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We consider the motion of a particle subjected to the constant grav-
itational field and scattered inelastically by oscillating boundaries which
possess the shape of parabola, wedge, and hyperbola. The linear depen-
dence of the restitution coefficient on the particle velocity is assumed. We
demonstrate that this dynamical system can be either regular or chaotic,
which depends on the billiard shape and the oscillation frequency. The
trajectory calculations are compared with the experimental data; a good
agreement has been achieved. Moreover, the properties of the system has
been studied by means of the Liapunov exponents and the Kaplan–Yorke
dimension. The period-doubling bifurcation route to chaos has been found.
Chaotic and nonuniform patterns visible in the experimental data are in-
terpreted as a result of large embedding dimension.

PACS numbers: 05.45.–a, 05.45.Pq, 05.45.Df

From the mathematical point of view, billiards constitute an interesting
class of dynamical systems because they exhibit — despite their simplicity
— a variety of nonlinear phenomena, including both regular tori and com-
pletely chaotic, dense trajectories. Some of them are quite realistic and have
a direct physical importance. An example of such a system is the gravita-
tional billiard in which a point-mass particle bounces within a container of
a given shape and its motion between the bounces is not free but ballistic.
Obviously, the dynamics depends on the billiard shape. For the parabolic
boundary the system is integrable and all orbits are regular and stable. His-
torically, the first study on the gravitational billiards has been performed for
the two-dimensional wedge, defined as two intersecting straight lines [1, 2].
The motion in the wedge is fully chaotic if its vertex angle is larger than
π/2 [3], otherwise there is a coexistence of regular and chaotic behaviour.
Those findings were successfully tested experimentally [4]. The chaotic, as
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well as regular, dynamics is present also for the hyperbolic shape of the
gravitational billiard which involves both the wedge and the parabola as its
asymptotic limits [5]. The chaotic component prevails for shapes close to
the wedge.

All the above approaches assumed that the collisions between the par-
ticle and the billiard boundary were elastic. It is natural to require that,
in order to make the problem more realistic, one should take into account
the energy loss and allow for the energy exchange between the particle and
the wall. Such handling of the dissipation is known in nuclear physics as
the wall formula [6] and then billiard models are applied. They are derived
in the framework of the liquid drop model. The atomic nucleus can then
be regarded as a billiard possessing the oscillating boundary given by the
Legendre polynomials of various kinds [7]. The system exhibits both regular
and chaotic motion [8]. Similar investigations for the gravitational billiards
were lacking [9]. Only recently they have been studied — experimentally —
under the assumption that the energy loss during the collisions is to be com-
pensated, on the average, by the motion of the container [10]. The authors of
Ref. [10] constructed three aluminium containers with parabolic, wedge, and
hyperbolic shape which exercised the horizontal oscillations. Inside, a ball of
steel was scattered from the boundaries and a camera registered the position
of each bounce and the ball velocity. The results clearly indicate the regular
motion for the parabola and the chaotic one for the wedge; they also suggest
some sort of regularity for the hyperbola at a small driving frequency.

In this paper we present a theoretical analysis of that experiment. To the
best of our knowledge, it is the first theoretical approach to such — very re-
alistic — systems. The parameters of our model are the same as in Ref. [10].
We assume the following boundaries: f(x) = a(x − x̄)2 + c (the parabola),

f(x) = b|x − x̄| + c (the wedge), and f(x) =
√

α(1 + β(x − x̄)2) − δ (the
hyperbola), where a = 0.26 cm−1, b = 1.85, c = 0.63 cm, α = 40.3 cm2,
β = 0.08 cm−2, and δ = 4.45 cm. Those three shapes are depicted in Fig. 1;
the relative dimensions correspond to the above parameters. The contain-
ers oscillate horizontally: x̄(t) = −A sinωt, where A is the amplitude and
ω = 2πf is the oscillation frequency. Inside the container, the particle is
subjected to the constant gravitational acceleration g. Collisions with the
boundaries result in the energy loss, quantified by the restitution coefficient
r ∈ [0, 1] which is defined as a ratio of the absolute values of the velocity after
and before the collision. The case r = 1 corresponds to the elastic collision.
It is difficult to decide a priori which value for r should be assumed. An
experiment with steel particles bounced on a steel block gives r = 0.93 [11].
However, taking into account effects connected with the sharing of energy
between rotation and translation during the collision reduces this coefficient
substantially and the effective r appears of about 0.7. Moreover, r can de-
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pend on the velocity and on the scattering angle [11]. The authors of Ref. [10]
suggest r = 0.9. Since there is no unique empirical evidence about r, in the
following we try to draw some conclusions about its value from the compari-
son of our results with the experimental data of Ref. [10]. In the experiment,
the ball movement was kept planar by implementing two sheets of Plexiglas.
One can expect that collisions with those sheets resulted in additional noise
and in a reduction of the effective restitution coefficient.

