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The scattering amplitude of hadrons in high energy Regge limit can be
rewritten in terms of reggeized gluons, i.e. Reggeons. We consider three-
Reggeon states that possess either C = +1 or C = −1 parity. In this work
using Janik–Wosiek method the spectrum of conformal charges is calcu-
lated for states with conformal Lorentz spin nh = 0, 1, 2, 3, . . . . Moreover,
corrections to WKB approximation are computed.
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1. Introduction

The reggeized gluon states, also called Reggeons, appear in scattering
processes of Quantum Chromodynamics (QCD) in the Regge limit where
the square of the total energy s is large while the transfer of four-momentum
t is low and fixed. In this limit the leading contribution to the scattering
amplitude of hadrons is dominated by the exchange of intermediate particles,
Reggeons, which are the compound states of gluons [1–6].

Even in the simplifying Regge limit in the generalised leading logarithm
approximation [7–9] this problem is technically very complicated due to the
non-abelian structure of QCD. Many Reggeon wave-functions are the eigen-
states of a Hamiltonian which is equivalent in the ’t Hooft’s multi-colour
limit [10–12] to the Hamiltonian for the non-compact Heisenberg SL(2,C)
spin magnet. Moreover, the multi-Reggeon system with N particles is com-
pletely solvable [13, 14]. Thus, it possesses a complete set of integrals of
motion, so called conformal charges (q2, q2, q3, q3, . . . , qN , qN ) that commute
with the Hamiltonian. The eigenvalues of the SL(2,C) Hamiltonian are also
called the energies of the Reggeons. The Schrödinger equation for the low-
est non-trivial case, i.e. for N = 2 Reggeons, was formulated and solved by
Balitsky, Fadin, Kuraev and Lipatov [4, 15, 16]. They calculated the energy
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of the Pomeron state with N = 2 Reggeons. An integral equation for three
and more Reggeons was formulated in Refs. [7, 8, 17] in 1980. However, it
took almost twenty years to obtain the solution for N = 3, which corre-
sponds also to the QCD odderon [18–20]. Finally, the solutions for higher
N = 4, . . . , 8 have been found recently in a series of papers [21–23] written in
collaboration with S.É. Derkachov, G.P. Korchemsky and A.N. Manashov.
Similar approach was taken by de Vega and Lipatov [24, 25].

Description of scattering amplitudes in terms of the reggeized gluon
states is most frequently used for the elastic scattering amplitude of two
heavy hadrons whose masses are comparable. Here the amplitude is equal
to a sum over the Regge poles. In the Regge limit, s → ∞ and t = const,
they give behaviour like sα(t) where α(0) is called the intercept and its value
is close to 1. On the other hand, the intercept is related to the minimum of
the Reggeon energy defined by the SL(2,C) Hamiltonian. Thus, evaluating
the spectrum of the SL(2,C) XXX Heisenberg model we can calculate the
behaviour of the hadron scattering amplitudes.

Three reggeized gluon states in t-channel correspond either to Pomeron
exchanges with parity C = +1 or to odderon states with C = −1. The
Janik–Wosiek solutions include both of them. Using the duality symmetry as
well as momentum representation Bartels, Lipatov and Vacca found another
solution with q3 = 0 and α(0) = 1 [26–30]. On the other hand there was
shown in Refs. [13, 14] that in order to solve the problem and calculate
the intercept one may use Q-Baxter method [31]. It was applied to three
Reggeon problem in Refs. [21–23] and Refs. [24, 25], however, only in the
former ones there was a complete agreement with the Janik–Wosiek method.
The intercept for the three-Reggeon function was also calculated directly
using variational method in Ref. [32]. The results agree with values obtained
by the exact Q-Baxter method.

In this work we present the generalized Janik–Wosiek method of con-
structing the Reggeon eigenstates. Moreover, we calculate the reach spec-
trum of the three Reggeon energy and the spectrum of the conformal charges
{q3, q3} for nh = 0, 1, 2, 3. At the end we evaluate corrections to the WKB
approximation [21].

