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The purpose of these lecture notes is twofold. First we aim at introduc-
ing the reader to the basic concepts pertaining to Casimir forces, starting
from the seminal work of Casimir. In a broader sense, we also review some
aspects of dispersion forces, in particular the status of van der Waals forces
in vacuum as well as in a finite density and non zero temperature medium.
The Lifshitz theory of forces between dielectric bodies is briefly described.
In the second place, the course deals with a more recent analysis of the
Casimir force for metals based on an exact microscopic statistical mechan-
ical treatment of matter and field fluctuations. It reveals that charges
fluctuations inside the conductors cannot be ignored (as is done in the
conventional Casimir calculation). It also helps clarifying present day con-
troversies about the contribution of thermal fluctuations to the force and
the proper way to recover the metallic case in the framework of the Lifshitz
theory. Finally the occurrence of Casimir forces in critical phenomena is
illustrated in the case of the Bose–Einstein condensation in a free Bose gas.
The Casimir effect in other contexts (general quantum field theory, particle
physics, cosmology, . . . ) is not considered here.

PACS numbers: 05.20.Jj, 05.30.–d, 11.10.Wx

1. Introduction

Hendrik Brugt Gerhard Casimir (1909–2000) was born in The Hague
(the Netherland). He studied physics and obtained his Ph.D in 1931 at
the University of Leiden. He visited Bohr in Copenhagen and was an as-
sistant to Pauli in Zürich in 1938. Then he became a physics professor at
Leiden University. In 1942, during World War II, he moved to the Philips
Research Laboratories in Eindhoven where he remained an active scientist.
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He became a member of the board of directors of the Philips company in
1956. In addition to his professional life in industry, Casimir was a deep
and broad-minded theoretical physicist. He was active in pure mathemat-
ics (Lie groups), in low temperature physics, irreversible phenomena, and
fluctuation induced forces (the so-called Casimir effect).

The seminal papers that lead to the Casimir effect were motivated by
discrepancies between theory and experiments on colloidal particles in sus-
pension. In 1947 Verwey and Overbeek, applying the London–van der Waals
theory to their observations on the attraction between large particles in sus-
pension, concluded that this theory was not in agreement with their exper-
imental results.The discrepancy could be removed if the potential between
the particles decreased more rapidly than r−6. They suggested that the
influence of retardation on the interaction should be taken into account.
In [1], Casimir and Polder indeed found that the finiteness of the speed of
light causes the asymptotic potential to decay as r−7. The (ultimately sim-
ple) result follows from an elaborated 4th order perturbation calculation in
quantum electrodynamics and will not be presented in these notes. Looking
for a simpler derivation, Casimir discovered [2] that the change of the zero
point quantum energy due to the presence of two metallic plates generates a
macroscopic force between the plates. That was a striking macroscopically
observable manifestation of the effects of vacuum fluctuations in quantum
electrodynamics. Then Casimir applied similar ideas to the derivation of the
retarded van der Waals forces [3] that we will discuss in Section 4.3.

Nowadays the field of Casimir forces has grown immensely wide. The
Casimir effect could be tentatively defined as the change of the vacuum
energy (zero point energy) by external constraints and its consequences. In
condensed matter physics it covers the field of induced forces by vacuum
and/or thermal fluctuations on atoms, molecules and macroscopic bodies.
One can distinguish

• Electromagnetic Casimir effect

at the macroscopic level, the forces between conductors and dielectric
bodies; at the atomic level, dispersion forces, van der Waals forces,
molecular attractions, atom-walls interactions,

• Casimir effect in general quantum field theory

modification of the vacuum energy in presence of external sources or
geometrical constraints,

• Casimir effect in particle physics

e.g. in the bag model of hadrons,
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• Casimir effect in cosmology

e.g. modification of the zero point energy in topologically non trivial
spaces compared to Minkowski space,

• Casimir effect in critical phenomena

forces between boundaries and layers due to long range order at critical
points and in phases with broken continuous symmetry,

• Dynamical Casimir effect

time dependent Casimir forces generated by moving boundaries or con-
straints.

The large number of text books and extended reviews (not mentioning
research papers) bears testimony for the activity and broadness in the sub-
ject. A non exhaustive list, focusing on one or the other aspect of Casimir
forces, can be found at the end of these notes [4–14].

It is obviously not possible to cover the whole domain in six one hour
lectures, and we shall therefore mainly concentrate on the traditional elec-
tromagnetic Casimir effect. We will, however, focus attention on a more
detailed and complete statistical mechanical treatment than that usually
found in the above mentioned texts, hoping to show that some new infor-
mation can still be brought to this by now old and venerable subject.

In Sections 2.1–2.2 we review the standard treatment of the Casimir force
between two metallic plates at zero temperature. The plates are character-
ized by the boundary conditions of macroscopic Maxwell fields at metallic
interfaces, namely the vanishing of the part of the electric field tangent to
the surface. This geometrical constraint modifies the field eigenmodes de-
pending on the distance d between the plates. The d-dependence of the
modified zero point energy is the source of the Casimir force. The gener-
alization of Casimir’s calculation to non zero temperature is presented in
Section 2.3. Each field mode is now a thermalized quantum mechanical os-
cillator with frequencies obtained from the previously described macroscopic
boundary conditions. The total force between the plates, due to the sum of
vacuum and thermal fluctuations of the field, is normalized in such a way
that a single plate immersed into an infinitely extended radiation field does
not experience any force. It is of interest to note that the high temperature
asymptotics of the force is purely classical i.e. independent of the Planck
constant. This is the classical regime of the Casimir force. We stress again
that all these considerations are based on the premises that the conductors
are treated as macroscopic bodies without internal fluctuations, namely the
microscopic charges and field fluctuations inside the conductors are ignored.
Only the photons outside the conductors are subjected to a statistical dis-
tribution. In this situation we refer to conductors as being inert or dead.
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In Sections 3.1–3.2, we study a purely classical model for the Casimir
force [15]. Classical charges are confined into two globally neutral slabs
separated by a distance d. All the charges are in thermal equilibrium and
interact by means of the pair-wise Coulomb interaction. We then proceed
to a direct calculation of the average Coulomb force by unit surface using
the standard methods of classical statistical mechanics of fluids (integral
equations and Mayer graph summations). We find that the asymptotic force
is half the value of that found following Casimir’s method based on dead

conductors. This confirms the result of alternative calculations previously
made for similar classical models [16, 17]. In these works the premises are
very different: the field fluctuations (here of purely electrostatic nature) are
generated by those of the charges in the conductors. When the microscopic
charge fluctuations inside the bodies are taken into account we will speak of
living conductors.

The factor 1/2 of discrepancy between the Casimir force for dead and
living conductors in the classical regime could be attributed to the fact that
in purely classical models, the transverse part of the electromagnetic field
responsible for the radiation does not come in. This leads us to consider a
more complete model where the force between two quantum plasma slabs
is computed in the framework of non relativistic quantum electrodynam-
ics including both quantum and thermal fluctuations (Section 3.3). The
analysis, based on the path integral representation of the quantum gas [18],
shows that in the semi-classical regime, quantum corrections do not alter the
asymptotic form of the force previously found in the classical models. The
quantum effects manifest themselves as tiny corrections of diamagnetic type
occurring at the subdominant order. The conclusion (see a more thorough
discussion in Section 3.3.3 and in [19,20]) is that the treatment of conductors
as dead, prevailing in the whole literature, is not physically correct as soon
as the temperature is different from zero. Fields and particles do fluctuate

in the conductors which make the enforcement of inert boundary conditions
inadequate.

The Section 4 is devoted to some aspects of dispersion forces. After
briefly recalling the standard non retarded van der Waals–London forces be-
tween two atoms in vacuum, we report in Section 4.2 on the status of these
forces in a dilute medium having non zero temperature and density [21].
Here the situation is not quite elementary because one has to treat in a
coherent way both the quantum mechanical binding leading to the forma-
tion of atoms and the collective screening effects that are always present as
soon as there is a fraction of ionized charges. In the proper scaling regime
called the atomic limit (high dilution and low temperature) we can give the
exact asymptotic form of the correlations up to exponentially small terms
as T → 0. One finds that large distance atomic correlations reduce to the



The Casimir Effect 2507

standard van der Waals–London potential r−6 with some polynomial correc-
tions in temperature inherited from collective screening effects. It turns out
that unbound charges and atom-charges both undergo van der Waals type
of interaction as a consequence of the fact that correlations between quan-
tum charges always have a r−6 decay (exponential screening never holds in
quantum plasmas).

Following Casimir’s original ideas about the effects of vacuum fluctua-
tions, we present in Section 4.3 an elegant derivation of the retarded van der
Waals forces at zero temperature. The derivation relies on the assumption
that in addition to the electromagnetic field radiated by the sources there
is always an underlying free quantum electromagnetic field present whose
vacuum fluctuations are at the origin of the van der Waals forces.

Finally Section 4.4 gives a short account of forces between dielectric
bodies essentially following the famous Lifshitz semi-macroscopic theory.
Details and developments can be found in text books.

In Section 5 we touch the subject of the Casimir effect in critical phe-
nomena by considering the simplest quantum system that exhibits a phase
transition, the free Bose gas [22]. It is shown that the grand-canonical poten-
tial of a Bose gas in a slab at the critical value of the chemical potential has
finite size corrections of the standard Casimir type. They can be attributed
to the existence of long range order generated by gapless excitations in the
phase with broken continuous symmetry.

2. The historical calculation

2.1. The metallic cavity

Here we follow partly [4], Sec. 2.7, and [5] (B. Duplantier), see also [14].
We consider an empty cubic box Λ with perfectly conducting boundaries.

It has thickness d and lateral sizes of surface L2: Λ = {x = (x, y, z) |0 ≤
x ≤ d, −L

2 ≤ y ≤ L
2 , −L

2 ≤ z ≤ L
2 }. The electric field in the box is solution

of the Maxwell equations in empty space (Gauss units)

∇2E(x, t) − 1

c2
∂2E(x, t)

∂t2
= 0, ∇ · E(x, t) = 0 (1)

with the boundary conditions

Etg(x, t) = 0, x ∈ ∂Λ (2)

since the tangential components of the field Etg have to vanish on per-
fectly conducting walls. The eigenmodes are found by setting E(x, t) =
Re(E(x, ω)e−iωt) in (1) leading to the eigenvalue equation for the complex
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amplitudes E(x, ω) (the Helmotz equation)

∇2E(x, ω) = −ω
2

c2
E(x, ω), ∇ · E(x, ω) = 0, Etg(x, ω) = 0, x ∈ ∂Λ .

(3)
The solutions, labelled by wave numbers k and polarization indices λ, are

Ek,λ(x) =



















Ek,λex(λ)
√

8
|Λ| cos(kxx) sin(kyy) sin(kzz)

Ek,λey(λ)
√

8
|Λ| sin(kxx) cos(kyy) sin(kzz)

Ek,λez(λ)
√

8
|Λ| sin(kxx) sin(kyy) cos(kzz)

, (4)

where
√

8/|Λ|, |Λ| = L2d, is a normalization factor, e(λ) {e(λ) ·k = 0, e(λ) ·
e(λ′) = δλ,λ′ , λ = 1, 2)} are two polarization unit vectors orthogonal to the
wave number k, and Ek,λ is a complex amplitude. The wave numbers and
the eigenfrequencies are of the form

kx =
πnx

d
, ky =

πny

L
, kz =

πnz

L
, nx, ny, nz = 0, 1, 2, . . . ,

ωk = c|k| = c

√

(πnx

d

)2
+
(πny

L

)2
+
(πnz

L

)2
. (5)

The corresponding magnetic field amplitude B(x, ω) is obtained from Fara-
day equation B(x, ω) = −i c

ω∇ ∧ E(x, ω). One sees in (4) that if one of
the integers nx, ny, nz vanishes, Ek,λ(x) is necessarily directed in a single
direction, i.e. there is only one possible polarization state in this case. The
energy of one mode is

1

8π

∫

Λ

dx
[

|Re(Ek,λ(x))|2 + |Re(Bk,λ(x))|2
]

=
1

8π

(

E∗
k,λEk,λ +Ek,λE

∗
k,λ

2

)

.

(6)
The electric and magnetic energy contribute the same amount and we have
kept the order of the products as they occur in the calculation.

The quantized electric field (still noted Ek,λ(x)) is obtained as usual by
replacing the classical amplitude

Ek,λ →
(

√

8π~ωk

)

ak,λ, E∗
k,λ →

(

√

8π~ωk

)

a∗k,λ

by the (dimensionless) annihilation and creation operators of photons with
the commutation relations [ak,λ, a

∗
k′,λ′

] = δk,k′δλ,λ′ .

Then the quantized energy of one mode takes the form

HΛ,k,λ = ~ωk

(

a∗k,λak,λ + ak,λa
∗
k,λ

2

)

= ~ωk

(

a∗k,λak,λ +
1

2

)

. (7)
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Finally the total energy results from the summation over all modes k, λ is
(taking into account that the mode eigenfunctions in (4) are orthogonal and
normalized)

HΛ =
∑

k,λ

′
HΛ,k,λ =

∑

k,λ

′
~ωk a

∗
k,λak,λ +

1

2

∑

k,λ

′
~ωk . (8)

The notation
∑′ means that only one polarization is possible when one of

the wave numbers kx, ky, kz is equal to zero. The (infinite) last term of (8)
represents the zero point energy of the quantum electromagnetic field. There
are two ways of thought about it. It merely appears in (8) as an additive
constant to the total photon energy so that one can dispense with it by
redefining the energy of the photon vacuum state |0 > to be equal to zero.
This is commonly done by writing the creation and annihilation operators in
(7) in normal order. More fruitful is Casimir’s view that the vacuum energy

EΛ = 〈0| 1

8π

∫

Λ

dx
[

|E(x)|2 + |B(x)|2
]

|0〉 =
1

2

∑

k,λ

′
~ωk (9)

also represents mean square fluctuations of the fields in the box Λ that exist
even in the absence of photons. These pure vacuum fluctuations may have
physically observable effects since they depend on the geometry (shape, size)
of the spatial domain that constrains the field.

2.2. Force between macroscopic metallic plates induced

by vacuum fluctuations

We are interested in the force by unit surface f(d) = F (d)/L2 induced
by vacuum fluctuations between two faces of the metallic box at distance d.
Since there are only two fundamental constants c and ~ available in the
problem, dimensional analysis shows that f(d) ∼ ~c/d4, the point being to
determine a finite proportionality coefficient. There are several ways to reg-
ularize the infinite energy (9) to extract physically meaningful quantities. A
perfect metal has a static dielectric constant ε = ∞. One argument consists
in observing that a real metal is characterized by a frequency dependent
dielectric function ε(ω) such that ε(ω) → ∞, ω → 0, but which tends to
the vacuum value ε0 as ω → ∞, namely when ω � ωa, ωa a characteristic
atomic frequency. Hence high frequencies should not contribute to the force,
and for this reason one introduces a cut-off function g(ω/ωa) in (9) such that
g(0) = 1 and g(ω/ωa) → 0 as ω → ∞
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EΛ =
1

2

∑

k,λ

′
~ωkg

(

ωk

ωa

)

. (10)

The cut-off function will be removed at the end of the calculation by letting
ωa → ∞.