Fig. 1. The billiard shapes which are discussed in this paper: the parabola (lower),

the wedge (middle) and the hiperbola (upper).

Let us assume that the particle hits the boundary at the time t0 with the
velocity v

C
0 , determined in respect to the frame connected with the billiard,

and the collision point is (xC
0 , yC

0 = f(xC
0 )). The transformation of particle

velocities v
C
0 → v

C
1 , at this point, has the following form

v
C
1 = r

(

v
C
0 − 2u

(

v
C
0 · u

))

, (1)

where the components of the versor normal to the boundary, u, depend on
xC

0 and are given by: ux = −f ′(xC
0 )/h(xC

0 ) and uy = 1/h(xC
0 ) with h(xC

0 ) =
√

1 + f ′2(xC
0 ). The particle, after being reflected from the boundary, moves

along the ballistic trajectory:

xC(t) = xC
0 + vC

x,1(t − t0) + A sinωt − A sin ωt0 ,

yC(t) = yC
0 + vC

y,1(t − t0) − g(t − t0)
2/2 ,

(2)

for t > t0, up to the next section of this curve with the boundary:

(xC(t1), y
C(t1)) = (xC

1 , yC
1 ) .

The subsequent applying of Eqs. (1) and (2) produces a set of collision events
which take place at times tn. The time evolution can be characterised by the
vector Xn = (xC

n , yC
n , vC

x,n, vC
y,n) in the four-dimensional phase space, where

the velocities are taken just before the consecutive bounces. Therefore, we
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can restrict the dynamics to the billiard boundary and describe it in terms
of the following time-dependent mapping:

Xn+1 = Pn(Xn) . (3)

The above expressions have been formulated in the billiard coordinates be-
cause then the simple velocity transformation rule (1) holds. The transfor-
mation to the laboratory frame is straightforward: x = xC − A sin ωt and
vx = vC

x − Aω cos ωt; y-components remain the same. The equation for
the boundary f(x) reduces the 4-dimensional phase space, in which Pn is
defined, to the 3-dimensional manifold.

For various shapes of the billiard and various driving forces, the mapping
Pn can represent either a regular cycle or a strange attractor. The static,
elastic billiard with the parabolic shape is always regular and possesses two
stable orbits: the horizontal orbit, connected with the symmetric bouncing
between the left and the right part of the boundary at the same height, and
the vertical one which involves the top of the parabola [12]. In our case the
limit cycle corresponds to the fixed point of the mapping P 2

n and can be
obtained analytically by solving the equation X

∗ = P2(X∗). The detailed
equations are complicated and will not be presented here. As a result, we
yield the stable horizontal orbit which moves to and fro together with the
container. The vertical orbit of the elastic billiard shrinks now to a single
point. The time interval between consecutive bounces of the horizontal orbit
(2-point attractor on the boundary) τ ∗ = π/ω, moreover vy = πg/2ω. For
the parabolic shape the agreement of τ ∗ with the data [10] is very good. For
r = 0.9 we get the height of the orbit y = 158 cm which exceeds by far the
experimental value y ≈ 7.5 cm. The latter value can be obtained if we as-
sume r = 0.43. Therefore, r seems to be well established by the experiment
at the value r = 0.43 and we can try to apply it in numerical calculations
for the other shapes. However, all trajectories calculated in this way, both
for the wedge and for the hyperbola, do collapse to the bottom of the bil-
liard instantly. Apparently, the assumption that r can be approximated by
a constant cannot be maintained.