In Sec. 2 we discuss the current state of knowledge. Next we describe
construction of the Reggeon eigenfunctions that consists in solving the differ-
ential eigenequations of the conformal charges. We systematize the knowl-
edge about the ansatzes for eigenstates of {q3, q3} for three reggeized gluon,
extend the calculations to an arbitrary complex spin s and derive differential
eigenequations for the conformal charges q3. Moreover, we show solutions
to the differential eigenequations with N = 3 and s = 0 and resum obtained
series solutions for the q3 = 0 case. We construct an exact solution to the
q̂3-eigenequation, which may be solved by a series method, and find the
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quantization conditions for {q3, q3} which come from single-valuedness of
the Reggeon wave-function. The numerical results of this method for N = 3
are presented in Sec. 4. They agree with solutions found using Q-Baxter
method [22, 23]. We present quantized values of q3 for different Lorentz
spins nh = 0, . . . , 3 as well as corrections to the WKB approximation. At
the end we make final conclusions.

2. Hamiltonian method

2.1. The formalism

In the high energy Regge limit

s→ ∞ , t = const , (2.1)

the contribution to the scattering amplitude of two hadrons A and B from
an exchange of three reggeized gluons may be written as

AN=3(s, t) = s

∫
d2z0 e

i~z0·~p

〈
Φ̃A(~z0)

∣∣∣e−αsY H̃3/4
(
~∂ 2
1
~∂ 2
2
~∂ 2
3

)−1∣∣∣Φ̃B(0)

〉
,

(2.2)

where ∂k = ∂/∂zk, the rapidity Y = ln s/s0 and
(
~∂ 2
1
~∂ 2
2
~∂ 2
3

)−1
are gluon

propagators. Reggeized gluon states, which are also called Reggeons, are
effective particles. They interact with each other and propagate in the
t-channel. The Hamiltonian H̃3 is given [7–9] as a sum of N = 3 BFKL
kernels [4,15,16]. The wave-functions |Φ̃A(B)(~z0)〉 ≡ Φ̃A(B)(~zi − ~z0) describe
the coupling of three Reggeons to the scattered particles. The ~z0-integration
fixes the momentum transfer t = −~p 2

T whereas the operators 1/~∂ 2
k stand for

two-dimensional transverse propagators.
Defining the functions Φ(~z) as

Φ̃(~z) = (−i)3∂z1∂z2∂z3Φ(~z) , (2.3)

the scalar product in the amplitude (2.2) can be rewritten as
〈
Φ̃A(~z0)

∣∣∣e−αsY H̃3/4
(
~∂ 2
1
~∂ 2
2
~∂ 2
3

)−1∣∣∣Φ̃B(0)

〉

=
〈
ΦA(~z0)

∣∣∣e−αsY H
(s=0,s=1)
3 /4

∣∣∣ΦB(0)
〉
. (2.4)

The Hamiltonians, H3 and H̃3 are invariant under the coordinate transfor-
mation of the SL(2,C) group

z′k =
azk + b

czk + d
, z′k =

azk + b

czk + d
, (2.5)
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with k = 1, 2, 3 while ad − bc = ad − bc = 1 and they are related to each
other as

H(s=0,s=1)
3 =

(
∂1∂2∂3

)
H̃3

(
∂1∂2∂3

)−1
. (2.6)

Now, one may associate with each particle generators of transforma-
tion (2.5) [33]. This generators are a pair of mutually commuting holomor-

phic and anti-holomorphic spin operators, S (k)
α and S

(k)
α . They satisfy the

standard commutation relations
[
S

(k)
α , S

(n)
β

]
= iεαβγδ

knS
(k)
γ and similarly for

S
(k)
α . The generators act on the quantum space of the k-th particle, V (s,s)

as differential operators

Sk
0 = zk∂zk

+ s , S
(k)
− = −∂zk

, S
(k)
+ = z2

k∂zk
+ 2szk ,

S
k
0 = zk∂zk

+ s , S
(k)
− = −∂zk

, S
(k)
+ = z2

k∂zk
+ 2szk , (2.7)

where S(k)
± = S

(k)
1 ± iS

(k)
2 while the complex parameters, s and s, are called

the complex spins. Thus, the Casimir operator reads

2∑

j=0

(
S

(k)
j

)2
=
(
S

(k)
0

)2
+
(
S

(k)
+ S

(k)
− + S

(k)
− S

(k)
+

)/
2 = s(s− 1) , (2.8)

and similarly for the anti-holomorphic operator
(
S

(k))2
. The eigenstates of

the SL(2,C) invariant system transform as [34, 35]