Extending the plates to infinity in the y, z directions gives the energy
per unit surface

uvac(d) = lim
L→∞

EΛ

L2

= 2
1

π2

∞
∫

0

dky

∞
∫

0

dkz

[

1

2

∞
∑

n=0

′
~ωn

(√

k2
y + k2

z

)

]

g





ωn

(√

k2
y + k2

z

)

ωa





= 2
1

4π

∞
∑

n=0

′
∞
∫

0

dqq~ωn(q) g

(

ωn(q)

ωa

)

, ωn(q) = c

√

(πn

d

)2
+ q2,

(11)

where q is the two dimensional wave number vector in the (y, z) plane,
q = |q| and the second line results from the integration in polar coordinates
in this plane with angular sector 2π/4. The prefactor 2 is due to the two
polarization states and

∑′ means that the term n = 0 must have an addi-
tional factor 1/2. With the change of variable q → ω = ωn(q), ωdω = c2qdq,
uvac(d) can also be written as

uvac(d) =
1

2πc2

∞
∑

n=0

′
∞
∫

cπn/d

dωω

[

~ω g

(

ω

ωa

)]

(12)

=
~cπ2

2d3

∞
∑

n=0

′
F (n) , (13)

where we have defined

F (s) =

∞
∫

s

dvv2g

(

πc

dωa
v

)

. (14)

Finally the work required to bring the plates from a large separation d ∼ ∞
to the actual separation d and the force between the plates are

w(d) = uvac(d) − lim
d→∞

uvac(d), fvac(d) = − ∂

∂d
uvac(d) + lim

d→∞

∂

∂d
uvac(d) .

(15)
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One sees in (13) that

uvac(d) ∼ 1

2πc3
d

π

∞
∫

0

dv

∞
∫

v

dωω

[

~ω g

(

ω

ωa

)]

, d→ ∞

=
~cπ2

2d3

∞
∫

0

dsF (s) . (16)

Using the above definitions w(d) can be cast in the form

w(d) =
π2

~c

2d3





∞
∑

n=1

F (n) +
1

2
F (0) −

∞
∫

0

dsF (s)



 . (17)

In (17) we have explicitly singled out the n = 0 term of the
∑′

n sum. The
asymptotic evaluation of the difference between the sum and the integral
(17) is provided by an application of the Euler–MacLaurin theorem [23, 24]
Sec. 6.6.4

∞
∑

n=1

F (n) =

∞
∫

0

dkF (k) − 1

2
F (0) − B2

2!
F (1)(0)

−B4

4!
F (3)(0) − B6

6!
F (5)(0) + . . . (18)

with Bj the Bernouilli numbers B2 = 1
6 , B4 = − 1

30 , . . .. The derivatives

F (j)(s) are easily calculated from (14)

F (1)(s) = −s2g
(

πc

dωa
s

)

=⇒

F (1)(0) = 0 , F (3)(0) = −2 + O
(

c

dωa

)

, F (j)(0) = O
(

c

dωa

)

, j ≥ 5 .

(19)

This holds under the assumption that the cut-off function verifies g(0) = 1,
all its derivative are finite at the origin and vanishing at infinity. With (18)
and (19) and letting the cut-off ωa → ∞ we obtain Casimir’s result:

w(d) = − π2
~c

720d3
, fvac(d) = − π2

~c

240d4
. (20)

In this calculation, the electromagnetic field is entirely enclosed in the cavity,
the outside of it being void of matter and of electromagnetic energy. We can
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take the alternative equivalent view that there is also a field in the space ex-
ternal to the cavity. Then the external face of the plate at d will be subjected
to a force in the opposite direction due to the vacuum fluctuations in the
semi-infinite space to its right, namely f vac

ext = −
(

− limd→∞
∂
∂du

vac(d)
)

, so

that the total force − ∂
∂du

vac(d) + fvac
ext (d) is the same as (15). This amounts

to normalize the force so that a single plate in infinite space feels no resulting
force.

2.3. Force induced by the thermal fluctuations

If the walls of the cavity have a certain temperature T 6= 0, the photons
inside the cavity are thermalized at the same temperature by their inter-
actions with the atomic matter constituting the metal. Assuming that the
thermalization process has taken place, the photon-atoms interactions are
no more described at the microscopic level in the standard treatment of
blackbody radiation, but replaced by the macroscopic boundary condition
(2) of Maxwell fields at a metallic interface. Hence, each mode of the field
behaves as a quantum mechanical oscillator at temperature T .

When temperature is introduced in this way there is a new typical length
in the problem, the thermal wave length of the photon β~c providing the
dimensionless parameter

α =
βπ~c

d
. (21)

The large values of α correspond to low temperature or short distances where
the quantum aspects of the electromagnetic field play a dominant role. The
small values of α (high temperature or large distance) will yield the classical
limit.

The free energy of one photon of frequency ωk with energy levels ~ωkn,
n = 0, 1, 2, . . . is (disregarding the zero point energy ~ωk/2 at the moment)

−β−1 ln

(

∞
∑

n=0

e−β~ωkn

)

= β−1χ(β~ωk) , χ(v) = ln
(

1 − e−v
)

. (22)

Hence the thermal free energy of the electromagnetic field in the metallic
box is

ΦT,Λ =
∑

k,λ

′
β−1χ(β~ωk) . (23)

The free energy per unit surface between two faces at distance d is ob-
tained by performing exactly the same steps as in (11)–(13) replacing there
1
2~ωg(ω/ωa) by β−1χ(β~ω)

ϕT (d) = lim
L→∞

ΦT,Λ

L2
=

1

2πc2

∞
∑

n=0

′
∞
∫

cπn/d

dωω
[

β−1χ(β~ω)
]

. (24)
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The radiation pressure due to the thermal photons inside the cavity on the
plate at d can be written in terms of the parameter α as

prad
T (d) = − ∂

∂d
ϕT (d) = − 1

πdβ3~2c2

∞
∑

n=1

(nα)2χ(nα) . (25)

This pressure is positive since χ(v) is negative.

The pressure on the plate due to thermal radiation in an infinite half
space is given by the well known formula

prad
T (∞) = lim

d→∞
prad

T (d) =
π2

45

1

β4~3c3
. (26)

It is obtained by taking the continuum limit of the sum (25) as α→ 0

prad
T (∞) = − lim

d→∞

1

πdβ3~2c2α

∞
∫

0

dv v2 ln
(

1 − e−v
)

. (27)

The result (26) follows when we insert the expression of α (21) and use the
relations

Ip =

∞
∫

0

dv vp ln
(

1 − e−v
)

= p ! ζ(p+ 2) (28)

with ζ the Riemann function

ζ(p) =
∞
∑

n=1

1

np
, ζ(4) =

π4

90
. (29)

2.3.1. Short distance or low temperature limit

The large α expansion is obtained by noting that χ(nα) ∼ −e−nα,
α→ ∞. Keeping the dominant term n = 1, (25) gives

prad
T (d) =

π

d3β

[

e−α + O
(

e−2α
)]

. (30)

Thus the pressure of a very thin black body is exponentially small at fixed
T (or at fixed d in the low temperature limit).
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2.3.2. Long distance or high temperature limit

In order to obtain the small α expansion of the sum in (25) one uses the
Poisson summation formula which in our case reads1

1

2
F (0) +

∞
∑

n=1

F (n) = πC(0) + 2π

∞
∑

n=1

C(2πn) , (31)

where C(k) are the Fourier coefficients of F (s)

C(k) =
1

π

∞
∫

0

dsF (s) cos ks . (32)

With F (s) = s2χ(αs) = s2 ln (1 − e−αs) one finds

C(k) = − 1

π

∂2

∂k2

[

α

k2
− π

k
coth

(

πk

α

)]

. (33)

The value of C(0) = 1
π

∫∞
0 dss2 ln (1 − e−αs) = − π3

45α3 can be found from
(28) or simply by expanding coth x for small argument. For k = 2πn, n 6= 0
one uses coth x = 1 + O(e−2x) leading to

C(2πn) =
1

(2πn)3
− 3α

π(2πn)4
+ O

(

exp
(

−bn
α

))

, b > 0 . (34)

This is inserted in Poisson formula (31) with F (0) = 0 and the definition
(29) of the Riemann function

∞
∑

n=1

F (n) = − π4

45α3
+
ζ(3)

4π2
− 3αζ(4)

8π4
+ O

(

exp

(

− b

α

))

(35)

and finally

prad
T (d) =

π2

45

1

β4~3c3
− ζ(3)

4πβd3
+

π2
~c

240d4
+ O

(

exp

(

− b

α

))

. (36)

This is the radiation pressure (26) together with additional high temperature
or finite distance corrections. One notes that the d−4 term has a temperature
independent coefficient which is exactly the same as that of the vacuum
Casimir force (20) in magnitude but with the opposite sign.

1 This is the version of Poisson formula adapted to the evaluation of sums on positive
integers.The Euler–MacLaurin formula is not adapted here because the derivatives
of the function ln

`

1 − e−v
´

diverge at v = 0 and therefore an exact summation is
needed.
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2.3.3. The total force

The quantity of interest is the total force f(d) on the plate at d when it is
also submitted to black body radiation from the infinite half space to its right
producing the pressure −prad

T (∞). Thus adding also the vacuum Casimir
force that was not taken into account in the above thermal calculations one
has

f(d) = prad
T (d) − prad

T (∞) + fvac(d) . (37)

This amounts to consider that a single plate immersed in an infinitely ex-
tended radiation field experiences no net force and f(d) is the force that
develops when a second plate is present at finite distance d. From (20),
(26), (30) and (36) one finds the large and small α expansions of f(d)

f(d) = − π2
~c

240d4
− π2

45

1

β4~3c3
+

π

d3β
O
(

e−α
)

, α→ ∞ , (38)

and

f(d) = − ζ(3)

4πβd3
+ O

(

exp

(

− b

α

))

, α→ 0 . (39)

Concerning the latter result there is a number of remarkable points: the

dominant order d−3 has a purely classical expression independent of Planck’s

constant and it is still attractive; moreover at next order d−4 there is an exact
compensation of the Casimir vacuum force.

2.4. Some experimental results

We first discuss the order of magnitude of the Casimir force. For a
separation d ∼ 10−6 m = 1 µm and at room temperature T = 300 K
one has α = βπ~c/d ∼ 24. We are thus in the large α regime and the
temperature corrections (last term of the r.h.s. of (38)) have a factor e−24 !
Then the ratio of the blackbody pressure (second term of the r.h.s. of (38 )
to the Casimir force (20) is 16π4α4/3 ∼ 1.5 10−3 so that vacuum fluctuations
dominate the black body pressure. One can therefore observe a macroscopic

electromagnetic force between the plates at room temperature entirely due to

vacuum zero point energy!

Direct experiments in the planar geometry are difficult because of a num-
ber of perturbations and have only be performed recently with sufficient
accuracy. The parallelism of the plates has to be perfect, corrections due
to additional electrostatic charges, to the roughness of the surfaces and to
their finite conductivity have to be taken into account. We quote the recent
results of Bressi et al. [25]. The agreement with the d−4 decay is excellent.
Moreover, the calculated value of the Casimir amplitude KC = π2

~c/240
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is KC = 1.3 10−27 Newton m−2 whereas these authors have measured the
value KC = 1.22 ± 0.18 10−27 Newton m2. One concludes that the Casimir
formula (20) for the zero temperature force is now experimentally validated.

2.5. Non planar geometries

The calculation of the Casimir force for other types of geometries is not
easy because of the need to determine the electromagnetic eigen modes with
metallic boundary conditions on non planar surfaces. Earlier experiments
were performed on the force between a sphere and a plate. With this ar-
rangement one avoids the problem of controlling the parallelism of plates.
A common approximation for the force is provided by the Derjaguin con-
struction [4, 6]. It amounts to decompose the sphere into a succession of
concentric cylindrical shells with axis perpendicular to the plate. The force
between each of the cylinder is assimilated to the Casimir planar formula
(20), and the total force on the sphere is recovered be summation of all
these force elements. Within this approximation the zero temperature force
exerted on the sphere by the plate is

F (d,R) = −π
3
~c

360

R

d3
, (40)

where d is the distance between the surface of the sphere and the plate, R
is the radius of the sphere and R � d. This formula has received a rather
good experimental verification [26].

An important issue is the sign of the Casimir force. One has seen that the
force between two plates or a plate and a sphere is attractive. Motivated
by the Casimir model of the electron, the question of the vacuum energy
force on a conducting spherical shell was raised. In this model the electron
is regarded as a uniformly charged conducting shell of radius r with total
charge e. The electrostatic repulsive energy of the shell e2/2r could be
balanced by an attractive Casimir energy which should be of the form of the
form −C ~c/2r for dimensional reasons. This configuration would be stable
if the dimensionless constant C is positive and has the exact value C = e2/~c.
With this beautiful idea the electron constitution would be entirely explained
on the basis of electromagnetic effects. After several works, it was eventually
established by Boyer [27] that in the situation of a spherical shell, the Casimir
force is repulsive (it tends to dilate the sphere), so invalidating Casimir’s
proposal.

Balian and Duplantier have treated the problem of a number of per-
fectly conducting shells of general shapes [28]. The shells are idealized as
smooth surfaces on which the field has to satisfy the macroscopic metal-
lic boundary conditions. The authors provide the general form of the free
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energy at all temperatures and depending on the topology of the surfaces.
The eigenmodes enter through the density of states, itself given by the spec-
tral function associated to the electromagnetic Green functions. The latter
can be calculated in a perturbative scheme called “multiple scattering expan-
sion”. Previously known particular cases corresponding to simple geometries
are recovered, and results for more general shapes are obtained in terms of
curvatures and genders of the surfaces. A description of this mathematically
nice and general theory can be found in [5] and [14]. One should remember
that all the results quoted in this section were based on the hypothesis of
“inert” conductors, i.e. neglecting charge and field fluctuations inside the
conductors. We come to this point in the next section.

3. Statistical theory of the classical Casimir effect

3.1. The model

Our goal is to analyse the Casimir force at a more fundamental level
by introducing in the description the microscopic degrees of freedom of the
atoms constituting the plates. For simplicity, and motivated by the high
temperature result (39), we shall first present a purely classical model. The
transverse part of the electromagnetic field is not considered here and the
forces are purely electrostatic. This model is treated in detail in [15].

The two plates A and B consist of classical point charges confined to
two planar slabs ΛA(L, a) and ΛB(L, b) in three-dimensional space. One can
think of them as weakly coupled plasmas or electrolytes that are conducting
in the sense that they are characterized by a microscopic screening length
`D which is of the order of interparticle separation.

