial acceleration of a test particle initially at rest in a constant
radius in the space-time (60) is given by:

r̈ =
(k − k2)r−1 − F ′

eF rk2−k tq2−q
. (79)

If we compare (79) with the LCK metric, we see that the main difference
is the term ∼ F ′ which characterizes the null radiation. When the F ′ is
positive, the axis is more attractive whereas when it is negative, the axis is
less attractive. Thus, the presence of null dust may alter the particle motion.

4.1.3. Circular geodesics

Let us study the equations of a test particle following a circular geodesics
in the space-time (60). Let us denote the angular velocity of a particle
moving along a geodesics as w, then we have

ω2 =
(k2 − k)r−1 + F ′

(1 − k)e2F r2k2−1t2(q2−1)
, (80)

which results
(

ds

dt

)2

=

(

k2 − k + rF ′

1 − k
− 1

)

e2F r2(k2−2) t2(q
2−q) . (81)

Thus, the circular geodesics are time-like if the expression inside the paren-
theses is negative, null if it is zero and space-like if it is positive. For the
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Levi-Civita and LCK metrics the ranges of k where the geodesics are time-
like, space-like or null are the same. However, here we have extra terms
proportional to r F ′ and they, in general, depend on time and the radial
coordinate. This might have some consequences on particle motion. For
example, when time passes, a particle following a circular geodesics may
not continue to its motion since such geodesics become space-like. Also for
a given k, the circular geodesics might be restricted to a certain radius.
Hence, the presence of the null radiation clearly affects the dependence of
these ranges to the parameter k.

4.2. A radiating nonstatic string-like object

Using the property of the Einstein–Rosen type solutions, we can con-
struct examples of interior solutions having a nonstatic radiating object
with a cosmic string like equation of state and generating outer radiating
space-time for particular values of the parameters k and q. The interior and
exterior metrics are given by:

ds2
− = t4

(

e2F (r−t)(−dt2 + dr2) + A(r)2 dφ2
)

+ t−2dz2, (82)

ds2
+ = t4

(

e2F (r−t)(−dt2 + dr2) + α2r2 dφ2
)

+ t−2dz2 , (83)

with the energy momentum tensor:

Tµν− = T
(R)
µν− + T

(S)
µν− , Tµν+ = η+kµkν , (84)

T
(R)
µν− = κ η−kµkν , kµ = (1, 1, 0, 0) , (85)

T
0 (S)
0− = T

z (S)
z− = −κµ , (86)

η− =
(tA′ − A) F ′

tA
, µ =

−A′′

Ae2F t−4
, η+ =

(t − r)F ′

t r
. (87)

In these solutions, the interior and exterior metrics can be smoothly
matched if the metrics and their first derivatives are continuous on the
boundary of the string-like object. Since we have chosen same inner and
outer coordinates, this can be fulfilled if A(r0) = αr0 and A′(r0) = α. These
are called Lichnerowicz boundary conditions [21] and can be satisfied for
the present case easily. For example, if we choose A(r) = sin(b r) then the
junction conditions yield:

α = sin(br0) , r0 =
tan(b r0)

b
, (88)

which can be easily satisfied since we have more parameters than equations.
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Here the problem of these solutions is that, unlike µ, it seems that it
may be impossible for η− to be positive for all ranges of r and t. However,
we can avoid negative energy density if we limit the r and t ranges with
limited values where η− > 0. Then, the solution can represent a radiating
nonstationary cosmic string like object emitting null radiation.

5. A stiff fluid of generalized Kasner form

Let us consider the following metric:

ds2 =r2(k2−k)t2(q
2−q+a)(−dt2+dr2)+r2kt2qdz2 + P 2r2(1−k)t2(1−q)dφ2 , (89)

which deviates from LCK solution by a parameter a. For a = −k2 − q2 +
2kq + 1 we have a nonstatic stiff fluid with the equation of state

−G0
0 = Gr

r = Gz
z = Gφ

φ = a r2(k−k2)t2(q−q2−a−1) . (90)

When a → 0 we recover the LCK solution. This solution has the similar
singularity behavior as the LCK metric and it is singular in general at r = 0
and t = 0. For a special values of k, q we can avoid the singularity at the
axis. For example for k = q = 0 we have a = 1 and the metric becomes

ds2 = t2(−dt2 + dr2 + r2dφ2) + dz2, (91)

with
−G0

0 = Gr
r = Gz

z = Gφ
φ = t−4. (92)

This metric describes a cosmological solution where at t = 0 we have a Big
Bang singularity, the Kretchman scalar is K ∼ t−8, then we have an Universe
filled with an isotropic stiff fluid with the equation of state ρ = p. Since the
energy density goes with t−4, for large t it becomes negligible at late times
and practically at (t → ∞) we get vacuum Universe.

6. Conclusions

In this paper we have first investigated some physical properties of the
nonstatic vacuum solutions in cylindrical coordinates with Kasner type time
dependence. They can describe the exterior regions of nonstatic line sources
and nonstatic straight strings [9, 12] having nonvanishing gravitational po-
tential. For each constant time slice they reduce to the Levi-Civita metric.
For each Levi-Civita parameter, s, there are in general two corresponding
nonstatic vacuum solutions of this form depending on ε = ±1. We have stud-
ied some physical properties of this space-time and compared them with the
static Levi-Civita space-time. This metric is in the form of generalized Kas-
ner solutions studied before [13]. Also, by a coordinate transformation, it
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reduces to Einstein–Rosen soliton waves [14]. We have discovered some dif-
ferences and similarities between LC and LCK space-times. We believe that
the form of the metric (14) is suitable for future applications.

Next, we generalized the discussion to a cylindrical nonstatic metric cor-
responding to an exterior atmosphere of a cylindrical radiating nonstatic
source having generalized Kasner type metric. The atmosphere has an out-
going radial pure radiation as well as incoming and outgoing gravitational
radiation. For some special cases of our parameter k, these solutions reduce
to the exterior field of the radiating nonstatic cosmic string-like objects.

Finally, we have presented a stiff fluid solution by a small deviation
of gtt component of the metric from LCK space-time. This solution is also
nonstatic and nonstationary and it is another sign off richness of cylindrically
symmetric sources of general relativity together with the previous solutions
we have discussed.

I would like to thank Metin Arık for reading the manuscript and useful
discussions. Some portions of this work is done with the help of programme
GRTensor II [22].
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