Ψ(zk, zk) → Ψ ′(zk, zk) = (czk + d)−2s(czk + d)−2sΨ(z′k, z
′
k) , (2.9)

Due to the invariance (2.5) of the system we can rewrite the Hamiltonian as

H3 = H3 +H3 , [H3,H3] = 0 , (2.10)

in terms of the conformal spins (2.7)

H3 =

N∑

k=1

H(Jk,k+1) , H3 =

3∑

k=1

H(Jk,k+1) , (2.11)

where
H(J) = ψ(1 − J) + ψ(J) − 2ψ(1) , (2.12)

with ψ(x) = d lnΓ (x)/dx being the Euler function and J3,4 = J3,1. Here
operators, Jk,k+1 and Jk,k+1, are defined through the Casimir operators for
the sum of the spins of the neighbouring Reggeons
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Jk,k+1(Jk,k+1 − 1) =
(
S(k) + S(k+1)

)2
, (2.13)

with S(4)
α = S

(1)
α , and Jk,k+1 is defined similarly.

In statistical physics (2.11) is called the Hamiltonian of the non-compact
SL(2,C) XXX Heisenberg homogeneous spin magnets. It describes the
nearest neighbour interaction between three non-compact SL(2,C) spins at-
tached to the particles with periodic boundary conditions.

In QCD values of (s, s) depend on a chosen scalar product in the space of
the wave-functions (2.9) and they are usually equal to (0, 1) or (0, 0) [24,33].

In order to find the high energy behaviour of the scattering amplitude
we have to solve the Schrödinger equation

H(s=0,s=1)
3 Ψ(~z1, ~z2, ~z3) = ENΨ(~z1, ~z2, ~z3) , (2.14)

with the eigenstate Ψ(~z1, ~z2, ~z3) being single-valued function on the planes
~zk = (zk, zk), normalizable with respect to the SL(2,C) invariant scalar
product

||Ψ ||2 = 〈Ψ |Ψ〉 =

∫
d2z1d

2z2d
2z3|Ψ(~z1, ~z2, ~z3)|2 , (2.15)

where d2zi = dxidyi = dzidzi/2 with zi = zi
∗.

From the point of view of the SL(2,C) spin chain

H̃3 = H(s=0,s=0)
3 . (2.16)

Indeed, the transformation Sα →
(
∂1∂2∂3

)
Sα

(
∂1∂2∂3

)−1
maps the

SL(2,C) generators of the spin s = 0 into those with the spin s = 1.

One concludes from (2.15) that the Hamiltonian H(s=0,s=1)
3 is advanta-

geous with respect to H̃3 = H(s=0,s=0)
3 as it has the quantum numbers of

the principal series representation of the SL(2,C) group.

However, one can also use H(s=0,s=0)
3 [24] or even H(s=1,s=1)

3 [25]. Then

the factor (∂1∂2∂3)
∓1 or

(
∂1∂2∂3

)∓1
has to be included in the scalar product,

i.e. for (s = 1, s = 1) we have

||Ψ ||2 =

∫
d2z1d

2z2d
2z3|

(
∂1∂2∂3

)−1
Ψ(~z1, ~z2, ~z3)|2 . (2.17)

Here the scalar product is no longer in the principal series representation of
the SL(2,C) group. All these Hamiltonians with the corresponding scalar
products are equivalent up to the zero modes of the operators (∂1∂2∂3)

∓1

and
(
∂1∂2∂3

)∓1
.
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A part of the amplitude (2.2) for N = 3 reggeized gluons describes
the leading contribution of the states with parity C = −1, odderon, and
subleading contribution to the C = +1 states related to the Pomeron. Both
contributions are of the same order.