The slabs have thickness a and b, surface L2, and are separated by a
distance d:

ΛA(L, a) :=
{

r = (x,y) |x ∈ [−a, 0], y ∈
[

−L
2 ,

L
2

]2
}

,

ΛB(L, b) :=
{

r = (x,y) |x ∈ [d, d+ b], y ∈
[

−L
2 ,

L
2

]2
}

(41)

and we shall assume that all the lengths a, b, d are much larger than `D.
Plasma A (B) is made of charges eα (eβ) of species α ∈ SA (β ∈ SB)

where SA and SB are index sets for the species in ΛA(L, a) and ΛB(L, b),
respectively. We assume both plasmas to be globally neutral, i.e. carrying
no net charge,

∑

a

eαa =
∑

b

eβb
= 0 , (42)

where
∑

a (
∑

b) extends on all particles in ΛA(L, a) (ΛB(L, b)). For a par-
ticle located at r we will use the generic notation (γ r) where γ ∈ SA if
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r ∈ ΛA(L, a) and γ ∈ SB if r ∈ ΛB(L, b). The space external to the slabs is
supposed to have no electrical properties, its dielectric constant being taken
equal to that of vacuum. The charges are confined in the slabs by hard walls
that merely limit the available configuration space to the regions (41).

All particles interact via the two-body potential

V (γ, γ′, |r − r′|) = eγeγ′v(r − r′) + vSR(γ, γ′, |r − r′|), (43)

where v(r−r′) = 1/|r−r′| is the Coulomb potential (in Gaussian units) and
vSR(γ, γ′, r−r′) is a short-range repulsive potential to prevent the collapse of
opposite charges and guarantee the thermodynamic stability of the system.

The total potential energy U consists in the sum of all pairwise inter-
actions, separated into three contributions according to whether they take
place between two particles of A, of B, or between a particle of A and a
particle of B:

U = UA + UB + UAB . (44)

On the microscopic level, the force between configurations of charges in
the two plasmas is the sum of all pairwise forces exerted by the particles of
A on the particles of B:

F ΛA→ΛB
:= −

∑

a

∑

b

[

eαaeβb

ra − rb

|ra − rb|3
+ F SR(αa, βb, ra − rb)

]

,

ra ∈ ΛA(L, a), rb ∈ ΛB(L, b) (45)

and F SR is the force associated to the short-range potential vSR. For sim-
plicity we assume that the range of vSR is finite so that F SR(αa, βb, ra − rb)
vanishes as soon as d is large enough, and we will omit it in the following.

Both plasmas are supposed to be in thermal equilibrium at the same
temperature T . The statistical average 〈· · · 〉L is defined in terms of the
Gibbs weight exp(−βU), β = (kBT )−1, associated with the total energy
(44). There is no need to explicitly specify the ensemble used here (canonical
or grand canonical) provided that the global neutrality constraint (42) is
taken into account. The average particle densities ρL(γ r) are expressed
as averages of the microscopic particle densities ρ̂(γ r) =

∑

i δγ γi
δ(r − ri)

where the sum runs over all particles

ρL(γ r) = 〈ρ̂(γ r)〉L . (46)

We keep the index L to remember that averages are taken for the finite-
volume slabs (41). Hence expressing the sums in (45) as integrals on particle
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densities ρ̂(γ r), the average force reads

〈F 〉L = −
∫

ΛA(L)

dr

∫

ΛB(L)

dr′ r − r′

|r − r′|3 cL(r, r′) , (47)

where cL(r, r′) is the two-point charge correlation function

cL(r, r′) = 〈ĉ(r)ĉ(r′)〉L , ĉ(r) =
∑

γ

eγ ρ̂(γ r) . (48)

We now consider the average force by unit surface between two infinitely
extended slabs at distance d by letting their transverse dimension L tend
to infinity. We assume that the plasma phases are in fluid states homoge-
neous and isotropic in the y directions, namely the charge correlation has
an infinite-volume limit of the form

lim
L→∞

cL(r, r′) = 〈ĉ(r)ĉ(r′)〉 = c(x, x′, |y − y′|) . (49)

For symmetry reasons, 〈F 〉L has no component parallel to the slabs and is
directed along the perpendicular x axis. We therefore consider the
x-component of the force per unit surface

〈f〉 := lim
L→∞

〈Fx〉L
L2

= lim
L→∞

− 1

L2

∫

L2

dy





0
∫

−a

dx

d+b
∫

d

dx′
∫

L2

dy′ x− x′

|r − r′|3 cL(x,y, x′,y′)





= −
0
∫

−a

dx

d+b
∫

d

dx′
∫

dy
x− x′

[

(x− x′)2 + |y|2
]3/2

c(x, x′, |y|). (50)

The last line results from the y translational invariance of the integrand in
the limit L→ ∞. Formula (50) remains valid if one replaces c(x, x′, |y|) by
the truncated charge–charge correlation function

S(x, x′,y) =
〈

ĉ(r)ĉ(r′)
〉

− 〈ĉ(r)〉
〈

ĉ(r′)
〉

, r = (x,y), r′ = (x′,0) (51)

with ĉ(r) the microscopic charge density as in (7). Indeed, the y-Fourier
transform of the Coulomb force reads

∫

dy e−ik·y x− x′

[(x− x′)2 + |y|2]3/2
= 2π sign(x− x′)e−k|x−x′| (52)



2520 Ph.A. Martin, P.R. Buenzli

and reduces to −2π when k = 0 and x < x′. This implies that the charge
density profile 〈ĉ(r)〉 = c(x) does not contribute to the force because of the
global neutrality of both plasmas

0
∫

−a

dxc(x) =

d+b
∫

d

dxc(x) = 0 . (53)

To take full advantage of the translational invariance in the y direction
we represent the y-integral in (50) in Fourier space :

〈f〉 =
1

2π

0
∫

−a

dx

d+b
∫

d

dx′
∫

dk e−k|x−x′|S(x, x′,k), (54)

where k = |k| and S(x, x′,k) =
∫

dk e−ik·yS(x, x′,y). The dependence of
〈f〉 = 〈f〉 (d) on the separation d between the two slabs occurs explicitly in
(54) as well as implicitly in the charge correlation function S(x, x′,k). The
d dependence of the correlations between the two slabs A and B originates
itself from the Coulomb interaction term UAB occurring in the total Gibbs
thermal weight.

3.2. The charge correlation between macroscopic conductors

3.2.1. Mayer graphs and resummation of Coulomb divergences

To determine the asymptotic behaviour of 〈f〉 (d) as d→ ∞, we need to
know that of the charge correlation between the sabs. For this we can use
the technique of summation of Mayer graphs for Coulomb systems [29]. We
recall that the two-point Ursell function, related to the densities ρ(i), ρ(j)
and the two-particle density ρ(i, j)

h(i, j) :=
ρ(i, j)

ρ(i)ρ(j)
− 1, i = (γi, ri), j = (γj, rj) (55)

can be expanded in a formal power series of the densities by means of Mayer
graphs. The basic Mayer bonds are

f(i, j) = e−βV (i,j) − 1 , (56)

where V (i, j) is the potential (43) and the weights at vertices are the densities
ρ(i). Here i is a shorthand notation for the point (γi ri) in configuration
space, and integration on configurations

∑

γi

∫

dri includes the summation
on particle species. Diagrams have two root points i and j and m internal
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points which have to be integrated over. Each pair of points is linked by at
most one f -bond and there are no articulation points2. Because of the long-
range of the Coulomb interaction, the integrals occurring in every diagram
diverge in the thermodynamic limit. The well known procedure to cure these
divergences is to resum the chains built with pure Coulombic interaction
bonds −βeγi

eγj
v(ri − rj). The chain summation leads to the following

integral equation which defines the screened (or Debye–Hückel) potential

Φ(r, r′) = v(r − r′) − 1

4π

∫

dr1 κ
2(r1) v(r − r1) Φ(r1, r

′) = Φ(r′, r)

(57)

which in turn is equivalent to the differential equation

∆Φ(r, r′) − κ2(r)Φ(r, r′) = −4πδ(r − r′) . (58)

In (57) and (58)

κ(r) :=

(

4πβ
∑

γ

e2γρ(γ r)

)1/2

(59)

can be interpreted as the local inverse Debye screening length `D(r) in the
inhomogeneous system. Once the screened potential has been determined,
the original Mayer series for the Ursell function is reorganized into a series
of prototype graphs which involve the two integrable bonds

F (i, j) = −βeγi
eγj

Φ(ri, rj) , (60)

FR(i, j) = exp[−βeγi
eγj

Φ(ri, rj) − βvSR(γi, γj , |ri − rj |)]
−1 + βeγi

eγj
Φ(ri, rj) . (61)

The rules for prototype graphs are the same as for the original Mayer graphs
except for the excluded convolution rule, namely the convolution of two
F (i, j) bounds is forbidden (to avoid double counting of original Mayer
graphs). Vertices receive density weight ρ(γr). In fact the particle den-
sities are not known at this point, but they can be found self-consistently
in principle from the first equation of the BGY hierarchy which links the
densities to the two point correlation functions. Finally, the charge–charge
correlation function (9) is related to the Ursell function by

S(r, r′) =
∑

γ,γ′

eγeγ′ρ(γ r)ρ(γ ′ r′)h(γ r, γ′ r′) + δ(r − r′)
∑

γ

e2γρ(γ r) . (62)

2 An articulation point, when removed, splits the diagram into two pieces, at least one
of which is disconnected from the root points.
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The second term in the r.h.s. of (62) is the contribution of coincident points.
Taking into account the sole bond F (i, j) (60) defines the Debye–Hückel or
mean field approximation.

In our model the particle densities ρ(γ, x) as well as κ(x) do not depend
on the variable y. Written in Fourier space with respect to the y directions,
the integral equation (57) and equivalent differential equation (58) become

Φ(x, x′,k) = v(x, x′,k) − 1

4π

∫

dx1κ
2(x1)v(x, x1,k)Φ(x1, x

′,k) , (63)

[

∂2

∂x2 − k2 − κ2(x)

]

Φ(x, x′,k) = −4πδ(x − x′) , (64)

with

Φ(x, x′,k) =

∫

dye−ik·y
Φ(x, x′,y) ,

v(x, x′,k) =

∫

dye−ik·yv(x, x′,y) =
2π

k
e−k|x−x′| . (65)

Since the particles densities vanish outside the slabs one has

κ(x) = 0 , if x < −a , 0 < x < d , or x > d+ b . (66)

At the boundaries x = −a, 0, d, d+ b, Φ(x, x′,k) and its x-derivative must
be continuous and Φ(x, x′,k) → 0, x→ ±∞.

Solving (63) by iteration yields a series that can be shown to be con-
vergent in the weak coupling regime. In particular Φ(x, x′,k) has a bound
uniform with respect to k and d, so that

lim
k→0

Φ(x, x′,k) = Φ(x, x′, 0) <∞ . (67)

This means that the screened potential is short ranged (integrable) in the y

direction3.

When d = ∞, the system reduces to the single plasma slab ΛA. Its
screened potential

Φ
0
A(x, x′,k) = lim

d→∞
Φ(x, x′,k) , x, x′ ∈ ΛA (68)

3 For finite d, Φ(x, x′, y) decays faster than any power of |y|. For d = ∞ the system
reduces to a single plasma A with a hard wall without electric properties, for which
Φ(x, x′, y) decays as |y|−3 in the y-plane.
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satisfies, of course, the integral equation

Φ
0
A(x, x′,k) = v(x, x′,k) − 1

4π

∫

dx1(κ
0
A)2(x1)v(x, x1,k)Φ0

A(x1, x
′,k) ,

(69)
where κ0

A(x) = limd→∞ κ(x), x ∈ ΛA, is the inverse screening length in the
single plasma slab without any other electrical influence.

3.2.2. Electroneutrality sum rules

An important relation that holds in great generality in conducting phases
is the electroneutrality sum rule [30]. It states that the total charge of the
screening cloud around a specified charge eγ′ at r′ compensates it exactly.
In terms of the Ursell function, it reads

∫

dr
∑

γ

eγρ(γ, r)h(γ r, γ ′ r′) = −eγ′ , (70)

where the integrand in the left-hand side is the charge density at r condi-
tioned by the presence of a charge eγ′ at r′. From (62) one immediately sees
that the charge–charge correlation obeys the sum rule

∫

drS(r, r′) =

∫

dx

∫

dyS(x, x′,y) = 0 (71)

or, in Fourier space with respect to y

∫

dxS(x, x′,k = 0) = 0 . (72)

An elementary derivation of (72) in the mean field approximation can be
obtained from the differential equation (64). Integrating (64) on x leads to

∞
∫

−∞

dx
κ2(x)

4π
Φ(x, x′,k) = 1 − k2

4π

∫

dxΦ(x, x′,k) (73)

and in particular, for k = 0

∞
∫

−∞

dx
κ2(x)

4π
Φ(x, x′,k = 0) = 1 . (74)

In the Debye–Hückel approximation the Ursell function is given by the sole
link (60) hDH(γ, x, γ′, x′,k) = −βeγeγ′Φ(x, x′,k) and from (62)
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SDH(x, x′, k) = −β κ
2(x)

4π

κ2(x′)

4π
Φ(x, x′,k) + δ(x − x′)

κ2(x)

4π
(75)

so that (74) implies (72) in this approximation.
We will see that the electroneutrality sum rules will be at the microscopic

origin of the universality of the Casimir effect.

3.2.3. Asymptotic chain summation for large separation

It is not easy to solve Eq. (64) for two reasons: first the particle density
profiles ρ(γ, x) in the slabs are not explicitly known, and in any case the
matching of solutions by continuity in the boundaries of different regions
leads to cumbersome algebra. We shall instead follow another route by
performing the chain summation only for the asymptotic part of the screened
potential as d→ ∞. For this it is convenient to split the Coulomb potential
V into parts according to the location of its arguments

v(x, x′,k) =



















vAA(x, x′,k) , a < x, x′ < 0 ,

vAB(x, x′ − d,k) , a < x < 0 < d < x′ < d+ b ,

vBA(x− d, x′,k) , a < x′ < 0 < d < x < d+ b ,

vBB(x− d, x′ − d,k) , d < x, x′ < d+ b ,

(76)

and the same decomposition for the screened potential Φ
4. We can think

of −βvAA,−βvAB = −βvBA,−βvBB as an expanded set of Coulomb bonds
that will enter into the chain resummation5. According to (65) the vAB

potential can be written as

vAB(x, x′,k) =
2πe−k|x−x′−d|

k
=
ke−kd

2π

(

2π

k
e−k|x|

)(

2π

k
e−k|x′|

)

=
ke−kd

2π
vAA(x, 0)vBB(0, x′) ,

vAA(x, 0) = vAA(0, x) = vBB(0, x) . (77)

We call −βvAB a traversing bond and the chains constituting −βΦAB travers-
ing chains. Traversing chains have necessarily an odd number of traversing

4 The functions vAB , vBB , ΦAB , ΦBB · · · (depending on d) refer to the system of
the two plasmas under mutual influence with the x-location of particles in plasma B

measured by their distance from the boundary at d (i.e. from 0 to b).
5 Cases when x, x′ are outside of the plasmas do not need to be considered since the

potential will always be multiplied there by vanishing density factors.
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bonds. Let Φ
(n)
AB be the sum of traversing chains having n traversing bonds.

