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A specific universal shape of empirical mass formula is proposed for all
leptons ν1, ν2, ν3 and e−, µ−, τ− as well as all quarks u, c, t and d, s, b
of three generations, parametrized by three free constants µ, ε, ξ assum-
ing four different triplets of values. Four such triplets of parameter val-
ues are determined or estimated from the present data. Mass spectra in
the four cases are related to each other by shifting the triplet of param-
eters µ, ε, ξ. For charged leptons ξ ' 0 (but probably ξ 6= 0). If for
them ξ is put to be exactly 0, then mτ = 1776.80 MeV is predicted after
the input of experimental me and mµ (the central value of experimental

mτ = 1776.99+0.29

−0.26 MeV corresponds to ξ = 1.8× 10−3 6= 0). For neutrinos

1/ξ ' 0 (but 1/ξ 6= 0 in the case of normal hierarchy m2
ν1

� m2
ν2

� m2
ν3

).
If for neutrinos 1/ξ is conjectured to be exactly 0, then (mν1

, mν2
, mν3

)∼
(1.5, 1.2, 5.1)×10−2 eV are predicted after the input of experimental esti-
mates |m2

ν2
− m2

ν1
| ∼ 8.0 × 10−5 eV2 and |m2

ν3
− m2

ν2
| ∼ 2.4 × 10−3 eV2.

Thus, the mass ordering of neutrino states 1 and 2 is then inverted, while
the position of state 3 is normal.

PACS numbers: 12.15.Ff, 14.60.Pq

1. Introduction

Some time ago we have found an efficient two-parameter mass formula
for charged leptons, predicting reasonably the mass mτ from the input of
experimental masses me and mµ [1]. Then, we have extended this formula to
up and down quarks, introducing necessarily a third parameter [2]. Recently,
we have considered a few versions of two-parameter mass formula for active
neutrinos [3] (also some versions of one-parameter mass formulae have been
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grant 1 PO3B 099 29 (2005–2007).
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taken into account). In the present paper, on the base of our previous
experience (especially of that about the efficient mass formula for charged
leptons), we propose a specific universal shape of empirical mass formula for
all leptons ν1, ν2, ν3 and e−, µ−, τ− as well as all quarks u, c, t and d, s, b
of three generations, parametrized by three free constants assuming four
different sets of three values. This mass formula reads:

mi = µρi

(

N2
i +

ε − 1

N2
i

− ξ

)

(i = 1, 2, 3) , (1)

where the numbers

N1 = 1 , N2 = 3 , N3 = 5 (2)

and

ρ1 =
1

29
, ρ2 =

4

29
, ρ3 =

24

29
, (3)

(
∑

i ρi = 1) are fixed elements in all four cases, while µ, ε, ξ are three free
parameters that take four different sets of three parameter values (the nor-
malized fractions ρi may be called “generation-weighting factors”). Here,

(m1,m2,m3) =















(mν1
,mν2

,mν3
) for active neutrinos,

(me , mµ , mτ ) for charged leptons,
(mu , mc , mt ) for up quarks,
(md , ms , mb ) for down quarks

(4)

are experimental masses (as we know them). Strictly speaking, mνi
in Eq. (1)

are neutrino Dirac masses m
(D)
νi , subject to recalculation into active-neutrino

masses mνi
. The active mass neutrinos νi (i = 1, 2, 3) are related to the ac-

tive weak-interaction neutrinos να (α = e, µ, τ) through the familiar unitary
transformation να =

∑

i Uαiνi.
From Eq. (1), rewritten in the explicit form

m1 =
µ

29
(ε − ξ) , (5)

m2 =
µ

29

4

9
(80 + ε − 9 ξ) , (6)

m3 =
µ

29

24

25
(624 + ε − 25 ξ) , (7)

we can evaluate the parameters:

µ =
29 × 25

1536 × 6

[

m3 −
6

25
(27m2 − 8m1)

]

, (8)
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ε = 10
m3 − 6

125 (351m2 − 904m1)

m3 − 6
25(27m2 − 8m1)

, (9)

ξ = 10
m3 − 6

125 (351m2 − 136m1)

m3 − 6
25(27m2 − 8m1)