Instead solving the Hamiltonian eigenproblem (2.14) we can solve eigen-
problems for conformal charges

q̂2 = −2

N∑

i2>i1=1




2∑

j1=0

S
(i1)
j1

S
(i2)
j1




=

N∑

i2>i1=1

(
(zi2i1)

2(1−s)∂zi2
∂zi1

(zi2i1)
2s + 2s(s− 1)

)
,

q̂3 = 2
N∑

i1,i2,i3=1

εi1i2i3S
(i1)
0 S

(i2)
1 S

(i3)
2

= i3
N∑

i3>i2>i1=1

(
zi1i2zi2i3zi3i1∂zi3

∂zi2
∂zi1

+ szi1i2(zi2i3 − zi3i1)∂zi2
∂zi1

+ szi2i3(zi3i1 − zi1i2)∂zi3
∂zi2

+ szi3i1(zi3i1 − zi1i2)∂zi3
∂zi2

− 2s2zi1i2∂zi3
− 2s2zi2i3∂zi1

− 2s2zi3i1∂zi2

)
, (2.18)

where zij = zi − zj. Similar relations hold for the anti-holomorphic sector.
This gives for the SL(2,C) spin s = 0

q̂3 = −iz12z23z31∂z1∂z2∂z3 , (2.19)

and for s = 1
q̂3 = −i∂z1∂z2∂z3z12z23z31 . (2.20)

The eigenvalues of the quadratic conformal charge read

q2 = −h(h− 1) + 3s(s− 1) ,

q̄2 = −h̄(h̄− 1) + 3s̄(s̄− 1) , (2.21)

where conformal weights satisfy

h =
1 + nh

2
+ iνh ,

h =
1 − nh

2
+ iνh , (2.22)

while the eigenvalues of the cubic operator q̄3 = q∗3. The parameter nh has
the meaning of the two-dimensional Lorentz spin of the particle, whereas
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νh defines its scaling dimension. They define the transformation law of the
Hamiltonian eigenstates

Ψ(~z1′0′ , ~z2′0′ , ~z3′0′) = (cz0+d)2h(cz0+d)2h

(
3∏

k=1

(czk+d)2sk(czk+d)2sk

)

×Ψ(~z10, ~z20, ~z30) , (2.23)

with

Ψ~p(~z1, ~z2, ~z3) =

∫
d2z0e

i~z0·~p Ψ(~z1 − ~z0, ~z2 − ~z0, ~z3 − ~z0) . (2.24)

The eigenstates Ψ(~z10, ~z20, ~z30) belonging to V (h,h) are labelled by the
centre-of-mass coordinate ~z0 and can be chosen to have the SL(2,C) trans-
formation properties with z0 and z0 transforming in the same way as zk and
zk, (2.5).

Conformal charges commute also with cyclic particle permutation oper-
ator

PΨq,q(~z1, ~z2, ~z3)
def
=Ψq,q(~z2, ~z3, ~z1) = eiθ3(q,q)Ψq,q(~z1, ~z2, ~z3) , (2.25)

where the conformal charges are denoted by q ≡ (q2, q3) and q ≡ (q2, q3).
The phase θ3(q) which is connected with eigenvalues of P is called the

quasimomentum. It takes the following values [21]

θ3(q, q) = 2π
k

3
, for k = 0, 1, . . . , 2 . (2.26)

The eigenstates of the conformal charges q̂k diagonalize H and P.
Let us also define another operator

MΨ±(~z1, ~z2, ~z3)
def
=Ψ±(~z3, ~z2, ~z1) = ±Ψ±(~z1, ~z2, ~z3) , (2.27)

so called mirror permutation operator which has two eigenvalues, ±1. The
M operator commutes with the Hamiltonian but it does not commute with
q̂2 and q̄3.

The cyclic and mirror permutation symmetries come from the Bose sym-
metry. Physical states should possess both symmetries.

It turns out that adding colour factor corresponding to the antisymmetric
constant fabc for the odd-mirror states and the symmetric one dabc for the
even-mirror states, we are able to restore Bose symmetry. The tensor fabc

corresponds to the Pomeron states while dabc is related to the odderon states.
Therefore, in order to check a C-parity of a given state we need to study its
parity under the mirror permutation M. The states Ψ satisfying MΨ = −Ψ
are the Pomeron states whereas states for which MΨ = +Ψ are the odderon
states.
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3. Various ansatzes

Using the eigenequation for q̂2 we get Lipatov’s ansatz [26] for holomor-
phic part of the eigenstates:

Ψ(z10, z20, z30) =
1

(z10z20z30)2s

(
z31

z10z30

)h−3s

F (x) , (3.1)

where x = (z12z30)/(z10z32). If we substitute F (x) = G(x)
(

(x−1)2

−x

)h/3−s

we get another ansatz

Ψ(z10, z20, z30) =
1

(z12z23z31)s

(
z31z12z23

(z10)2(z20)2(z30)2

)h
3

G(x) . (3.2)

As we can see we obtained a totally symmetric ansatz which is equivalent
to the original one.