Then introducing (77) and summing all chains of AA (BB) bonds attached
to x (x′) one obtains

Φ
(1)
AB(x, x′, q

d) =
qe−q

2πd
ΦAA(x, 0, q

d )ΦBB(0, x′, q
d) . (78)

Note that because of the factor vAA(x, 0) the AA chains have necessarily an
extremity located at the boundary x = 0 of plasma A (likewise for plasma

B). Thus, the dominant part of Φ
(1)
AB(x, x′, q

d) behaves as (see (68))

Φ
(1)
AB(x, x′, q

d) ∼ qe−q

2πd
Φ

0
A(x, 0, 0)Φ0

B (0, x′, 0) , d→ ∞ . (79)

One can obtain Φ
(3)
AB(x, x′, q

d) by first attaching a traversing Coulomb bond

to each extremities of Φ
(1)
AB(x, x′, q

d) and summing the AA (BB) chains in
plasma A (B) as before

Φ
(3)
AB(x, x′, q

d) =

(

qe−q

2πd

)2

ΦAA(x, 0, q
d )

×
(∫

dx1

∫

dx2vAA(0, x1)
κ2

A(x1)

4π
Φ

(1)
AB(x1, x2,

q
d )
κ2

A(x2)

4π
vBB(x2, 0)

)

×ΦBB(0, x′, q
d ) =

(

qe−q

2πd

)3

ΦAA(x, 0, q
d)

×
[
∫

dx1
κ2

A(x1)

4π
vAA(0, x1)ΦAA(x1, 0,

q
d )

]

×
[
∫

dx2
κ2

B(x2)

4π
vBB(0, x2)ΦAA(x2, 0,

q
d )

]

ΦBB(0, x′, q
d) , (80)

where the second equality comes from (78) and rearranging the factors. By
(69) the first square bracket in (80) is equal to

vAA(0, 0, q
d) − ΦAA(0, 0, q

d) =
2πd

q
+ O(1) (81)

since the screened potential ΦAA(0, 0, k) is finite at k = 0 (see (67)), and
the same estimate holds for the second bracket6. This yields a factor

(

qe−q

2πd

)3 (
2πd
q

)2
= qe−q

2πd e
−2q

6 Strictly speaking, here κ2(x), x ∈ ΛA still depends on the influence of the second
plasma ΛB , but ΦAA(0, 0, k) tends to Φ

0

A(0, 0, k) as d → ∞ and this does not modify
the argument.
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and leads to

Φ
(3)
AB(x, x′,

q

d
) ∼ qe−q

2πd e
−2q

Φ
0
A(x, 0, 0)Φ0

B(0, x′, 0), d→ ∞ . (82)

Continuing by induction one sees that Φ
(2n+1)
AB (x, x′, q

d ) receives a factor
qe−q

2πd e
−2nq and summing all the traversing chains gives the final result

ΦAB(x, x′, q
d) ∼ q

4πd sinh q
Φ

0
A(x, 0, 0)Φ0

B(0, x′, 0), d→ ∞ . (83)

The screened potential of the joint system factorizes, up to a factor, in the
screened potentials of the individual plasmas with a charge located at their
inner boundary.

3.2.4. The asymptotic force

We can now insert this behaviour into the basic formula for the force
(54)

〈f〉 (d) =
1

2πd2

0
∫

−a

dx

b
∫

0

dx′
∫

dq exp

(−|x− x′ − d|
d

)

S(x, x′ − d, q
d)

∼ − 1

8πβd3

∞
∫

0

dq
2q2e−q

sinh q





0
∫

−a

dx
(κ0

A)2(x)

4π
Φ

0
A(x, 0,0)





×





b
∫

0

dx′
(κ0

B)2(x′)

4π
Φ

0
B(0, x′,0)



 = − ζ(3)

8πβd3
, d→ ∞ . (84)

To obtain the first equality we have changed the integration variables x′ →
x′ − d, k = q/d in (54) and the second line follows from (75). In the last
line we observe that both parentheses are equal to 1 because of the elec-
troneutrality sum rule (74), whereas the q integral yields the value ζ(3) of
the Riemann ζ-function.

This result deserves the following comments:

• The asymptotic value of the force has been calculated here within
the Debye–Hückel approximation using only the bond (60). It can
be shown that the result (84) holds in full generality. In fact all the
other Mayer graphs involving the bond (61) do not contribute to the
asymptotics of the force. The factorization property (83) holds for the
complete Ursell function as d→ ∞ in the form
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hAB(γ, x, γ′, x′, q
d ) ∼ − q

4πβd sinh q

G0
A(γ, x, γa, 0,k = 0)

eγa

×G
0
B(γb, 0, γ

′, x′,k = 0)

eγb

, (85)

where G0
A, G

0
B are correlations functions in the individual slabs ΛA, ΛB

involving charges eγa , eγb
at their inner boundaries that can be shown

to satisfy the sum rule

∫

dx
∑

γ

ρ0
A(γ, x)G0

A(γ, x, γa, 0,k = 0)

eγa

= −1 (86)

as a consequence of electroneutrality.

• The result (84) exhibits universality in the sense that the asymptotic
force does not depend on the microscopic composition of the plasma
(chemical species, masses, charges) nor on the typical microscopic
lengths (screening lengths `D, interparticle distances ρ−1/3). More-
over it does not depend either on the thickness a and b of the slabs:
the Casimir force is entirely due to the charge fluctuations at their in-
ner boundary. In this respect, if one neglects the microscopic lengths
compared to their separation d, slabs of arbitrary thickness behave
as infinitely thin conducting foils. Universality is a consequence of
electroneutrality sum rules in the conductors.

• If one compares (84) with (39) one sees that the extrapolation of
Casimir calculation to the classical regime is larger by a factor 2 than
what is obtained in the present classical microscopic model. The two
approaches are based on different premises: (39) was derived from the
electromagnetic field fluctuations but treating the metal as a macro-
scopic body without internal structure. Formula (84) for the force
originates exclusively from the atomic fluctuations inside the metals,
but since the dynamical degrees of freedom of the electromagnetic field
have not been introduced, the force is purely electrostatic (longitudi-
nal field) and the effects of the transverse components of the field (in
particular the Lorentz force between fluctuating currents) are missing.
This calls for a more complete model where quantum mechanics and
photons are taken into account.
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3.3. Quantum corrections to the classical Casimir effect

3.3.1. The complete model

We consider the same two plasma slabs system ΛA,ΛB as before, but now
containing non relativistic quantum charges (electrons, ions, nuclei) with
appropriate statistics immersed in a thermalized quantum electromagnetic
field. The field is itself enclosed into a large box K with sides of length
R, R � L, a, b. The Hamiltonian of the total finite volume system reads in
Gaussian units

H =
∑

i

(

pi −
eγi

c A(ri)
)2

2mγi

+
∑

i<j

eγi
eγj

|ri − rj |
+
∑

i

V walls(γi, ri) +Hrad
0 . (87)

The sums run on all particles with position ri and species index γi;
V walls(γi, ri) is a steep external potential that confines a particle in ΛA or
ΛB . It can eventually be taken infinitely steep at the wall’s position imply-
ing Dirichlet boundary conditions (i.e. vanishing of particle wave functions
at the faces of the slabs).

The electromagnetic field is written in the Coulomb (or transverse) gauge
so that the vector potential A(r) is divergence free and H rad

0 is the Hamil-
tonian of the free radiation field. For it we impose periodic boundary con-
ditions on the faces of the big box K 7. Hence expanding A(r) in the plane

waves modes k = ( 2πnx

R ,
2πny

R , 2πnz

R ) gives

A(r) =

(

4π~c2

R3

)1/2
∑

k,λ

g(k)
ek(λ)√

2ωk

(

a∗k,λe
−ik·r + ak,λe

ik·r
)

, (88)

Hrad
0 =

∑

k,λ

~ωk a
∗
k,λak,λ . (89)

In (88), g(k), g(0) = 1, is a form factor (ultraviolet cut-off) needed to make
sense of the Hamiltonian (87) 8. In our case we are concerned with the
asymptotics d→ ∞ which is related to the k → 0 behaviour, hence the final
result is expected to be independent of this cut-off function.

We suppose that the matter in the slabs is in thermal equilibrium with
the radiation field and therefore introduce the finite volume free energy of
the full system at temperature T

ΦR,L,d = −kBT lnTr e−βH , (90)

7 Periodic conditions are convenient here. We could as well choose metallic boundary
conditions as in chapter 1. Since the field region K will be extended over all space
right away the choice of conditions on the boundaries of K are expected to make no
differences for the particles confined in the slabs.

8 Removing this ultraviolet cut-off is still an open problem.



The Casimir Effect 2529

where the trace is carried over the particles’ and the field’s degrees of free-
dom. The force between the slabs by unit surface is now defined by

f(d) = lim
L→∞

lim
R→∞

fR,L(d) (91)

with

fR,L(d) = − 1

L2

∂

∂d
ΦR,L,d . (92)

Adding and subtracting the free energy of the free photon field in (90) leads
to

ΦR,L,d = −kBT ln

(

Tr e−βH

Zrad
0

)

− kBT lnZrad
0 , (93)

where Zrad
0 is the partition function of the free photon field in the volume

K. Since the last term of (93) is independent of d, it does not contribute to
the force (92). Therefore one has

f(d) = kBT lim
L→∞

lim
R→∞

1

L2

∂

∂d
ln

(

Tre−βH

Zrad
0

)

. (94)

The thermodynamic limit is expected to exist when one at least of the species
is fermionic (say the electrons) without regularization of the Coulomb po-
tential at the origin.

The situation is very similar to that considered by Casimir: The field
extends over all sides of the two conducting plates, but the latter are now
described at the microscopic level including all the particle-field interactions.
At this point, the following observation is important. The Bohr–van Leeuven
theorem [31] states that classical matter in thermal equilibrium decouples
from the transverse part of the (classical) electromagnetic field. We recall
the central argument which is very simple. In the phase space integral of
the classical Gibbs weight

∫

Λ

dr

∫

dp exp

[

−β
(

p − e
cA(r)

)2

2m

]

exp(−βU(r)) (95)

one can perform the momentum integration first, shifting the variable p

to p − e
cA(r) fot fixed r so making the integral independent of the vector

potential A. It is therefore expected that in the classical limit the thermal
statistical averages calculated with the QED Hamiltonian (87) reduce to
those obtained by the purely classical model of Section 3.1 based on the



2530 Ph.A. Martin, P.R. Buenzli

sole Coulomb electrostatic interaction. It is thus of interest to study the
Casimir force from the full quantum model (87) in the semi-classical (or
high temperature) regime.

In addition to the photon thermal wave length β~c, quantum mechanics

introduces particles’ de Broglie thermal wave lengths λγ = ~

(

β
mγ

)1/2
. The

semi-classical regime is the situation where all thermal wave length are much
smaller than d and the slab thicknesses a, b and the parameter α (21) is also
small. We establish below that, in this regime, the quantum corrections to
the classical Casimir effect are small. More precisely, they do not contribute
to the dominant order d−3 so that one can write

f(d) = − ζ(3)

8πβd3
+R(β, ~, d) ,

R(β, ~, d) = O(d−4) . (96)

The remainder R(β, ~, d) includes the quantum effects, but it cannot modify

the amplitude of the d−3 term to match the high temperature result − ζ(3)
4πβd3

(39) obtained by Casimir’s method ignoring the microscopic fluctuations
inside the conductors.

3.3.2. The path integral representation and the effective electric and magnetic
potentials

For the sake of simplicity, we shall sketch the procedure with the follow-
ing specifications (for more details, see [32]).

• The spins of the particles are ignored (as it is already the case in the
Hamitonian (87)). They could be introduced but we expect that their
contributions will not modify the asymptotic force.

• The Fermi or Bose statistics of the particles will not be taken into
account. The use of Boltzmann statistics is in order in the non degen-
erate regime that we are considering, but requires the presence of a
short range repulsive potential vSR(γi, γj , |ri − rj|) to assure stability
as in the classical case. Anyway, exchange effects across the two slabs
will be negligible at large separation.

• We treat the electromagnetic field classically, which is justified by
β~c � d (i.e. α � 1, see (21)). This amounts to replace the photon
creation and annihilation operators by complex numbers α∗

k,λ, αk,λ.

The formalism adapted to the investigation of the high temperature (or
semi-classical regime) is the Feynman–Kac–Itô path integral representation
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of the Gibbs weight. For a single particle in an external potential V ext(r)
the formula for a configurational diagonal matrix element is

〈r| exp

(

−β
“

p−
eγ

c A(r)
”2

2m − βV ext

)

|r〉 =

(

1

2πλ2

)3/2 ∫

D(ξ)

× exp



−β





1
∫

0

dsV ext((r + λξ(s)) − i
√

e2

βmc2

1
∫

0

A(r + λξ(s)) · dξ(s)







 .

(97)

Here ξ(s), 0 ≤ s < 1, ξ(0) = ξ(1) = 0, is a closed dimensionless Brownian
path and D(ξ) is the corresponding conditional Wiener measure normalized

to 1. It is Gaussian, formally written as exp

(

−1
2

∫ 1
0

∣

∣

∣

dξ(s)
ds

∣

∣

∣

2
)

∏

s dξ(s), with

zero mean and covariance
∫

D(ξ)ξµ(s1)ξν(s2) = δµ,ν(min(s1, s2) − s1s2) , (98)

where ξµ(s) are the Cartesian coordinates of ξ(s).
In this representation a quantum point charge looks like a classical-like

structured charge at r with an internal degree of freedom, the random
charged filament ξ(s) whose extension is given by the de Broglie length
λ (the quantum fluctuation). The magnetic phase in the bracket of (97) is a
stochastic line integral: it is the flux of the magnetic field across the closed
filament.