, (10)

and find also the mass sum rule:

m3 =
1

1 − ξ
10

6

125

[

351

(

1 − ξ

26

)

m2 − 136

(

1 − ξ

34

)

m1

]

. (11)

Note also the relations

µ =
29m1

ε − ξ
=

1

1 − ξ
10

29(9m2 − 4m1)

320
(12)

and

ε − ξ =

(

1 − ξ

10

)

320m1

9m2 − 4m1
(13)

following from the formula (1).
Since the shape mi = Fi(µ, ε, ξ) (i = 1, 2, 3) of mass formula (1) is the

same in four cases of fundamental fermions, the four mass spectra of them
are related to each other by shifting the set of three parameters µ, ε, ξ. Three
parameters µ, ε, ξ, assuming four different sets of three parameter values, de-
termine four mass spectra of fundamental fermions. Then, the mass formula
(1) gives mfi

= Fi(µ
(f), ε(f), ξ(f)) (i = 1, 2, 3), where f = ν, l, u, d labels four

kinds of fundamental fermions: neutrinos, charged leptons, up quarks and
down quarks, respectively (the function Fi(µ, ε, ξ) is universal i.e. , indepen-
dent of the label f). Strictly speaking, in the case of neutrinos, the mass

formula (1) gives directly three neutrino Dirac masses m
(D)
νi (i = 1, 2, 3) that

generically ought to be recalculated afterwards into three physical active-
neutrino masses mνi

(i = 1, 2, 3) through the seesaw mechanism (or another
analogical procedure).

Generically, the mass formula (1) does not predict the values of masses,
when all parameters are free. However, it may lead to some specific pre-

dictions for mf1
,mf2

,mf3
(some specific relations for them), if not all three

µ(f), ε(f), ξ(f) for a particular f are really free parameters, for instance, if
one of them happens to be fixed (e.g., if ξ(l) = 0 or if 1/ξ(ν) = 0 as discussed
below), while two others remain free parameters determined by the input of
two of mf1

,mf2
,mf3

and so, predict the third of these masses through the
formula (1). This opens a new field of phenomenological investigations.
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2. Charged leptons

In this case, the experimental masses are [4]

me = 0.5109989 MeV , mµ = 105.65837 MeV , mτ = 1776.99+0.29
−0.26 MeV .

(14)
Thus, from Eqs. (8) and (9) we find (with the central value of mτ )

µ = 86.0076 MeV , ε = 0.174069 , (15)

and from Eq. (12)

ε − ξ =
29me

µ
= 0.172298 . (16)

Hence,
ξ ≡ ε − (ε − ξ) = 1.771 × 10−3 = 1.8 × 10−3 . (17)

The same value of ξ follows from Eq. (10). Of course, we reproduce all three
values (14) of masses me,mµ and mτ (its central value), when we make use
of three values (15) and (17) of parameters µ, ε and ξ.

Notice that ξ for charged leptons is very small in comparison with the
terms N 2

i + (ε − 1)/N 2
i in Eq. (1). If we put for charged leptons exactly

ξ = 0, we would evaluate from Eqs. (12) and (13)

µ =
29(9mµ − 4me)

320
= 85.9924 MeV (18)

and

ε =
320me

9mµ − 4me
= 0.172329 , (19)

respectively, and would predict from Eq. (11) the simplified sum rule [1]

mτ =
6

125
(351mµ − 136me) = 1776.80 MeV (20)

in a very good agreement with experimental mτ given in Eq. (14). In calcu-
lating the values (18) and (19) for µ and ε as well as the value (20) for mτ

we use as an input only the experimental me and mµ.

3. Up and down quarks

In the case of up and down quarks, the medium experimental mass values
are [4]

mu ∼ 2.8 MeV , mc ∼ 1.3 GeV , mt ∼ 174 GeV , (21)

and
md ∼ 6 MeV , ms ∼ 110 MeV , mb ∼ 4.3 GeV , (22)
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respectively. Thus, using Eqs. (8), (9) and (10) we obtain

µ ∼ 13 GeV , ε ∼ 9.2 , ξ ∼ 9.2 (23)

and

µ ∼ 280 MeV , ε ∼ 7.5 , ξ ∼ 6.9 , (24)

respectively. More precisely,

ε − ξ =
29mu

µ
∼ 0.0062 ,

ε

ξ
− 1 ∼ 6.7 × 10−4 (25)

and

ε − ξ =
29md

µ
∼ 0.61 ,

ε

ξ
− 1 ∼ 8.8 × 10−2 , (26)

respectively. Of course, we can reproduce all quark masses (21) and (22),
when we use the values (23) and (24) of parameters µ, ε, ξ (and also Eqs. (25)
and (26)).