Both ansatzes have advantages and disadvantages. The symmetric one
(3.2) is appropriate if we want to deal with the particle symmetries. The orig-
inal one (3.1) has a simpler structure, it contains powers of h (not h/3), so
we can use it when we want to construct proper single-valuedness conditions.
One can easily notice that zhzh is single-valued because h− h = nh ∈ Z.

3.1. Derivation of differential equations for N = 3

From the q̂3-eigenequation we get the third order differential equation

iq3F (x) = (3s− h)(h− 1 − s)(1 − 2x)F (x) + (((h − 2)(h − 1)(x− 1)x

+ s2(2 + 11(x− 1)x) + s(2 − 2h(1 − 2x)2 + 11(x − 1)x))F ′(x)

+ (2+h−3s)(1−x)x(2x−1)F ′′(x)+(x− 1)2x2F (3)(x) , (3.3)

where q3 is a complex eigenvalue of q̂3. From the QCD point of view the
most interesting cases are for s = 0:

iq3F (x) = (h− 1)(h − 2)x(x− 1)F ′(x)

+ (h−2)(x−1)x(1−2x)F ′′(x)+x2(x−1)2F (3)(x) , (3.4)

and for s = 1 where

iq3F (x) = (h− 3)(h − 2)(2x − 1)F (x)

+ ((4 − 2h − (h− 8)(h − 3)x+ (h− 8)(h− 3)x2)F ′(x)

+ (5−h)(x−1)x(2x−1)F ′′(x)+(x−1)2x2F (3)(x) . (3.5)

The first such solution was derived and found numerically in [18].
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We solve the above equations by the series method choosing represen-
tation (s, s̄) = (0, 0) which gives the same equation in holomorphic and
antiholomorphic sectors. The differential equation (3.4) has three regular
singular points at x = 0, x = 1 and x = ∞. To generate solutions around
other singular points we exchange variables. For the case x = 1 we can use
a substitution x = 1 − y:

iq3G(y) = (h− 1)(h − 2)y(1 − y)G′(y)

+ (h−2)(1−y)y(1−2y)G′′(y)−y2(y−1)2G(3)(y) , (3.6)

with F (1 − y) = G(y) and for x = ∞ we have x = 1/y:

q3G(y) = i
(
(y − 1)(h + 1)(h− 2y)G′(y)

+ (y−1)y(2(h+1)−(h+4)y)G′′(y)+y(y−1)2G(3)(y)
)
, (3.7)

where F (1/y) = G(y).
In Ref. [18] Eq. (3.4) was solved for the case with h = h = 1/2 and

Re[q3] = 0. Next in Refs. [36–38] states with nh = 0, 2 and νh ∈ R as well as
nh = 0 and iνh ∈ R were found. In this work we extend these calculations
to nh = 0, 1, 2, 3 and νh ∈ R. To get a broader perspective on the problem
the reader is referred to Ref. [39].

3.2. Wave-function for s = s = 0 around x = x = 0

In order to obtain the full-complex solution for three-Reggeon state con-
taining the holomorphic and anti-holomorphic parts we have to glue together
solutions in these sectors:

Φq,q ({zi}, {zi}) = uq ({zi})T ·A(0)(h, h, q3, q3) · uq({zi}) , (3.8)

where we use a (3 × 3) mixing-matrix, A(0)
q,q , [18] which does not depend

on particle coordinates but only on q ≡ {q2, q3}. From the QCD point of
view we have two possibilities of gluing solutions: (s = 0, s = 0) [24] and
(s = 0, s = 1) [33]. These two cases are equivalent except for the zero modes
of the highest conformal charge q̂N . Let us consider the first case, s = s = 0.