This is readily generalized to a system of n interacting particles: the two
first terms of (87) yield the following expression of the Gibbs weight in the
space of filaments

exp

(

−β
n
∑

i<j

eγi
eγj
V (ri, ξi, rj, ξj)+i

n
∑

j=1

√

βe2
γj

mγj
c2

1
∫

0

A(rj+λγj
ξj(s))·dξj(s)

)

,

(99)
where

Vc(ri, ξi, rj, ξj) =

1
∫

0

ds
1

|ri + λγi
ξi(s) − rj − λγj

ξj(s)|
(100)

is the Coulomb potential between two filaments.
A remarkable fact about the representation (99) is that the exponent is

linear in A and its Fourier amplitudes (contrary to the Hamiltonian (87)
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written in operatorial form). Since the statistical weight e−βHrad

0 is a Gaus-
sian function of these Fourier amplitudes, it makes it possible to perform
the partial trace over the field degrees of freedom in (94) by the fact that
the Fourier transform of a Gaussian is a Gaussian, namely for a n× n pos-
itive definite Hermitian matrix C and complex vectors z = {zi}, J = {Ji},
i = 1, . . . , n

∫ n
∏

i=1

d2zi
π
e−(z,Cz)+(J,z)+(z,J) =

1

Det(C)
e(J,C−1J) . (101)

This formula is applied to the calculation of this partial trace in the form of
the normalized Gaussian average

〈 · · · 〉rad =
1

Zrad
0

∏

kλ

∫

d2αkλ

π
e−β~ωk|αkλ

|2 · · · . (102)

The result is

〈

exp



−iβ
n
∑

j=1

√

e
γ2
j

βmγj
c2

1
∫

0

A(rj + λγj
ξj(s)) · dξj(s)





〉

rad

=

(

n
∏

i=1

e−β
e2
γi

2 Wm(0,ξi,0,ξi)

)

e−β
Pn

i<j eγi
eγj

Wm(ri,ξi,rj ,ξj) . (103)

In (103) Wm is a double stochastic integral

Wm(ri, ξi, rj , ξj) =
1

β
√
mγi

mγj
c2

×
∫

dk

(2π)3





1
∫

0

dξµ
i (si)e

−ik·(ri+λγi
ξi(si))





×





1
∫

0

dξν
j (sj)e

ik·(rj+λγj
ξj(sj))



Gµν(k) , (104)

where

Gµν(k) =
4π|g(k)|2

|k|2 δµν
tr (k), δµν

tr (k) = δµν − kµkν

|k|2 (105)

is the free field covariance and δµν
tr (k) the transverse Kronecker symbol.

Summation on the Cartesian component indices µ, ν = 1, 2, 3 is understood.
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We see from (103) that Wm can be interpreted as a pairwise effective mag-
netic interaction between the random filaments ξi and ξj mediated by the

vector potential A 9. This interpretation becomes manifest when we look at
the long distance behaviour of Wm,

Wm(r1, ξ1, r2, ξ2) ∼
1

β
√
mγ1

mγ2
c2

1
∫

0

dξ1(s1) ·
1
∫

0

dξ2(s2)

× (λ1ξ1(s1) · ∇r1
) (λ2ξ2(s2) · ∇r2

)
1

|r1 − r2|
(106)

as |r1 − r2| → ∞. This is obtained by keeping the most singular term in
the small k expansion of the exponentials in the integrand in (104). (Here
we have omitted additional O(r−3) terms coming from the transversality

condition in (105).) Since filaments are closed one has
∫ 1
0 dξ(s) = 0, and

this implies that the first non vanishing term is bilinear in ξ1 and ξ2. If one
interprets formally

j(x) = e

1
∫

0

dsδ(x − r − λξ(s))v(s), v(s) =
d(λξ(s))

ds
(107)

as the current density carried by a wire at r, one sees that (106) has (up
to a factor) precisely the form of the classical magnetic energy of such a
pair of current wires. A comparison of (100) and (104) shows that the ratio
Wm/Vc ∼ (βmc2)−1 is a small quantity at high temperature so that purely
electrostatic effects will be dominating.

Having now identified the basic effective pair interactions between the
filaments, namely the electrostatic potential (100), the magnetic potential
(104) and a possible non electric short range potential as in (43), it is possible
to proceed as in the classical treatment of Section 3.2.1. Indeed if one consid-
ers the auxiliary system of filaments r, ξ described in an enlarged phase space
of classical-like particles equipped with an internal degree of freedom ξ and
the above pair interactions, all concepts and methods of classical statistical
mechanics apply. In particular we have the density ρ(γ, r, ξ) of filaments of
species γ and the filament-Ursell function h(γ, r, ξ, γ ′, r′, ξ′) which can be
expanded in Mayer graphs. The Coulomb part (100) still decays as r−1 so
that graphs still suffer from the long range divergences, and chain summa-
tion have first to be performed. There is an important observation to be
made at this point: from the Feynman–Kac formula the potential (100) in-
herits the equal time constraint, i.e. every element of charge e1λ1dξ1(s1) of

9 The product in (103) contains the magnetic self energies of the filaments.
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the first filament does not interact with every element e2λ2dξ2(s2) as would
be the case in classical physics, but only if s1 = s2. It is therefore of interest
to split the Coulomb potential into

V (i, j) = Velec(i, j) +Wc(i, j), (108)

where

Velec(i, j) =

1
∫

0

ds1

1
∫

0

ds2
1

|ri + λγi
ξi(s1) − rj − λγj

ξj(s2)|
(109)

is a genuine classical electrostatic potential between two charged wires and

Wc(i, j) =

1
∫

0

ds1

1
∫

0

ds2(δ(s1 − s2) − 1)
1

|ri + λγi
ξi(s1) − rj − λγj

ξj(s2)|
(110)

is the part of V (i, j) due to intrinsic quantum fluctuations (Wc(i, j) vanishes
if ~ is set equal to zero). Because of the identities

1
∫

0

ds1(δ(s1 − s2)) − 1) =

1
∫

0

ds2(δ(s1 − s2)) − 1) = 0 (111)

its large distance behaviour originates again from the term bilinear in ξ1

and ξ2 in the multipolar expansion of the Coulomb potential in (110)

Wc(r1, ξ1, r2, ξ2) ∼
1
∫

0

ds1

1
∫

0

ds2(δ(s1 − s2)) − 1)

× (λ1ξ(s1) · ∇r1
) (λ2ξ(s2) · ∇r2

)
1

|r1 − r2|
. (112)

It is dipolar and formally similar to that of two electrical dipoles of sizes
e1λ1ξ1 and e2λ2ξ2. The chain summation of the Coulombic part Velec(i, j)
will lead to a screened potential Φelec(i, j). Then, as in the classical case,
one can introduce the Mayer diagrammatics in prototype graphs with bonds
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F (i, j) = −βeγi
eγj

Φelec(i, j) , (113)

FR(i, j) = exp[−βeγi
eγj

(Φelec(i, j) +Wc(i, j) +Wm(i, j))]

−1 + βeγi
eγj

Φelec(i, j) . (114)

Weights at vertices are the filament densities ρ(γ, r, ξ) and one has the
excluded convolution rule for the bonds F (i, j). This is similar to (60) and
(61) with the additional occurrence in F R(i, j) of the electric and magnetic
multipolar interaction Wc and Wm due to intrinsic quantum fluctuations of
the filaments.

The rest of the analysis is as follows. The potential Φelec is a classical
mean field potential for structured charges. Its large d contribution can be
extracted exactly as in Sections 3.2.3 and 3.2.4 leading to the same universal

result − ζ(3)
8πβd3 as (84) (using that electroneutrality sum rules also hold in the

system of filaments).
In contrast to the classical situation, at large distance the bond F R

has now a dipolar behaviour FR(i, j) ∼ −βeγi
eγj

(Wc(i, j) + Wm(i, j)) ∼
|ri − rj|−3. Concerning the large separation d, this bond (in the partial
Fourier representation with k = q/d) proves to decay as O(1/d), exactly
like Φelec(q/d). This is easily seen for Wc(q/d): using (65) with k = q/d
and expanding for large d, terms of order O(d) and O(1) identically van-
ish because of (111). Basically the same holds for Wm(q/d) except that the
vanishing of these dominant terms follows from the vanishing of the line inte-

gral over a closed filament
∫ 1
0 dξ(s) = 0. Therefore, the dominant behaviour

of the complete filament Ursell function hAB(γ, x, ξ, γ ′, x′, ξ′, q
d ) contains in

addition to (85) (expressed with filament degrees of freedom) contributions
built with single traversing links Wc,AB(1, 2) and Wm,AB(1, 2). To point 1
in A one can attach all possible prototype graphs of system A and likewise
to point 2 in system B resulting in the additional terms

∫

d1

∫

d2
[

ρ0
A(1)h0

A(a, 1,k = 0) + δ(a, 1)
]

(−βeγ1
eγ2

)

×
(

Wc +Wm

)

(1, 2, q
d )
[

ρ0
B(2)h0

B(2, b,k = 0) + δ(2, b)
]

.

However, these new contributions have no effect at leading order O(1/d3)
when integrated in the force because of the electroneutrality sum rule in the
form (71).

The major difference with the term (85) containing the correlation func-
tions G0

A, G0
B and leading to the asymptotic result (84) is that the latter
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functions are constrained by the excluded convolution rule as they are at-
tached to the traversing bond FAB , and that they satisfy in turn the sum
rule in the form (86), yielding universality (instead of the vanishing) of the
O(d−3) contribution.

3.3.3. Concluding remarks

We have shown that quantum corrections to the classical Casimir effect
can conveniently be worked out from the electric potential Wc(i, j) (110)
and magnetic potential Wm(i, j) (104) occurring naturally in the functional
integral representation of the system. These potentials account for the ran-
dom charge and current interactions generated by the quantum fluctuations.
The size of these interactions at long distance are measured in terms of the
thermal wave length λ of the particles. It is remarkable that the dominant
d−3 term is exactly the universal classical one, still independent of the mi-
croscopic details of the conducting phase (interparticle distance, screening
lengths, thermal de Broglie lengths). This is again a consequence of the elec-
toneutrality sum rules extended to the quantum system. This calculation
strongly confirms that (84) is the correct value of the Casimir force at high
temperature. One must conclude that the discrepancy with (39) is not due
to the omission of the transverse part of the electromagnetic interaction in
the classical Coulombic models, but should be attributed to the very fact
that fluctuations inside the conductors are ignored in the calculation leading
to (39) 10. In other words, the description of conductors by mere macro-
scopic boundary conditions is physically inappropriate whenever the effect
of thermal fluctuations on the force are considered.

On the other hand, recent experiments validate the zero temperature
formula (20). In [25] the authors find an experimental agreement with the
value of Casimir force’s strength π2

~c/240 to a 15% precision level. This
indicates that fluctuations in conductors are drastically reduced as the tem-
perature tends to zero and possibly have no more effect on the force at T = 0.
In (96), quantum effects appear at the subdominant order d−4. One may
imagine the following scenario: as the temperature is reduced, the classical
term (∼ T/d−3) decreases whereas the term R(β, ~, d) ∼ d−4 approaches

the Casimir vacuum value − π2
~c

240d4 (20). Understanding the cross over from
(96) to the zero temperature formula of Casimir is an open problem.

10 In fact it is well known that there are long range field correlations inside the con-
ducting media when T 6= 0, see [33] for electrostatic potential fluctuations and [32]
for transverse field fluctuations.
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4. Dispersion forces

4.1. Van der Waals–London forces in vacuum

It was a great achievement of the early quantum mechanics to show that
there is a general force of attraction between atoms or molecules even if
neither has a permanent average dipole moment. The force comes from the
intrinsic quantum fluctuations of the charges inside the atoms, distributed
according to the wave function of the atomic states. For this reason such
microscopic forces can also be considered to be of Casimir type. They are
called dispersion forces because they involve the polarizability of the atoms
which is also related to the refractive index of the medium. London’s deriva-
tion is part of the standard education in quantum mechanics [34] and we
just recall its principle.

For instance, for two hydrogen atoms in their ground state ψ
(A)
0 and

ψ
(B)
0 with infinitely heavy nuclei located in rA and rB the mutual Coulomb

interaction behaves as a dipolar potential at large atomic separation r =
|r| → ∞, r = rA − rB ,

V at−at(r) ∼ Dat−at

r3
, Dat−at = e2[y(A) ·y(B) − 3(y(A) · r̂)(y(B) · r̂)], (115)

where y(A) and y(B) are the relative electronic coordinates and r̂ = r/r .
The van der Waals potential uW(r) obtained by treating V at−at as a second-
order perturbation reads

uW(r) = −CW

r6
,

CW =
∑

(m,n)6=(0,0)

|〈ψ(A)
0 ⊗ ψ

(B)
0 |Dat−at|ψ(A)

m ⊗ ψ
(B)
n 〉|2

Em +En − 2E0
> 0 . (116)

In (116) Em, m = 0, 1, . . ., are the eigen energies of the hydrogen atom
(repeated according to their multiplicities) and the sum runs on all excited

states ψ
(A)
m ⊗ ψ

(B)
n , (m,n) 6= (0, 0), of the two atoms (the notation includes

the integral on the continuous part of the spectrum).

It will be useful in the sequel to relate the van der Waals amplitude CW

to the polarizability α(ω) of individual atoms. The latter is defined as the
linear response of the electric dipole ey of the hydrogen atom in its ground
state to an applied oscillating electric field E0e

iωt:

〈ψ0(t)|ey|ψ0(t)〉 ∼ α(ω)E0e
iωt, E0 → 0 (117)
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and has the value [35], Sec. 98, [36], Sec. 92

α(ω) = 2e4
∑

n6=0

(En −E0)|〈ψ0|y3|ψn〉|2
(En −E0)2 − (~ω)2

. (118)

Taking the 3-axis along r̂, one has Dat−at = e2(y
(A)
1 y

(B)
1 + y

(A)
2 y

(B)
2 −

2y
(A)
3 y

(B)
3 ), explicitating the matrix elements in (116) and exploiting that

ψ0 is spherically symmetric, one can write CW in the form11

CW = 6e4
∑

m6=0,n6=0

|〈ψ0|yA
3 |ψm〉|2|〈ψ0|yB

3 |ψn〉|2
Em +En − 2E0

. (119)

The connexion between (118) and (119) is provided by an application of the
identity

1

a+ b
=

2ab

π

∞
∫

0

du
1

(a2 + u2)(b2 + u2)
(120)

yielding the desired relation

CW =
3~

π

∞
∫

0

duαA(iu)αB(iu) . (121)

4.2. Van der Waals–London forces at finite temperature

The above calculation disregards all many-body and temperature effects
which are present when atoms are in a thermal equilibrium state at tem-
perature T and density ρ. It is therefore of interest to study the effective
atom–atom potential in a fluid with non vanishing T and ρ. Two questions
arise: does this effective potential still decay as C

r6 , and if it is the case, what
are the temperature and density corrections to van der Waals amplitude CW

(116) for an atom pair in empty space? The first question is in fact not triv-
ial as illustrated by the following simple and apparently sensible reasoning
which turns out to be incorrect. At non zero temperature the gas always
contains a fraction of ionized free charges that will be the source of screening.
As commonly done, one could take the screening effects due to these free
charges in the medium into account by replacing the bare Coulomb potential
between charges of different atoms by the screened potential obtained in the
usual Debye–Hückel or RPA mean field theory. Since the latter decays expo-
nentially at large distance, the effective attractive interaction between two

11 Because of rotation invariance, (118) and (119) could be written in terms of any
Cartesian component of y.
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atoms would also be exponential. This reasoning predicts that the 1/r6 van
der Waals forces should disappear as soon as there is a fraction of thermally
ionized charges, a false conclusion. What really happens for the quantum
gas becomes particularly clear when we use the Feynman–Kac path repre-
sentation of the correlations presented in Section 3.3 (here we consider the
pure electrostatic model without the photon field). In this formalism point
particles appear as random charged filaments carrying mutipoles moments.
Then the clue is given by the decomposition (108) of the Coulomb interac-
tion between filaments into a classical part (109) and the proper quantum
fluctuation part Wc (110) not reducible to any kind of classical behaviour.
As (112) shows Wc decays as a dipolar interaction r−3 and is the source of an
algebraic decay of the correlations between atoms. In fact the bulk particle
correlations decay as r−6 (because of rotation invariance, Wc does not con-
tribute and the dominant part of the decay at long distance is determined
by W 2

c ∼ r−6 ) (see [37] and [18] for a review and references therein).
It is interesting to discuss the status of the van der Waals forces in the