We can see that for up and down quarks ξ ' ε (especially for up quarks).
If we put for them exactly ξ = ε, we would predict from Eq. (5) that
mu = 0 and md = 0, and then would evaluate from Eqs. (8) and (10) that
µ ∼ 13 GeV and ε = ξ ∼ 9.2 for up quarks and µ ∼ 280 MeV and ε = ξ ∼ 6.8
for down quarks.

4. Neutrinos

The situation for neutrinos may be different than for three other kinds
of fundamental fermions since, being electrically neutral, they may be Ma-
jorana fermions, in contrast to the others which are Dirac fermions. Denote
by νi ≡ νiL and Ni ≡ νiR (i = 1, 2, 3) the three active (lefthanded) and three
sterile (righthanded) mass neutrinos, and by mνi

and mNi
their respective

masses, being eigenstates of the corresponding 3×3 mass matrices M (ν) and
M (N) (in the flavor basis). Of course, the righthanded-neutrino mass states
Ni must not be confused with the numbers Ni = 1, 3, 5.

Assume that the seesaw mechanism works and that M (N) commutes with
the neutrino Dirac 3 × 3 mass matrix M (D) (in the flavor basis), giving the

neutrino Dirac masses m
(D)
νi (i = 1, 2, 3) as its eigenstates. Then, we can

write

mνi
= −m

(D) 2
νi

mNi

, (27)

as a consequence of the popular seesaw relation [5]

M (ν) = −M (D) T 1

M (N)
M (D) (28)
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with M (D) † = M (D) and M (N)T = M (N). Now, make (for simplicity) the
conjecture that the assumed commutation [M (N),M (D)] = 0 is realized (triv-
ially) by the matrix proportionality M (N) = ζ M (D) with a very large pa-
rameter ζ > 0. This implies the eigenvalue proportionality

mNi
= ζm(D)

νi
. (29)

Then, from Eqs. (27) and (29) we obtain

mνi
= −

(

1

ζ

)

m(D)
νi

= −
(

1

ζ

)2

mNi
. (30)

Hence, the commutation [M (ν),M (N)] = 0. If mνi
> 0, then it follows that

mNi
< 0 from Eq. (27) and m

(D)
νi < 0 from Eq. (30) (masses for relativistic

spin-1/2 fields may be negative, since only masses squared can be physical).

Now, conjecture for neutrino Dirac masses m
(D)
νi our mass formula (1):

m(D)
νi

= µρi

(

N2
i +

ε − 1

N2
i

− ξ

)

(i = 1, 2, 3) . (31)

Then, making use of the seesaw relation (30) (valid in the case of the propor-
tionality (29)), we obtain for active neutrinos νi the following mass formula:

mνi
=

(

µ ξ

ζ

)

ρi

[

1 −
(

1

ξ

)(

N2
i +

ε − 1

N2
i

)]

(i = 1, 2, 3) . (32)

Hence, rewriting this formula in the explicit form

mν1
=

µ ξ/ζ

29

(

1 − ε

ξ

)

, (33)

mν2
=

µ ξ/ζ

29
4

[

1 − 1

9

(

1

ξ

)

(80 + ε)

]

, (34)

mν3
=

µ ξ/ζ

29
24

[

1 − 1

25

(

1

ξ

)

(624 + ε)

]

, (35)

we can evaluate the parameters µ ξ/ζ , ε , 1/ξ in terms of the active-neutrino
masses mν1

,mν2
,mν3

:

µξ

ζ
= −29 × 125

1536 × 3

[

mν3
− 6

125
(351mν2

− 136mν1
)

]

, (36)

ε = 10
mν3

− 6
125 (351mν2

− 904mν1
)

mν3
− 6

25(27mν2
− 8mν1

)
, (37)