In the following we assume the dependence r(v) in the simplest form:

r = 1 −
|vC|

vcr

, (4)

if r > 0.01, otherwise (for very large velocities) r = 0.01. The formula (4)
takes into account that the dissipation should rise with the velocity and,
since the small velocities are most important, in the first approximation we
can neglect the terms higher then linear. The threshold value r = 0.01 has
been introduced for numerical reasons; events which correspond to such r
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are rare and the results are not sensitive to this quantity. The parameter vcr

can be determined by comparison with the data. It is especially easy for the
parabola case because it is characterised by a simple cycle. The data [10]
seem to confirm the presence of a cycle though it appears in a strongly dif-
fused form which may result both from the low resolution in the experiment
(e.g. due to the surface roughness) and from the rotational degree of free-
dom, not taken into account in the calculations. We get the position of the
2-point attractor in agreement with the data for vcr = 390 cm/s. We apply
this value in the calculations for the other shapes. The restitution coefficient
determined in this way is effective, it incorporates e.g. the energy loss which
results from the collisions with the sheets of Plexiglas which are not taken
into account in our calculations.

Fig. 2 presents some properties of the map Pn — the height y and the
time interval between consecutive bounces τn = tn − tn−1 — for the wedge
and the hyperbola which is driven by three different frequencies. Each figure
represents a single trajectory, evolved up to t = 2× 103 s which corresponds
to about 2 × 104 collisions with the boundary. The plot of y for the wedge
is strongly nonuniform and indicates a high degree of chaoticity. The most
of the points is concentrated just above the line yn+1 = yn and the fractal
structure is hardly visible. The figure can be directly compared with the
data (see Fig. 3 in Ref. [10]); Both figures are similar though the calcu-
lated quantities are extended to slightly larger values than the data. The
nonuniformity is clearly visible also in the plot of the time intervals and the
region close to the point (0.09, 0.09) is distinguished. The experimental data
exhibit the same pattern. For the hyperbola, at the low driving frequency
f = 4.5Hz (Fig. 2, h1) the particle abides close to the bottom of the billiard
which can be well approximated by the parabola. That results in apparently
regular pattern. However, also a stochastic ingredient is present there and
a magnification of the upper part of the figure reveals the strange attrac-
tor structure. In the experimental data the chaotic component seems to
be absent completely. Instead, long-time tails in the plot of time intervals,
possessing the intermittent structure, are observed, as well as very small
values of the height y. Then the experimental results suggest a more regular
motion than the calculations predict. For the larger frequency f = 5.8Hz
(Fig. 2, h2) the chaotic behaviour is overwhelming. The bands typical for
the strange attractors are visible; it is not the case for the experimental
data but such subtle structures may be smeared due to the low resolution.
The bands vanish completely if we make the frequency still larger. The
last row in Fig. 2 shows that it happens for f = 8Hz (the case not studied
experimentally) and the picture is similar to that for the wedge.

Some additional information about the phase space structure can be
obtained by plotting the position y versus the tangential velocity after the
collision, vt, at collision points, normalized by ymax and vmax

t , respectively.
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Fig. 2. The coordinate y of a collision point versus y for the previous collision

(left column) and the time of flight between two subsequent collisions (right col-

umn). The rows correspond to the following cases: the wedge with f = 6.6 Hz (w)

and the hyperbola with: f = 4.5 Hz (h1), f = 5.8 Hz (h2), and f = 8 Hz (h3). The

units are: [cm] for y and [s] for the time.

The quantities ymax and vmax
t mean the largest possible values of y and

vt at each collision, obtained under the assumption that the particle is
either at rest or bounces almost horizontally at the bottom of the bil-
liard. Therefore, the region around vt = 0 corresponds to the head-on
collisions which may result in instability of the motion and the onset of the
chaotic behavior. For the parabolic shape we have obtained 2-point lim-
iting cycle, corresponding to very small values of the tangential velocity:
(vt/v

max
t , y/ymax) = (±0.044, 0.39). The experimental result presents itself

as a narrow band, due to the noise in the system. Results of the calcula-
tions for the other shapes are presented in Fig. 3. The case of the hyperbola
for the largest frequency f = 8Hz shows the greatest disorder (Fig. 3, h3)
whereas the trajectory for the wedge (Fig. 3, w) is able to fill the entire
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region which is allowed by the energy partition rule [10]. The figure for the
hyperbola at the intermediate frequency f = 5.8Hz (Fig. 3, h2) indicates,
in turn, a pronounced fractal structure. On the other hand, the pattern for
f = 4.5Hz is predominantly regular (Fig. 3, h1). However, a vertical strip
at small |vt| bears apparent signs of chaos with a fractal structure, visible
after a magnification of this region. Also the experiment [10] distinguishes
the region of small tangential velocities for this case but the lack of any fine
structure in the data prevents detailed comparisons.