The antiholomorphic and holomorphic conformal charges are related by
conditions h = 1 − h∗ and qk = q∗k. The wave-function has to be single-
valued. This condition defines the structure of the mixing-matrix.
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For h 6∈ Z and q̂3 6= 0 we have solutions of the following type

u1(x) = xh
∞∑

n=0

an,r1x
n ,

u2(x) = x1
∞∑

n=0

an,r2x
n ,

u3(x) = x0
∞∑

n=0

bn,r3x
n + x1

∞∑

n=0

an,r2x
nLog(x) , (3.9)

and similarly in the anti-holomorphic sector. The recurrence relations for
the an,ri

are given in Appendix C. One can notice that xaxb is single-valued
only if a− b ∈ Z. Moreover, we have also terms with Log(x) which have to
give in a sum Log(xx). So in this case we have a mixing matrix of the form

A(0)(h, h, q3, q3) =



α 0 0
0 β γ
0 γ 0


 , (3.10)

where α, β, γ are arbitrary. In the above matrix we have A12 = A13 =
A21 = A31 = 0 in order to eliminate multi-valuedness coming from the
power-terms, A23 = A32 to obtain single-valuedness in Log(x)−terms and
A33 = 0 because the term Log(x)Log(x) is not single-valued on the ~x−plane.

In the case of q3 = 0 and h 6∈ {0, 1} we do not have any Log(x)-terms so
the mixing matrix looks like1

A(0)(h, h, q3 = 0, q3 = 0) =



β 0 0
0 α ρ
0 ε γ


 . (3.11)

For q3 6= 0 and h ∈ Z we have a solution with only integer powers of
x and solutions without a Log, with one-Log and with a double-Log. The
structure of the matrix is

A(0)(h ∈ Z, h ∈ Z, q3, q3) =



α β γ
β 2γ 0
γ 0 0


 . (3.12)

In the last case for q3 = 0 and h ∈ {0, 1} we have only integer powers of
x and the third solution with one-Log term. The matrix has a form

A(0)(h ∈ {0, 1}, h ∈ {0, 1}, q3 = 0, q3 = 0) =



α γ 0
β ρ ε
0 ε 0


 . (3.13)

1
Greek variables in each A-matrix have different numerical values.
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3.3. Wave-function for s = s = 0 around x = x = 1− and x = x = ∞−

We construct the wave-function around the other singular point exactly
in the same way, obtaining matrices A(1−)(h, h, q3, q3), A

(1+)(h, h, q3, q3)

(around 1) and A(∞−)(h, h, q3, q3) (around ∞).
Thus, we have the wave-functions similar to (3.8). For h 6∈ Z and q̂3 6= 0

we get

u1(x) = (1 − x)h
∞∑

n=0

an,r1(1 − x)n ,

u2(x) = (1 − x)1
∞∑

n=0

an,r2(1 − x)n ,

u3(x) = (1−x)0
∞∑

n=0

bn,r3(1−x)n+(1−x)1
∞∑

n=0

an,r2(1−x)nLog(1−x) (3.14)

and similarly in the anti-holomorphic sector. The mixing matrices take the
following forms

A(1)(h, h, q3, q3) =



α 0 0
0 β γ
0 γ 0


 , (3.15)

A(1)(h, h, q3 = 0, q3 = 0) =



β 0 0
0 α ρ
0 ε γ


 , (3.16)

A(1)(h ∈ Z, h ∈ Z, q3, q3) =



α β γ
β 2γ 0
γ 0 0


 , (3.17)

A(1)(h ∈ {0, 1}, h ∈ {0, 1}, q3 = 0, q3 = 0) =



α γ 0
β ρ ε
0 ε 0


 . (3.18)

Similarly, we proceed around x = ∞−. For h 6∈ Z and q̂3 6= 0 we have
solutions of type
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u1(x) =

(
1

x

)0 ∞∑

n=0

an,r1

(
1

x

)n

,

u2(x) =

(
1

x

)1−h ∞∑

n=0

an,r2

(
1

x

)n

,

u3(x) =

(
1

x

)−h ∞∑

n=0

bn,r3x
n+

(
1

x

)1−h ∞∑

n=0

an,r2x
nLog(x) (3.19)

and similarly in the anti-holomorphic region. In this case we have the ma-
trices