1

ξ
=

1

10

mν3
− 6

25(27mν2
− 8mν1

)

mν3
− 6

125 (351mν2
− 136mν1

)
, (38)
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and find also the mass sum rule:

mν3
=

1

1 − 10
ξ

6

25

[

27

(

1 − 26

ξ

)

mν2
− 8

(

1 − 34

ξ

)

mν1

]

. (39)

Note also the relations

µ ξ

ζ
=

29mν1

1 − ε
ξ

=
1

1 − 10
ξ

29

32
(9mν2

− 4mν1
) (40)

and

1 − ε

ξ
=

(

1 − 10

ξ

)

32mν1

9mν2
− 4mν1

(41)

following from the mass formula (32).
Unfortunately, in spite of the enormous progress in neutrino physics, data

on neutrino masses are still unsatisfactory. In fact, only the mass-squared
differences are reasonably well estimated [6]:

|∆m2
21| ≡ |m2

ν2
− m2

ν1
| ∼ 8.0 × 10−5 eV2 ,

|∆m2
32| ≡ |m2

ν3
− m2

ν2
| ∼ 2.4 × 10−3 eV2 , (42)

giving in the case of normal hierarchy m2
ν1

� m2
ν2

� m2
ν3

the estimations

mν2
≡

√

∆m2
21 + m2

ν1
'

√

∆m2
21 ∼ 8.9 × 10−3 eV ,

mν3
≡

√

∆m2
32 + ∆m2

21 + m2
ν1

'
√

∆m2
32 + ∆m2

21 ∼ 5.0 × 10−2 eV , (43)

when m2
ν1

can be neglected (it cannot be neglected e.g. for mν1
∼ 1×10−3 eV,

where mν2
∼ 9.0 × 10−3 eV and mν3

∼ 5.0 × 10−2 eV). Their ratios are

∆m2
32

∆m2
21

∼ 30 ,
mν3

mν2

∼
√

30 = 5.5 . (44)

Since in the case of normal hierarchy m2
ν1

� m2
ν2

� m2
ν3

the mass mν1

is very small, consider the following range of its possible value

mν1
∼ (0 to 1) × 10−3 eV . (45)

Then, mν2
∼ (8.9 to 9.0)×10−3 eV and mν3

∼ 5.0×10−2 eV (cf. Eqs. (42)).
In this situation, we can evaluate from Eq. (36)

µξ

ζ
∼ (7.9 to 7.5) × 10−2 eV , (46)
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from Eq. (37)
ε ∼ (120 to 89) (47)

and from Eq. (38)

1

ξ
∼ (8.1 to 6.9) × 10−3 ,

ε

ξ
∼ (1 to 0.61) . (48)

Of course, we can reproduce all active-neutrino masses mν1
,mν2

,mν3
, if we

know adequate values of the parameters µ, ε, ξ.
It is interesting to notice that, in the case of normal hierarchy m2

ν1
�

m2
ν2

� m2
ν3

, the parameter 1/ξ for neutrinos is very small, though not 0
(cf. Eqs. (48)). In contrast, for charged leptons, the parameter ξ is very
small, but not 0 for the central value of experimental mτ (cf. Eq. (17)).
This suggests the existence of a kind of complementarity between neutrinos
and charged leptons.

It seems worthwhile to investigate for neutrinos the strict limit of
1/ξ → 0 that implies a new mass sum rule (49) below. Similarly, in the
case of charged leptons, the strict limit of ξ → 0 leads to the mass sum
rule (20) which is consistent with their experimental masses within the un-
certainty limits of mτ . To this end observe that, in the limit of 1/ξ → 0,
Eq. (39) gives the simplified sum rule:

mν3
=

6

25
(27mν2

− 8mν1
) , (49)

implying the equality
[

6

25
(27mν2

− 8mν1
)

]2

− m2
ν2

= ∆m2
32 ≡ ∆m2

32

∆m2
21

(m2
ν2

− m2
ν1

) . (50)

Denoting

r ≡ mν2

mν1

, λ ≡ ∆m2
32

∆m2
21

∼ ±30 (51)

and dividing Eq. (50) by m2
ν1

, we find the following quadratic equation for r:

(

6

25

)2

(27r − 8)2 − (1 + λ)r2 + λ = 0 . (52)

With λ ∼ 30 > 0, this equation gets two complex solutions for r that cannot
be physical. Thus, in the strict limit of 1/ξ → 0 the neutrino mass orderings
m2

ν1
< m2

ν2
< m2

ν3
and m2

ν3
< m2

ν2
< m2

ν1
leading to λ > 0 are both excluded.