Saha regime when atoms and free ionized charges are in thermal equilibrium
(equilibrium ionization phases). Such phases occur provided that the tem-
perature is sufficiently low to prevent full ionization and the density is low
enough to have non overlapping atomic wave functions. For instance in the
partially recombined hydrogen plasma the densities of ionized electrons (e)
protons (p) and the density of hydrogen atoms in their ground states (at)
are characterized by the expression that they would have for ideal gases

ρid
e = ρid

p =
2

(2πλeλp)3/2
eβµ ≡ ρid

f (122)

with λe, λp the thermal wave lengths of the electron and of the proton.
These densities have to be equal because of neutrality and are denoted ρid

f ,
the density of free charges. The ideal atomic density is

ρid
at =

4

(2πλ2
at)

3/2
e−β(E0−2µ) =

[

2πλ2
]3/2

[

ρid
f

]2
e−βE0 (123)

with E0 < 0 the ground state energy of the hydrogen atom and λ the thermal
wavelength associated with its reduced mass. The chemical potential µ
determines the total average particle number. If one sets

µ = µ(β) = E0 + kBT lnw (124)

with w a fixed parameter 0 < w < ∞, one sees on (122)–(123) that the
ideal densities of protons and electrons become of the same order as the
atomic density. The system behaves as a mixture of protons, electrons and
hydrogen atoms in their ground state. This describes the Saha regime of
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equilibrium ionization, with w fixing the relative proportion of free charges
and atoms,

ρid
at = w

(

me +mp√
memp

)3/2

ρid
e . (125)

We report here without proofs the main result of the work [21]. We

consider the proton–proton correlation ρ
(2)T
pp (r) at fixed temperature and

total density ρ (r is the distance between the two protons). As said before

in the fluid phase and for all positive values of T and ρ, ρ
(2)T
pp (r) behaves

asymptotically at large distance as [37]

ρ(2)T
pp (r) ∼

r→∞
−β−1C(T, ρ)

r6
. (126)

We show that in the ionization equilibrium regime the coefficient C(T, ρ)
takes the form of a sum of three contributions

C(T, ρ) =

{

[

ρid
f

]2
C f−f(T ) + ρid

f ρ
id
atC

f−at(T ) +
[

ρid
at

]2
Cat−at(T )

}

×
(

1 + O(e−c/kBT )
)

(127)

giving rise to three large-distance effective potentials

uf−f(r) = −C
f−f

r6
, uf−at(r) = −C

f−at

r6
, uat−at(r) = −C

at−at

r6
. (128)

The three terms reflect the fact that, in the limit, a proton can be thought
of as either being free or belonging to a hydrogen atom. At lowest order in
density the coefficient is quadratic in the ideal free and atomic densities up to
exponentially small terms O(exp(−c/kBT )), c > 0, that include all higher-
density effects. The factors C f−f(T ), C f−at(T ) and Cat−at(T ) represent the
effective interaction strengths between two free protons, a free proton and
an atom, and two atoms. They are still temperature dependent and have
the asymptotic values as T → 0

C f−f(T ) =
~

4e4

960 (kBT )3

(

1

me
+

1

mp

)2 [

1 + O
(

exp

(

− δ

kBT

))]

, (129)

C f−at(T ) =
~

2

12 kBT

(

1

mp
+

1

me

)

∑

m6=0

3
∑

µ=1

∣

∣

∣
〈ψm|Df−at

µ |ψ0〉
∣

∣

∣

2

×
[

1

Em −E0
− 6kBT

(Em−E0)2
+

12(kBT )2

(Em −E0)3
+O

(

exp

(

− δ

kBT

))]

, (130)
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Cat−at(T ) =
∑

m6=0,n6=0

|〈ψ(a)
0 ⊗ ψ

(b)
0 |Dat−at|ψ(a)

m ⊗ ψ(b)
n 〉|2

×
[

1

Em+En−2E0
− 2kBT

(Em−E0)(En−E0)
+O

(

exp

(

− δ

kBT

))]

. (131)

The results are the same for the electron-proton or electron–electron correla-

tions: in the atomic limit ρ
(2)T
pe (r) and ρ

(2)T
ee (r) behave as ρ

(2)T
pp (r), with the

same amplitude C(T, ρ). The temperature power-law corrections in (130)
and (131) come from partial screening due to the presence of free electrons
and protons. The exponentially decaying terms O(exp(−δ/kBT )) include
the contributions of the excited states with 0 < δ < E1 −E0.

The first noticeable point is that there is a van der Waals type effective
potential uf−f(r) between unbound charges: quantum screening reduces the
bare Coulomb potential r−1 to r−6 but not further because quantum charges
together with their screening clouds behave as fluctuating dipoles. uf−f(r)
has the remarkable property to be independent of the charge species (proton
or electron). Thus it is attractive irrespective of the charge signs.

The potential uf−at(r) with coefficient (130) results from the coupling
between free-charge and atomic-dipole fluctuations. The quantity D f−at

µ

refers to the interaction between the atomic dipole ey at the mass-center
position rb with a reference dipole eûµ located at ra. It is defined as in
(115) by

Df−at
µ = e2[û(a)

µ · y(b) − 3(û(a)
µ · r̂)(y(b) · r̂)] , (132)

where for µ = 1, 2, 3 ûµ is a unit vector along the µ-axis. In vacuum the
charge dipole potential decays as r−4. More precisely if a charge e is placed
at large distance from an hydrogen atom in its ground state in vacuum (Stark
effect due to a localized charge) one finds

U f−at(r) ∼ −C0

r4
, C0 =

∑

m6=0

|〈ψm|Df−at
0 |ψ0〉|2

Em −E0
> 0 . (133)

In the medium the decay changes from r−4 to r−6, becoming again of dipolar
type. Finally the traditional van der Waals contribution (131) reduces to its
vacuum value CW as T → 0.

Concerning the temperature dependence of the various amplitudes, a
comparison with the van der Waals coefficient CW = O(1) gives

C f−f(T ) ∼
( |E0|
kBT

)3

CW, C f−at(T ) ∼ |E0|
kBT

CW . (134)
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The larger size of the coefficients involving free charges has to be traced
back to the larger size of their dipole fluctuations (of the order of λ2 ∼ T−1

compared to atomic ones proportional to the square Bohr radius ∼ a2
B). As a

consequence, in the ionization equilibrium phase where ρid
f and ρid

at are of the
same order, the large-distance behaviour of the particle–particle correlation
is dominated by the effective interaction between free charges. In the purely
atomic phase (ρid

f exponentially smaller than ρid
at), standard van der Waals

forces are the only relevant interactions.
We emphasize that these results are exact: they are derived in [21] by

means of a renormalized virial expansion for the quantum Coulomb gas
taking into account all the different effects stemming from the Coulomb
potential at various scales (atomic binding, collective screening, polarization)
in a systematic and coherent way.

4.3. Retarded van der Waals forces in vacuum

In the London calculation of van der Waals forces only the electrostatic
part of the interaction (the Coulomb potential) has been taken into account.
In fact one has to put at work the full electromagnetic interaction including
the retardation effect due to the finiteness of the velocity of light. For this
one has to add the transverse part of the field by writing the coupling of a
charge to the vector potential as usual

1

2m

(

p − e
cA(r)

)2
=

|p|2
2m

+

[

− e

mc
p · A(r) +

e2

2mc2
|A(r)|2

]

. (135)

Casimir and Polder [1] treated the second term of the r.h.s. by the standard
methods of perturbation theory, and were obliged to go up to the fourth
order since the result is expected to be proportional to the fourth power e4

of the electronic charge. In terms of elementary processes it corresponds
to Feynman diagrams where two photons are exchanged between the two
atomic electrons. In order to interact with the field and return to its ground
state each electron must necessarily emit or absorb two photons. After an
elaborate calculation, Casimir and Polder found

V (r) ∼ −αAαB
23~c

4πr7
, (136)

where αA, αB are the static polarizabilities of the atoms (each of them pro-
portional to e2).

Following [4], Sec. 3.11, we shall present another derivation, inspired
from Casimir’s second paper on the subject [3] which gives more physical
insight. Here van der Waals forces at zero temperature are also seen as
arising from the vacuum fluctuations of the field. The model is as follows:
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• One treats the atom or colloidal particle at rA as globally charac-
terized by a classical electric dipole νA(t) = ν̂AνA(t) of orientation
ν̂A, |ν̂A| = 1, size νA(t), and by a frequency dependent electric sus-
ceptibility αA(ω). The second atom at rB is described likewise (the
microscopic electronic structure of these particles are not spelled out).

• These dipoles are fluctuating. They are induced as linear response of
the atoms to the vacuum fluctuations of a free quantum electromag-
netic field.

• Each dipole acts as a source of a radiation field. The total field is
considered to be the sum of a free quantum field (vacuum field ) and
the field due to the sources.

• The energy of the two atoms at distance r = |rA −rB| is calculated as
the energy of the second dipole νB at rB in the field due to the first
dipole νA at rA plus the vacuum field.

The free electric field with periodic boundary conditions is obtained from
(88)

E0(r, t) = −1

c

∂

∂t
A0(r, t) =

∑

k,λ

[E+
0,k,λ(r)eiωkt + E−

0,k,λ(r)e−iωkt] ,

E+
0,k,λ(r, t) = −i

(

2π~ωk

R3
a∗k,λ(r, t)ek(λ)e−ik·r

)

= (E−
0,k,λ(r, t))∗, (137)

where E+ (E−) denotes the positive (negative) frequency amplitudes of the
field. The induced dipole of atom at rA by the k mode of this field at linear
order is

νA,k,λ(t) = ν+
A,k,λe

iωkt + ν−
A,k,λe

−iωkt ,

ν+
A,k,λ = αA(ωk)E+

0,k,λ(rA) = (ν−
A,k,λ)∗ (138)

so that ν+
A,k,λe

iωkt represents an oscillating dipole of frequency ωk, orienta-

tion ν̂A = ek(λ) and strength ν+
A,k,λ = αA(ωk)E+

0,k,λ(rA).
At this point we can recall the classical formula for the positive frequency

amplitude of the electric field at r radiated by an oscillating dipole ν(t)
located at the origin, [38], Sec. 9.2,

E(r) = Efar(r) + Enear(r), r = |r| ,

Efar
k,λ(r) = −[(r̂ ∧ ν) ∧ r̂]k3 e

−ikr

r
,

Enear
k,λ (r) = [3(ν · r̂)r̂ − ν]k3

(

1

(kr)3
+

i

(kr)2

)

e−ikr . (139)
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This formula is valid when the typical wave length λ = c/2πω of the radiated
wave is much larger than the atom size12. For r → ∞, Efar correspond to a
spherical outgoing wave whereas for r small Enear reduces to the electrostatic
dipolar field.

Calling EA(r) the field (139) due to the dipole (138) located at rA, the
total field at r is then

E(r) = E0(r) + EA(r) . (140)

This field in turn induces a dipole

ν+
B,k,λ = αB(ωk)E+

k,λ(rB) (141)

on atom B at rB . The energy of the dipole pair is obtained in bringing
the second atom B from infinity to rB in the field (140), keeping the first
atom fixed at rA. This energy is − 1

2νB · E(rB), r = |rA − rB |, see [38],

Sec. 4.7 13, so that with (141) the contribution to the energy of the k, λ mode
is −1

2αB(ωk)|Ek,λ(rB)|2. Finally, to obtain the total average interaction
energy V (r), we have to sum over all modes and take the mean value in the
vacuum state |0〉 of the photon field

V (r) = −1

2

∑

k,λ

αB(ωk)〈0| |Ek,λ(rB)|2 |0〉 . (142)

Since the vacuum |0〉 is invariant under the free field time evolution, V (r)
is time independent. In fact, we have already set t = 0 along its derivation.

Keeping only the terms that are bilinear in the polarizabilities gives 14,

V (r) = −1

2

∑

k,λ

αB(ωk)〈0|[E0(rB) · EA(rB) + EA(rB) · E0(rB)]|0〉 . (143)

From now on to find the r dependence of V (r) is a matter of calculation
(see [4]). The explicit formulae for the fields are introduced from (137),
(138) and (139). Since the expression to be averaged is quadratic in the
photon creation and annihilation operators, the vacuum expectation is easily

12 In our situation, the dipole is an operator proportional to a∗

k,λ
. Since the Maxwell

equations governing the quantum field (in the Heisenberg picture) depend linearly on
the amplitude of the source, the solution for the radiated field is the same as in the
classical case.

13 The factor 1/2 is due to the fact that the dipole νB is induced and not permanent.
14 To keep the term |EA(rB)|2 quadratic in αA(ωk) would not be consistent with the

linear response assumption.
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computed from 〈0|ak,λa
∗
k,λ|0〉 = 1. One finds in the infinite volume limit and

performing the polarization sums

V (r) = − ~

4π2
Re







∞
∫

0

dk k5ωkαA(ωk)αB(ωk)e−ikr

∫

dΩ
k̂
eik·r

×
[

1+(k̂ · r̂)2
] 1

kr
+
[

1 − 3(k̂ · r̂)2
]

(

1

(kr)3
+

i

(kr)2

)}

. (144)

The angular integration can be performed with the final result ( ωk = ck)

V (r) = − ~

πc6
Re







∞
∫

0

dω ω6 αA(ω)αB(ω)D
(

ωr
c

)







,

D(x) = e2ix

(

− i

x2
+

2

x3
+

5i

x4
− 6

x5
− 3i

x6

)

. (145)

In order to find the asymptotic behaviour of V (r) as r → ∞ one needs to
specify the ω dependence of the polarizability. To keep the discussion simple
consider a single term of the expression (118)

α(ω) ∼ 2e4
(En −E0)|〈ψ0|y3|ψn〉|2

(En −E0)2 − (~ω)2
(146)

assuming that a particular atomic transition between the two states 0, n
gives a dominant contribution to the polarizability. One notes that α(ω)
has no poles in the complex ω plane and its value is real on the imaginary
axis ω = iu. Then by a π/2 rotation of the integration line (0,∞) we can
carry the integration in (145) along the imaginary axis ω = iu giving15

V (r) =
~

πc6
Re







i

∞
∫

0

duu6 αA(iu)αB(iu)D
(

iur
c

)







. (147)

• Long distance

Since the function D
(

iur
c

)

has a factor exp(−ur
c ) it is clear that only

the static susceptiblities α = α(0) will contribute as soon as r �
~c/|Em −E0| . Indeed changing the variable ur

c = v one has

V (r) ∼ ~c

πr7
αAαBRe







i

∞
∫

0

dvv6D(iv)







= −23 ~c

4π r7
αAαB , r → ∞

(148)
which is the result of the Casimir and Polder calculation.