Fig. 3. The normalized coordinate y of a collision point versus the normalized

tangential velocity vt at the same point for the cases described in Fig. 2.

Now we calculate the largest Liapunov exponent λ1 for the mapping
Pn by applying a standard method for billiards [13, 14]. We utilize the
fact that the distance between two close trajectories is governed by the lin-
earized equations. Then we perform the time evolution of two trajectories,
whose initial conditions differ by δr, by the time interval δt which must
be small enough to keep the trajectories close. In the next step we renor-
malize the relative distance to δr and continue the procedure for a long
time. The dependence λ1(f) for the hyperbola is presented in Fig. 4. For
f < 3.5Hz trajectories collapse, then finite cycles emerge (λ1 < 0) with an
exception of the quasiperiodic window at f ∈ (3.97, 4.13) (at f ≈ 3.97Hz
the Hopf bifurcation occurs). The transition to chaos proceeds via a period-
doubling sequence. By plotting subsequent attractors, we obtained the fol-
lowing bifurcation points: f1 = 4.2242721, f2 = 4.22429535, f3 = 4.2243071,
f4 = 4.22430985, and f5 = 4.224310525, which corresponds to the 24-cycle
up to 384-cycle, respectively, and we estimated f∞ = 4.224310715. The
above points satisfy the scaling relation f∞ − fn ∼ δ−n where the scaling
parameter δ = 4.55, evaluated from the last two points, agrees reasonable
well with the Feigenbaum constant 4.669 . . . [15].
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Fig. 4. The largest Liapunov exponent as a function of the frequency for the hy-

perbolic shape.

The spectrum of four Liapunov exponents λi can be obtained by the
orthogonalization scheme [16]. More precisely, we evolve trajectories con-
nected with all directions in the phase space and apply the Gramm–Schmidt
method at each renormalization step to sort manifolds related to subsequent
unstable and stable directions. Finally, we multiply the exponents by the
mean time between successive bounces, different for each case. The results
are summarized in Table I. All presented cases are characterized by one posi-
tive exponent, except the parabola for which all exponents are negative. We
can now determine the Kaplan–Yorke dimension which in many cases may be
identified with the Hausdorff dimension (the Kaplan–Yorke conjecture [17]).

The definition is the following: DKY =j−
∑j

i λi/λj+1, where j is the largest
integer such that λ1 +λ2+ . . .+λj > 0. The results, presented in Table I,
indicate that the embedding dimension of the attractor for the cases w and
h3 equals 3, i.e. it is equal to the entire available manifold. This conclusion
explains the nature of chaotic, but also nonuniform and diffused, pattern
observed in the figures for those cases, in respect both to the theoretical
predictions and to the experimental data: for so high dimensionality of the

TABLE I

The Liapunov exponents for the mapping Pn and the Kaplan–Yorke dimension for
the parabolic shape (p) and the cases described in Fig. 2.

λ1 λ2 λ3 λ4 DKY

p −0.408 −0.579 −0.579 −2.17 0.00

w 0.447 −0.288 −1.17 −1.98 2.14

h1 0.208 −0.579 −1.05 −1.42 1.36

h2 0.367 −0.394 −1.21 −1.78 1.93

h3 0.611 −0.0637 −1.05 −2.08 2.52
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attractor its structure, projected to the plane, cannot be clearly visible. For
the wedge, that diffused, non-fractal pattern is restricted to the area just
above the line yn+1 = yn but in the case h3 it extends to the almost whole
picture. On the other hand, the fractal structure is apparent for the case h2.

We have studied the inelastic gravitational billiards with the time-
dependent driving which exhibit both regular and chaotic behavior. A simple
dependence of the restitution coefficient on the velocity has been proposed.
It appears to be essential to get results consistent with the experimental
data. The nonuniform patterns, revealed by the experiment, can be ex-
plained by the attractor dimensionality. Generally, the model predictions
agree quite well with the data. However, the values of the height y are
slightly too large, which results in the more irregular motion than the ex-
periment shows, for the hyperbolic shape with small driving frequency. This
discrepancy may be a suggestion that the damping at small velocities, as
predicted by the simple formula (4), is slightly too weak. To refine this
formula, some experimental effort is necessary: the resolution of the data
should be improved and, first of all, the restitution coefficient, which is the
essential quantity in the model, should be determined in the wide range of
the ball velocity.
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