On the contrary, with λ ∼ −30 < 0, there appear two real solutions for r:

r ∼
{

−0.46 < 0
0.81 > 0

, (53)



A Universal Shape of Empirical Mass Formula . . . 2609

corresponding to

mν2
≡ r mν1

∼
{

−0.46mν1
< 0

0.81mν1
> 0

, (54)

where we choose mν1
> 0 (here and below, only two decimals are significant

as only two are such in λ). The requirement that all three masses mνi
of

active-neutrino triplet ν1, ν2, ν3 should have the same sign, excludes the first
solution (54). Then, only the second solution (54) remains as physical.

For such a unique solution it follows that

∆m2
21 ≡ (r2 − 1)m2

ν1
∼ −0.35m2

ν1
< 0 (55)

and so, ∆m2
21 ∼ −8.0× 10−5 eV2 < 0, while ∆m2

32 ∼ 2.4 × 10−3 eV2 > 0 as
λ < 0 in this case. Thus, from Eq. (55)

m2
ν1

≡ ∆m2
21

r2 − 1
∼ 2.3 × 10−4 eV2 , (56)

m2
ν2

≡ ∆m2
21 + m2

ν1
∼ 1.5 × 10−4 eV2 (57)

and

m2
ν3

≡ ∆m2
32 + m2

ν2
∼ 2.6 × 10−3 eV2 . (58)

This gives

∆m2
31 ≡ m2

ν3
− m2

ν1
∼ 2.3 × 10−3 eV2

and
m2

ν2
: m2

ν1
: m2

ν3
∼ 0.65 : 1 : 11 . (59)

We can see that
m2

ν2
< m2

ν1
< m2

ν3
(60)

i.e., the mass ordering of neutrino states 1 and 2 is inverted, while the
position of neutrino state 3 is normal. The hierarchy is here more moderate
than in the case of very small mν1

(Eq. (45)). From Eqs. (56), (57) and (58)
we predict that

mν1
∼ 1.5 × 10−2 eV , mν2

∼ 1.2 × 10−2 eV , mν3
∼ 5.1 × 10−2 eV , (61)

implying the proportion

mν2
: mν1

: mν3
∼ 0.81 : 1 : 3.3 . (62)

It is easy to check that these masses of active neutrinos really satisfy the mass
sum rule (49) valid in the strict limit of 1/ξ → 0. Recall that the ordering
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of indices i = 1, 2, 3 is established by the form of neutrino mixing matrix
U = (Uαi) transforming active weak-interaction neutrinos να (α = e, µ, τ)
into active mass neutrinos νi (i = 1, 2, 3).

With the values (61) of mν1
and mν2

we can evaluate µξ/ζ and ε/ξ in
the strict limit of 1/ξ → 0, applying Eqs. (40) and (41) considered in this
limit:

µξ

ζ
→ 29

32
(9mν2

− 4mν1
) ∼ 4.5 × 10−2 eV (63)

and
ε

ξ
→ 1 − 32mν1

9mν2
− 4mν1

∼ −8.8 < 0 . (64)

Thus, µ → +0 and 1/ε → −0 when 1/ξ → +0, but only the constants µξ/ζ
and ε/ξ as well as 1/ξ appear in the mass formula (32) which, in the limit
of 1/ξ → 0, takes the form

mνi
= µ′ρi

(

1 +
ε′

N2
i

)

, (65)

where µξ/ζ → µ′ ∼ 4.5 × 10−2 eV and −ε/ξ → ε′ ∼ 8.8 > 0.
Finally, not passing with 1/ξ strictly to 0, consider 1/ξ smaller than the

values in Eq. (48) corresponding to the range mν1
∼ (0 to 1)× 10−3 eV

(Eq. (45)), where still m2
ν1

� m2
ν2

� m2
ν3

. For instance, put 1/ξ ∼
1.8 × 10−3 eV which is the value of neutrino 1/ξ ≡ 1/ξ(ν) related to the
charged-lepton ξ(l) (Eq. (17)) through the simplest form of complementar-
ity: ξ(ν)ξ(l) ∼ 1 or 1/ξ(ν) ∼ ξ(l) = 1.8 × 10−3.