15 The large quarter of circle closing the positive quadrant does not contribute.
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• Short distance

For small r the dominant contribution comes from the x−6 term in
(145). This gives in (147)

V (r) ∼ − 3~

πr6

∞
∫

0

duαA(iu)αB(iu)e−
2ur
c

∼ − 3~

πr6

∞
∫

0

duαA(iu)αB(iu) . (149)

The last line holds when r � ~c/|Em − E0|. This is London’s result
(121): it can be formally obtained from (147) by taking the static
limit c → ∞ where only the contribution of the near field term in
(139) survives.

4.4. Forces between dielectric bodies

This topic is the subject of a very large literature and we will only sum-
marize some main lines of the theory.

4.4.1. Dilute dielectric bodies at zero temperature

One can easily obtain an information on the type of interaction between
two dielectric slabs containing polarizable atoms at very low density. If
correlations between atoms are ignored one can simply sum all the van der
Waals potentials between atoms pairs. Let ρA, ρB be the atom densities
in the two slabs and fore sake of generality, assume that the pair potential
behaves as − B

rη at large distance for some η > 4, B > 0. Then the total
potential energy per unit surface is

u(d) ∼ − lim
L→∞

BρAρB

L2

∫

ΛA

dr

∫

ΛB

dr′ 1

|r − r′|η

= −BρAρB

0
∫

−∞

dx

∞
∫

d

dx′
∫

dy
1

((x− x′)2 + y2)η/2

= −BρAρB
2π

η − 2

0
∫

−∞

dx

∞
∫

d

dx′
1

|x− x′|η−2

= − 2πBρAρB

(η − 2)(η − 3)(η − 4)

1

dη−4
. (150)
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The force is f(d) = − ∂u(d)
∂d and we find from (116) the short distance (non

retarded) behaviour (η = 6)

f(d) ∼ −πCWρAρB

6

1

d3
(151)

and from (148) the long distance (retarded) behaviour (η = 7)

f(d) ∼ −23~cρAαAρBαB

40d4
. (152)

Whereas the powers of decay laws are correct, it was experimentally rec-
ognized in the early 1950s that the amplitudes found from (151) and (152)
were not. This is not astonishing since this calculation is performed at low-
est order in the atomic densities disregarding all correlations between atoms.
This motivated Lifshitz in 1956, [39] and [40] Sec. 90 (and many authors af-
ter him) to develop a theory taking into account the physical properties of
the dielectric by means of its frequency dependent dielectric function ε(k, ω).
This theory is not fully microscopic in the sense that the effects of the micro-
scopic degrees of freedom inside the dielectric are embodied in the dielectric
function but otherwise not explicitly described, and the Maxwell fields are
subjected to the macroscopic boundary conditions at the surfaces of the di-
electrics. Some insights on this theory and related approaches are given in
the Section 4.5.2. Let us just quote here the specification of the Lifshitz
formula to the short distance case corresponding to (151) 16

f(d) ∼ − ~

16π2d3

∞
∫

0

ds

∞
∫

0

du
s2

∆A(iu)∆B(iu)es − 1

∆A(ω) =
εA(ω) + 1

εA(ω) − 1
, ∆B(ω) =

εB(ω) + 1

εB(ω) − 1
. (153)

Higher order density contributions are now included in the dielectric func-
tions. It is interesting to recover (151) by expanding the dielectric function
to the lowest order in density

ε(ω) ∼ 1 + 4πρα(ω), ρ→ 0 , (154)

16 Here the dielectric functions ε(k, ω) = ε(ω) are assumed to be independent of k and
magnetic polarization effects are not considered.
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where α(ω) is the electric susceptibility. Then ∆
−1(ω) ∼ 2πρα(ω) and

f(d) ∼ −~ρAρB

4d3

∞
∫

0

dss2e−s

∞
∫

0

duαA(iu)αB(iu)

= −~ρAρB

2d3

∞
∫

0

duαA(iu)αB(iu) . (155)

This is precisely the expression (151) obtained in the elementary additive
theory. Similarly, taking the appropriate form of Lifshitz formula for long
distance one can show that it reduces to (152) at low density, as it should.

It is remarkable that by the observation of the force (155) at the macro-
scopic level one can infer in principle by comparison to (151) the exact form
of the microscopic van der Waals potential −CW r−6 for a single atom pair.

4.4.2. Dielectric bodies at non zero temperature

The Lifshitz theory can be worked out at finite temperature. In the high
temperature-long distance regime characterized by α→ 0 (21) one finds

f(d) ∼ − 1

16πβd3

∞
∫

0

ds
s2

∆A∆Bes − 1

= − 1

8πd3

∞
∑

n=1

(∆A∆B)n

n3
,

∆A =
εA + 1

εA − 1
, ∆B =

εB + 1

εB − 1
, (156)

where now εA = εA(ω = 0), εB = εB(ω = 0) are the static dielectric
constants. In the perfect conductor limit of electrostatics εA, εB → ∞, ∆A =

∆B = 1 one recovers from (156) the classical Casimir effect f(d) ∼ − ζ(3)
8πβd3

derived in Section 3 on a microscopic basis. We emphasize that Lifshitz
has obtained the formula (156) by performing the large T asymptotics first,
keeping the dielectric functions finite. The perfect conductor limit ε → ∞
is taken in a second step. Schwinger et al. [41] have proposed to take the
limits in the reverse order, yielding the twice larger high-temperature force
formula of Casimir (39). In view of our result of the microscopic analysis
of Section 3, we see now that the Lifshitz procedure is the correct one to
recover the high-temperature regime for conductors.
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4.5. Theories

All the theories are based on macroscopic Maxwell equations for the
quantized electromagnetic fields E,D, B,H in a dielectric medium. The
system carries no net charge density and magnetic properties are ignored,
so H = B. For oscillating fields E(x, t) = E(x, ω)e−iωt, B(x, t) =
B(x, ω)e−iωt, D(x, t) = D(x, ω)e−iωt, the equations for the frequency de-
pendent amplitudes are

∇ · D = 0 , ∇∧ E = i
ω

c
B , (157)

∇ · B = 0 , ∇∧ B = −iω
c
D . (158)

One assumes that D is related to E by the linear and local relation

D(x, ω) = ε(x, ω)E(x, ω) . (159)

The dielectric function ε(x, ω) is piecewise constant in the bodies. From
(157), (158) and (159) results the Helmoltz equation

∇2E(x, ω) = −ω
2

c2
ε(ω)E(x, ω), ∇ · E(x, ω) = 0 (160)

valid in each dielectric domain characterized by the appropriate function
ε(ω). The eigenmodes are determined by solving (160) under the usual
boundary conditions for dielectrics:

εi(ω)Ei,norm(ω) = εj(ω)Ej,norm(ω) (161)

for the normal component of the electric field at the interface between the
domains i and j and all the other field components are continuous.

4.5.1. Zero point energy method (Casimir’s method)

This approach is the simplest and follows Casimir’s original idea that the
force is generated by the modification of the zero point energy due to the
presence of the dielectric bodies; it is presented in [4], Sec. 7.2, and in [10].
Here ε(ω) is assumed to be real which amounts to neglect the absorbtion of
electromagnetic energy in the media. The new eigen frequencies are obtained
from the zeros of the secular equation, say R(ω) = 0, determined by the
Helmoltz eigenvalue problem (160), (161); they lie on the positive real axis
of the complex ω-plane. They are generically noted {ωn}n and repeated as
many times as required by their multiplicity. For two slabs at distance d,
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the eigenfrequencies ωn = ωn(d) depend on d and on the dielectric functions
εA(ω), εB(ω). By the residu theorem the total energy can be written as

E(d) =
∑

n

1

2
~ωn(d) =

1

2iπ

∫

C

dω

[

1

2
~ω

]

d

dω
lnR(ω) , (162)

where C is the contour consisting of the imaginary axis of the complex
ω-plane closed by a large semicircle in the right half plane enclosing the
eigenvalue. Then the force is defined by F (d) = − ∂

∂dE(d). Of course the
non trivial calculation (which we do not present here) is that of R(ω) for
given geometries and dielectric functions, as well as the discussion of various
points concerning the convergence of integrals. For the slab geometry this
leads to the same general formula as that of Lifshitz. Some special cases of
it have been given above.

When the temperature is different from zero, one introduces the free
energy formula for each oscillating mode as in (22) (including the zero point
energy)

f(ω) =
1

2
~ω − β−1 ln(1 − e−β~ω) = β−1

[

2 sinh

(

β
~

ω/2

)]

(163)

and the total free energy Φ(d) is given by (162) with [ 1
2~ω] replaced by f(ω).

Notice that the calculation of the frequency spectrum is entirely classical and
Planck’s constant is introduced through (162) (apart from a dependence that
can occur in an explicit expression for the dielectric functions ε(ω)).

4.5.2. Fluctuating fields (Lifshitz method)

The Lifshitz theory [39, 40] is formulated in the framework of stochastic
electromagnetic fields. In the basic relation D(x, ω) = E(x, ω)+4πP (x, ω),

the polarization of matter P (x, ω) = P (x, ω) + K(x,ω)
4π is supposed to be

the sum of two contributions, a deterministic part P and a random part K
4π

which has zero average: K
4π = 0. The random part embodies all the quantum

fluctuations effects arising from matter and fields. The relation (159) still
holds for the averaged field

D(x, ω) = ε(x, ω)E(x, ω) , (164)

where the dielectric function is the same as before, so that for the fluctuating
field (159) is replaced by

D(x, ω) = ε(x, ω)E(x, ω) + K(x, ω) . (165)
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Then the macroscopic Maxwell equations in the form (157), (158) are sup-
posed to hold only for the average fields E and B. Taking into account
the random polarization in (165), the actual random electric field generated
from K obeys the equations with source

∇∧ E(x, ω) = i
ω

c
B(x, ω) ,

∇∧ B(x, ω) = −iω
c
D = −iω

c
ε(ω)E(x, ω) − i

ω

c
K(x, ω) . (166)

The spirit is very much the same as in the Langevin theory for the Brown-
ian motion where systematic effects of the medium (deterministic force and
friction) are separated from the stochastic force (having zero average) due
to microscopic collisions. As in the Brownian motion theory one has to de-
fine the correlations of the random force, due here to the zero point field
fluctuations. They are taken of the form

Ki(x, ω)Kj(x′, ω′) = 2~ Im[ε(ω)]δi,jδ(ω + ω′)δ(x − x′) . (167)

Different Cartesian coordinates and frequency components of K are not
correlated and the spatial correlations have zero range. This is equivalent
to the white noise assumption for the stochastic force of Brownian motion
based on the different time scales for microscopic collisions and macroscopic
motion. Here the spatial scales are the intermolecular distances compared
to the range of variation of the macroscopic Maxwell fields. The inhomo-

geneous Maxwell equations (166) are solved with the dielectric boundary
conditions providing the fields E and B in terms of the random polarization
K (together with the dielectric functions and the geometry of the bodies).
For two slabs at distance d, the force per unit area on the first plate is given
by the xx component of the Maxwell stress tensor Txx(x, ω)|x=0 integrated
over all frequencies and averaged on the random polarization according to
(167)

f(d) = −
∫

dωTxx(x, ω)|x=0 , (168)

where

Txx =
1

4π

[

E2
x +B2

x − 1

2
(|E|2 + |B|2)

]

. (169)

When the temperature is different from zero, (167) is replaced by the state-
ment of the fluctuation-dissipation theorem (taking into account quantum
and thermal fluctuations)
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Ki(x, ω)Kj(x′, ω′) = 2~ Im[ε(ω)]δi,jδ(ω + ω′)δ(x − x′) coth

(

β~ω

2

)

(170)

which reduces to (167) as T → 0. This is the way ~ and T enter in the
theory.

4.5.3. Source theory (Schwinger’s method)

J. Schwinger, together with a number of physicists, were dissatisfied
by derivations of the Casimir force relying on the mechanism of vacuum
fluctuations. He proposed to derive the results of the Lifshitz theory from
a “more sound” basis where electromagnetic vacuum fluctuations are not
invoked [41]. The description (following [4], Secs. 7.4, 7.5) starts now at a
microscopic level by noting that a dielectric medium is characterized by a
microscopic polarization density P̂ (r, t) =

∑

i νi(t)δ(r − ri), where ν i(t)
are the induced dipole moments of atoms located at positions r i. These
dipoles act as a source of a (microscopic) electric field obtained by solving
the Maxwell equations yielding

Êµ
s (r, t) = 8π

∫

dr′dt′Gµσ(r, t|r′, t′)P̂ σ(r′, t′) , (171)

where G is a Green function. The total electric field Ê0 + Ês is the sum of
a free quantum field Ê0 plus the field Ês due to the dipole and the total
energy

U = −1

2

∫

dr〈P̂ (r, t) · Ê(r, t)〉

= −1

2

∫

dr〈(Ê+
(r, t) · P̂ (r, t) + P̂ (r, t) · Ê−

(r, t))〉 (172)

is understood as the average energy of these dipoles in the field that they

themselves produce. Here Ê
+
(r, t), Ê

−
(r, t) denote the creation and anni-

hilation parts of the field (see (137)). The average is taken on the vacuum
of photons and on the state of the atomic variables17. The order of operator
in (172) is in principle irrelevant since matter and field operators refer to
independent degrees of freedom and thus have zero equal time commutators.
The choice of order is however not innocent in subsequent calculations. Here
the choice is normal order, placing the annihilators to the right of the cre-
ators. It is then evident that there is no contribution of the vacuum field

17 In a stationary state U will be time independent.
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in (172) since akλ|0 >= 0, < 0|a∗kλ = 0. Then inserting the positive and
negative frequency parts of (171) in (172) gives

U = −8πRe

{
∫

dr

∫

dr′

∫

dt′G+,µσ(r, t|r′, t′)〈P̂ µ(r, t)P̂ σ(r′, t′)〉
}

(173)

with G+ the positive frequency part of the Green function.
To continue the calculation one has to know the atomic dipole correlation

function 〈P̂ µ(r, t)P̂ σ(r′, t′)〉. For this one makes the simplifying assumption
that atoms form perfect gases of uncorrelated identical dipoles. To obtain
the force one must further adapt the formula (173) to the two slab system
and evaluate the Green function in this geometry. Within this scheme one
eventually arrives at the Lifshitz main formula without any intervention of
vacuum fluctuations.

Other types of ordering can be used in (172), e.g. symmetrical ordering
where the vector potential is not split in positive and negative frequency
parts along the calculation. In that case the Lifshitz force can be seen to
arise exclusively from vacuum fluctuations 18. The final form of the Lifshitz
force is, of course, independent of the ordering convention, and can therefore
receive different interpretations according to different choices and to the taste
of the readers.