In the case of arbitrary 1/ξ, we derive for the ratio r ≡ mν2
/mν1

the
following generalized form of Eq. (52) (the latter being valid in the limit
1/ξ → 0):

1
(

1 − 10
ξ

)2

(

6

25

)2 [

27

(

1 − 26

ξ

)

r − 8

(

1 − 34

ξ

)]2

− (1 + λ)r2 + λ = 0 ,

(66)
where |λ| ∼ 30. With λ ∼ 30 the discriminant of the quadratic algebraic
equation (66) for r is negative when 1/ξ is smaller than 1/ξ ∼ 6.1 × 10−3,
giving two complex solutions, while with λ ∼ −30 it is always positive,
providing two real solutions. If λ ∼ 30, the parameter 1/ξ gets the upper
bound 1/ξ ∼ 8.1 × 10−3 corresponding to mν1

∼ 0 eV, mν2
∼

√
80 eV

and mν3
∼

√
2480 eV. If λ ∼ −30, the parameter 1/ξ is upper-bound by

1/ξ ∼ 3.8 × 10−2, what is realized when m3 & m1 & m2 �
√

∆m2
32 ∼√

2.4 × 10−3 eV i.e. , when m3,m1 and m2 are practically degenerate.
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Now, consider 1/ξ ∼ 1.8 × 10−3. For λ ∼ 30, both solutions to Eq. (66)
turn out to be complex. For λ ∼ −30, both solutions are real, but only one
positive:

r ∼ 0.81 > 0 , (67)

corresponding to mν2
∼ 0.81mν1

(a difference with the limiting value (53) ap-
pears at the level of further decimals). Then, with |∆m2

21| ∼ 8.0× 10−5 eV2

and |∆m2
32| ∼ 2.4 × 10−3 eV2 we obtain

m2
ν1

∼ 2.4 × 10−4 eV2 , m2
ν2

∼ 1.6 × 10−4 eV2 , m2
ν3

∼ 2.6 × 10−4 eV2

(68)
and

mν1
∼ 1.5×10−2 eV , mν2

∼ 1.3×10−2 eV , mν3
∼ 5.1×10−2 eV . (69)

Thus, the mass ordering of 1 and 2 neutrino states is inverted

(∆m2
21 ∼ −8.0 × 10−5 eV2), but the position of 3 neutrino state is nor-

mal (∆m2
32 ∼ 2.4 × 10−3 eV2 as λ < 0).

In the case of 1/ξ ∼ 1.8×10−3, using the values (69), we can also evaluate

µξ

ζ
=

29

32
(9mν2

− 4mν1
) ∼ 4.6 × 10−2 eV ,

µ

ζ
∼ 8.3 × 10−5 eV (70)

and
ε

ξ
= 1 − 29mν1

µξ
ζ

∼ −8.7 , ε ∼ −4800 . (71)

So, we can see that, in this case, the results (67)–(71) at the level of two
decimals are practically identical to those in the strict limit of 1/ξ → 0
(except for µ/ζ and ε which could not be obtained with ξ → ∞).

5. Conclusions

In this paper, we have proposed a specific universal shape (1) of empirical
mass formula for all fundamental fermions: leptons ν1, ν2, ν3 and e−, µ−, τ−

as well as quarks u, c, t and d, s, b of three generations, parametrized by
four different sets of three free constants µ, ε, ξ. Mass spectra in the four
cases are related to each other by shifting the set of three parameters µ, ε, ξ.
The parameter µ plays the role of “radius” in the three-dimensional mass
space of m1,m2,m3, while ε and ξ are connected with “spherical angles” in
this space. Strictly speaking, for active neutrinos the mass formula holds
in the form (32) related (in the seesaw mechanism) to the primary mass
formula (1), when the latter is valid for neutrino Dirac masses and when the
matrix proportionality M (N) = ζ M (D) with a very large parameter ζ > 0 is
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assumed (for simplicity). In the mass formula (32) the primary parameters
µ and ε are replaced by µξ/ζ and ε/ξ. Note that the seesaw ζ parameter is
equal to

ζ ≡ µ(l)

µ(ν)/ζ

µ(ν)

µ(l)
∼ 86 × 106

(6.4 to 5.2) × 10−4

µ(ν)

µ(l)
= (1.3 to 1.7)×1011 µ(ν)

µ(l)
, (72)

where µ(l) = 86.0076 MeV and µ(ν)/ζ ∼ (6.4 to 5.2) × 10−4 eV for charged
leptons and neutrinos, respectively, as can be seen from our listing below.
If µ(ν) ' µ(l), then ζ = O(1011). If rather µ(ν) : µ(l) ' µ(u) : µ(d) ∼ 46
(Eqs. (23) and (24)), then ζ = O(1013).

From the mass formula (1) we have evaluated or estimated the following
parameter values:

for e−, µ−, τ− : µ = 86.0076 MeV , ε = 0.174069 , ξ = 1.8 × 10−3 ,

when me = 0.510999 MeV, mµ = 105.658 MeV, mτ = 1776.99 MeV ,

for u , c , t : µ ∼ 13 GeV , ε ∼ 9.2 , ξ ∼ 9.2 ,

when mu ∼ 2.8 MeV , mc ∼ 1.3 GeV, mt ∼ 174 GeV ,

for d , s , b : µ ∼ 280 MeV , ε ∼ 7.5 , ξ ∼ 6.9 ,

when md ∼ 6 MeV , ms ∼ 110 MeV , mb ∼ 4.3 GeV ,

for ν1, ν2, ν3 : µξ

ζ
∼ (7.9 to 7.5)×10−2 eV, ε

ξ
∼ (1 to 0.61) , 1

ξ
∼ (8.1 to 6.9)×10−3 ,

[and µ

ζ
∼ (6.4 to 5.2)×10−4 eV, ε∼ (120 to 89), ξ∼ (120 to 140)] ,

when mν1
∼ (0 to 1)×10−3 eV, mν2

∼ (8.9 to 9.0)×10−3eV, mν3
∼5.0×10−2 eV .

We can see that for charged leptons ξ ' 0 and for neutrinos 1/ξ ' 0 (but
here they are not exactly 0 in both cases) while for up and for down quarks
ξ ' ε. In a way, the value of ξ characterizes four kinds of fundamental
fermions.

For charged leptons, in the strict limit of ξ → 0, we have predicted one lin-
ear relation between me,mµ and mτ (Eq. (20)), giving mτ = 1776.80 MeV

versus the experimental value mτ = 1776.99+0.29
−0.26 MeV, when the experi-

mental values of me and mµ are used. For neutrinos, in the strict limit of
1/ξ → 0, we have predicted one linear relation between mν1

,mν2
and mν3

(Eq. (49)), leading to their values (61), when the experimental estimates
|m2

ν2
−m2

ν1
| ∼ 8.0×10−5 eV2 and |m2

ν3
−m2

ν2
| ∼ 2.4×10−3 eV2 are applied.

Then m2
ν2

< m2
ν1

< m2
ν3

i.e. , the mass ordering of neutrino states 1 and 2
is inverted, while the position of neutrino state 3 is normal.

If the simplest form of complementarity relation works between the neu-
trino and charged-lepton ξ’s: 1/ξ(ν) ∼ ξ(l) = 1.8×10−3, then the predictions
for neutrinos at the level of two decimals are practically identical to those
in the strict limit of 1/ξ(ν) → 0.
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Finally, we would like to stress that the numbers Ni and ρi (i = 1, 2, 3),
being fixed structural elements of the mass formula (1), can be constructed
and interpreted in the formalism described in Ref. [1]. We hope that,
eventually, the three terms appearing in the empirical mass formula (1) will
be understood as three kinds of internal interactions within intrinsically
composite leptons and quarks (for a proposal see Ref. [7]).

This paper is a modified version of the e-preprint hep-ph/0602018

(unpublished).

I am indebted to Stefan Pokorski for a stimulating discussion.
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