5. Casimir effect in critical phenomena

5.1. Introduction

It is well known that at a critical point or in a phase with broken continu-
ous symmetry, a statistical mechanical system in its bulk phase exhibits long
range correlations (decaying algebraically rather than exponentially fast).
This can be interpreted as generating a long range effective potential in the
system. If this system is now confined to a slab of thickness d (e.g. a liq-
uid film), then the development of these long range fluctuations as d → ∞
may be the source of a force of Casimir type between the faces of the slab
(film). More precisely the effect is reflected in the behaviour of the finite
size corrections to the thermodynamical potential in the confined geometry.

Let φL(d, T ) be the thermodynamical potential for the slab of surface
Lν−1 and thickness d in dimension ν and

ϕ(d, T ) = lim
L→∞

1

Lν−1
φL(d, T ) (174)

18 As an example, the computation of the retarded van der Waals forces from vacuum
fluctuations in Section 4.3 involves the symmetrical order, see (142).
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the corresponding thermodynamical potential by unit surface. The finite
size scaling analysis in the critical regime shows that its large d asymptotics
has usually the form

ϕ(d, T ) = dϕbulk(T ) + ϕsurf(T ) +
∆

(T )

dν−1
+ · · · . (175)

Here ϕbulk(T ) is the potential density in thermodynamic limit and ϕsurf(T )
is the surface potential correction. The coefficient ∆(T ) in the third term in
(175) is called the Casimir amplitude. The Casimir force between the slab
faces is defined as

f(d) = − ∂d[ϕ(d, T ) − dϕbulk(d, T )] = (ν − 1)
∆(T )

dν
+ . . . . (176)

At a critical point or in phases with long-range correlations generated by
the broken symmetry, the value of ∆(T ) is expected to be non-zero and
universal, depending only on the system and the boundary condition uni-
versality classes. Out of the critical regime the finite size corrections are
expected to be exponentially small, thus the Casimir amplitude ∆(T ) = 0.
The tractable quantum models with phase transition where these ideas can
be checked are not so numerous. A candidate, the free Bose gas that shows
the phenomenon of Bose condensation, will serve as an illustration. For a
thorough discussion of the subject, see the books [12, 13].

5.2. The free Bose gas

Here we report on a joint work [22] with Zagrebnov. We consider a
free Bose gas in a slab of thickness d with faces of surface L2 and periodic
boundary conditions in all directions. As it is well known from the standard
treatment of the free Bose gas, the finite volume grand canonical pressure
ΦL(d, T, µ) at temperature T and chemical potential µ < 0 is

ΦL(d, T, µ) =
1

β

∑

k

ln[1 − exp(−β(ε(k) − µ))] (177)

with the wave numbers and energy given by

kx =
2πnx

d
, ky =

2πny

L
, kz =

2πnz

L
, nx, ny, nz ∈ Z

εk =
~

2m

[

(

2πnx

d

)2

+

(

2πny

L

)2

+

(

2πnz

L

)2
]

. (178)
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The potential per unit surface is then

ϕ(d, T, µ) = lim
L→∞

1

L2
ΦL(d, T, µ)

=
1

(2π)2β

∫

dq

∞
∑

n=−∞

ln

[

1−exp

(

−βε(q)−2π2λ2
(n

d

)2
+βµ

)]

,

(179)

where q = (qy, qz), q = |q|, is a two dimensional wave vector, βε(q) = λ2q2

2

and λ = ~
√

β/m the thermal wave length. Writing in radial coordinates
∫

dq · · · = 2π
∞
∫

0

dq q · · · and performing an integration by parts one can also

write

ϕ(d, T, µ) = − 1

(2π)2β

∞
∑

n=−∞

∫

dq
ε(q)

exp
[

βε(q) + 2π2λ2
(

n
d

)2 − βµ
]

− 1

= − 1

2πβλ2

∞
∑

n=−∞

∞
∫

0

dv v
1

exp
[

v + 2π2λ2
(

n
d

)2 − βµ
]

− 1
, (180)

≡
∞
∑

n=−∞

ψ(d−1n) , (181)

where we have introduced the dimensionless variable v = βε(q) = λ2q2

2 and
the function

ψ(u) = − 1

2πβλ2

∞
∫

0

dv v
1

exp [v + 2π2λ2u2 − βµ] − 1
. (182)

5.2.1. The normal phase

The regime µ < 0 characterizes the normal phase (absence of Bose con-
densation). In this regime, the function ψ(u) is infinitely differentiable
so that we can represent the sum by the Euler–McLaurin formula. Since
ψ(u) = ψ(−u) and using (18) one has

∞
∑

n=−∞

ψ(d−1n) = 2

∞
∑

n=0

ψ(d−1n) + ψ(0) = d 2

∞
∫

0

duψ(u)

−2

[

B2

2!d
ψ(1)(0) +

B4

4!d3
ψ(3)(0) +

B6

6!d5
ψ(5)(0) + . . .

]

.

(183)
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Coming back to the definition (182) of ψ(u), one sees that the first term
of the large d expansion (183) equals −d pbulk(T, µ) where pbulk(T, µ) =
− limd→∞ limL→∞

1
L2d

ΦL(d, T, µ) is nothing else than the bulk pressure, as
it should be. Clearly all odd derivatives of the even function ψ(u) vanish
at the origin, implying that finite size corrections to ϕ(d, T, µ) vanish faster
than any inverse power of d,

ϕ(d, T, µ) = −dpbulk(T, µ) + O
(

1

d r

)

for all r > 0, µ < 0 . (184)

One therefore concludes that ∆(T, µ) = 0, µ < 0 in the normal phase (in the
particular case of periodic boundary conditions, there are no surface terms).

5.2.2. The condensed phase

Bose condensation occurs in the free gas when the chemical potential
is set equal to zero. Then the situation is very different: when µ = 0
derivatives of ψ(u) diverge at the origin and one needs a different method.
We first expand for µ < 0 the fraction in (180) (the Bose distribution) in
power of the activity eβµ and perform the v-integral. This yields

ϕ(d, T, µ) = − 1

2πβλ2

∞
∑

r=1

eβµr

r2

∞
∑

n=−∞

exp

(

−2π2λ2
(n

d

)2
r

)

. (185)

The n-sum can be dealt with a version of the Jacobi identity stating

∞
∑

n=−∞

e−πan2

=
1√
a

(

1 + 2
∞
∑

k=1

e−
πk2

a

)

, a > 0 (186)

so that, setting a = 2πλ2r
d2 , we obtain the following exact representation of

the slab potential

ϕ(d, T, µ) = − d

β(
√

2πλ)3

∞
∑

r=1

[

eβµr

r5/2
+ 2

∞
∑

k=1

exp

(

−k
2d2

2λ2r

)

]

= −d pbulk(T, µ) − 2d

β(
√

2πλ)3

∞
∑

k=1

∞
∑

r=1

eβµr

r5/2
exp

(

−k
2d2

2λ2r

)

(187)

since the first term yields the familiar low fugacity expansion of the bulk
pressure. It can be checked that when µ < 0 the finite size correction term
is O(exp (−√−µd/2)), thus giving a precise exponentially small estimate of
the remainder obtained from the Euler–McLaurin formula (184).
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For µ = 0 the r-series in (187) is convergent and we can write it in the
form

1

d3

[

1

d2

∞
∑

r=1

1

(r/d2)5/2
exp

(

− k2

2λ2

d2

r

)

]

∼ 1

d2

∞
∫

0

dx
1

x5/2
exp

(

− k2

2λ2x

)

=
1

d3

(

2λ2

k2

)3/2 ∞
∫

0

dx
1

x5/2
exp

(

−1

x

)

, d→ ∞ . (188)

The value of the integral is
√
π/2 and when this is inserted in (187), one

obtains the final result

ϕ(d, T, µ) = −d pbulk(T, µ) − ζ(3)

πβ d2
+ O

(

1

d3

)

(189)

which yields a non zero Casimir amplitude ∆(T, µ = 0) = − ζ(3)
πβ according

to the general definition (175).
One can impose different boundary conditions on the faces of the slab,

e.g. Dirichlet, k = π(n+1)
d , or Neumann, k = πn

d , n = 0, 1, 2, . . . and find

out by the same methods the value − ζ(3)
8πβ for the Casimir coefficient in these

cases (there are additional surface term contributions which are not present
when periodic boundary conditions are used).

Now few remarks and comments are in order.

The grand potential of a free Fermion gas does not have a Casimir term
for any value of the chemical potential. Indeed replacing the Bose by the
Fermi distribution in (181) gives a corresponding ψ(u) function (182) that
is infinitely differentiable at u = 0 for all µ. Since the function and all
its derivatives vanish at u = 0 the Euler–MacLaurin formula always yields
corrections smaller than any inverse power of d.

We note that the Casimir terms found in (189) are classical and uni-
versal, namely they do not depend on the Planck constant and the particle
mass. In fact, for the free Bose-gas, it follows from a simple dimensional
analysis that such a term is necessarily of the form C kBT/d

2 where C is a
numerical constant. It is present at all positive temperature provided that
the density ρ of the gas is higher than the critical density ρc(β). Accord-
ing to common wisdom, the Casimir force is due to Goldstone modes (i.e.
low energy excitations) that will occur in the bulk limit when a continuous
symmetry is spontaneously broken. In the grand canonical free Bose-gas it
is explicitly seen that the excitations ε(k) − µ become gapless when µ = 0.
It is known that this generates long-range particle–particle correlations

ρ(2)(r1, r2) − ρ2 ∼ ρ0(T )|r1 − r2|−1, (190)
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as |r1 − r2| → ∞ in the condensed phase (London–Placzek formula [42]).
Here ρ0 denotes the Bose-Einstein condensation density of the perfect Bose-
gas. Casimir forces are usually attributed to such correlations in the critical
regime.

In the case of electromagnetic interactions, the Casimir term is always
present as a result of the long range of the forces. In the standard cal-
culation of the zero-temperature Casimir force between perfect conductors
(Section 2.2) the Casimir term appears because the third order derivative
(19) occurring in the Euler–MacLaurin expansion does not vanish, contrary
to the case at hand (183). This is due to the linear form ~ωk = ~c|k| of
the photon spectrum (non analytic at k = 0). Massive photons ~ωk =

c
√

(~|k|)2 + (mc)2 do not produce Casimir forces for the same reasons as
for fermions.

We have studied in detail the classical electromagnetic Casimir effect
in Section 3. In the spirit of the present analysis, one can say that such
Coulomb systems are critical at all temperatures because the potential fluc-
tuations are always of a long range, although charge correlations are them-
selves of a short range as a consequence of screening.

REFERENCES

[1] H.G.B. Casimir, D. Polder, Phys. Rev. 73, 360 (1948).

[2] H.G.B. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948).

[3] H.G.B. Casimir, J. Chim. Phys. 46, 407 (1949).

[4] P.W. Milonni, The Quantum Vacuum, Academic Press, 1993.

[5] Poincaré Seminar 2002,Vacuum Energy, eds. B. Duplantier, R. Rivasseau,
Birkhäuser Verlag, Basel 2003.

[6] K.A. Milton, The Casimir Effect, World Scientific, 2001.

[7] V.M. Mostepanenko, N.N. Trunov, The Casimir Effect and Its Applications,
Oxford Science Publications, Clarendon Press, 1997.

[8] F.S. Levin, D.A. Micha, Long Range Casimir Forces, Plenum Press, 1993.

[9] G. Plunien, B. Müller, W. Greiner, Phys. Rep. 134, 87 (1986).

[10] J. Mahanty, B.W. Ninham, Dispersion Forces, Academic Press, 1976.

[11] D. Langbein, Van der Waals Attraction, Springer Tracts In Modern Physics
72, Springer, 1974.

[12] J.G. Brankov, D.M. Danchev, N.S. Tonchev, Theory of Critical Phenomena
in Finite Size Systems, World Scientific, 2000.

[13] M. Krech, The Casimir Effect in Critical Systems, World Scientific, 1994.

[14] R. Balian, B. Duplantier, Geometry of the Casimir Effect, in Recent Develop-
ments in Gravitational Physics, Institute of Physics Conference Series 176, Ed.
Ciufiolini et al., 2004.



The Casimir Effect 2559

[15] P.R. Buenzli, Ph.A. Martin, J. Stat. Phys. 119, 273 (2005).

[16] P. Forrester, B. Jancovivi, G. Téllez, J. Stat. Phys. 84, 359 (1996).

[17] B. Jancovivi, G. Téllez, J. Phys. A: Math. Gen. 29, 1155 (1996).

[18] D.C. Brydges, Ph.A. Martin, J. Stat. Phys. 96, 1163 (1999).

[19] P.R. Buenzli, Ph.A. Martin, Europhys. Lett. 72, 42 (2005).

[20] B. Jancovici, L. Samaj, Europhys. Lett. 72, 35 (2005).

[21] A. Alastuey, F. Cornu, Ph.A. Martin, Van der Waals Forces in a Partially Re-
combined Hydrogen Plasma, preprint ITP Swiss Federal Institute for Technology
Lausanne CH-1015, Lausanne EPFL, Switzerland, 2005.

[22] Ph.A. Martin, V. Zagrebnov, cond-mat/0507263, to appear in Europhys. Lett.
(2006).

[23] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions, Dover
Publications, 1972.

[24] S.D. Chatterji, Cours d’Analyse 2, Presses Polytechniques et Universitaires
Romandes, 1997.

[25] G. Bressi, G. Carugno, R. Onofrio, G. Ruoso, Phys. Rev. Lett. 88, 041804
(2002).

[26] U. Mohideen, A. Roy, Phys. Rev. Lett. 81, 0031 (1998).

[27] T.H. Boyer, Phys. Rev. 174, 1764 (1968).

[28] R. Balian, B. Duplantier, Ann. Phys. 104, 300 (1977); Ann. Phys. 112, 165
(1978).

[29] J.-P. Hansen, I.R. McDonald, Theory of Simple Liquids, 2nd ed., Academic
Press, London 1986.

[30] Ph.A. Martin, Rev. Mod. Phys. 60, 1075 (1988).

[31] A. Alastuey, W. Appel, Physica A 276, 508 (2000).

[32] S. El Boustani, P.R. Buenzli, Ph.A. Martin, Phys. Rev. E73, 036113 (2006)
[cond-mat/O511537].

[33] J.L. Lebowitz, Ph.A. Martin, J. Stat. Phys. 34, 287 (1984).

[34] L. Schiff, Quantum Mechanics, McGraw-Hill, 1968.

[35] A.S. Davydov, Quantum Mechanics, Pergamon Press, 2nd edition, 1976.

[36] D.I. Blokhintsev, Quantum Mechanics, D. Reidel Publishing Company, 1964.

[37] F. Cornu, Phys. Rev. E53, 4562 (1996); Phys. Rev. E53, 4595 (1996).

[38] J.D. Jackson, Classical Electrodynamics, 3rd edition, J. Wiley, 1999.

[39] E.M. Lifshitz, Sov. Phys. JETP 2, 73 (1956).

[40] L. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media, Pergamon
Press, 1966.

[41] J. Schwinger, L.L. DeRaad Jr., K.A. Milton, Ann. Phys. 115, 1 (1978).

[42] M. Ziff, G.E. Uhlenbeck, M. Kac, Phys. Rep. 32, 169 (1977).