A(∞)(h, h, q3, q3) =



α 0 0
0 β γ
0 γ 0


 , (3.20)

A(∞)(h, h, q3 = 0, q3 = 0) =



β 0 0
0 α ρ
0 ε γ


 , (3.21)

A(∞)(h ∈ Z, h ∈ Z, q3, q3) =



α β γ
β 2γ 0
γ 0 0


 , (3.22)

A(∞)(h ∈ {0, 1}, h ∈ {0, 1}, q3 = 0, q3 = 0) =



α γ 0
β ρ ε
0 ε 0


 . (3.23)

3.4. Transition matrices between solutions around different poles

The above solutions around x = 0, 1,∞ have a convergence radius equal
to the difference between the two singular points: the point around which
the solution is defined and the nearest one of the remaining two. In order to
define a global solution which is convergent in the entire complex plane we
have to glue the solutions defined around different singular points. This can
be done by expanding one set of solutions in terms of the other solutions
in the overlap region of the two considered solutions. Thus, in the overlap
region we can define the transition matrices ∆, Γ , where

~u(0)(x, q) = ∆(q) ~u(1)(x, q) ,

~u(1)(x, q) = Γ (q) ~u(∞)(x, q) . (3.24)
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Matrices, ∆ and Γ , are constructed in terms of the ratios of certain
determinants [40]. For example, to calculate the matrix ∆ we construct
a Wrońskian

W =

∣∣∣∣∣∣∣

u
(1)
1 (x; q) u

(1)
2 (x; q) u

(1)
3 (x; q)

u′
(1)
1 (x; q) u′

(1)
2 (x; q) u′

(1)
3 (x; q)

u′′
(1)
1 (x; q) u′′

(1)
2 (x; q) u′′

(1)
3 (x; q)

∣∣∣∣∣∣∣
. (3.25)

Next we construct determinants Wij which are obtained fromW by replacing
j-th column by the i-th solution around x = 0, i.e. for i = 1 and j = 2 we
have

W12 =

∣∣∣∣∣∣∣

u
(1)
1 (x; q3) u

(0)
1 (x; q3) u

(1)
3 (x; q3)

u′
(1)
1 (x; q3) u′

(0)
1 (x; q3) u′

(1)
3 (x; q3)

u′′
(1)
1 (x; q3) u′′

(0)
1 (x; q3) u′′

(1)
3 (x; q3)

∣∣∣∣∣∣∣
. (3.26)

The matrix elements ∆ij are given by

∆ij =
Wij

W
. (3.27)

Matrix ∆ does not depend on x, but only on qk. In the similar way we can
get matrices Γ and their anti-holomorphic equivalents: ∆, Γ .

Substituting equation (3.24) into the wave-function (3.8), one finds the
following conditions for continuity of the matrix A(q, q):

∆
T
(q3)A

(0)(q3, q3)∆(q3) = A(1)(q3, q3) , (3.28)

Γ
T
(q3)A

(1)(q3, q3)Γ (q3) = A(∞)(q3, q3) . (3.29)

Each equation, (3.28), (3.29), consists of nine equations. Solving them nu-
merically, we obtain values of parameters α, β, γ, . . . as well as quantized
values of the conformal charges, qk and qk. We have verified numerically
that the spectrum of qk obtained by the above method is equivalent to the
spectrum obtained using the Baxter Q-operator method which is presented
in the next section.

3.5. Additional conditions coming from the particle permutation invariance

Multi-Reggeon states have additionally the cyclic (2.25) and mirror per-
mutation (2.27) symmetries. The conformal charges commute only with P.
Thus, the eigenstates of q̂2 and q̂3 (2.18) are usually not eigenstates of M,
so they usually have mixed C-parity. Therefore, in order to get solutions of
a given C-parity we have to impose mirror symmetry. Let us illustrate this
for the case of q3 = 0.
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For this case we can easily resume the series solutions, see AppendixC.
Let us take the case for h 6∈ {0, 1}. The eigenequation for the cyclic permu-
tation P with quasimomentum θ3(q) gives the following condition

whwh
(
β+γ(−x)h(−x)h+α(x−1)h(x−1)h+ρ(−x)h(x−1)x+ε(x−1)h(−x)h

)

= eiθ3(q)whwh
(
α+β(−x)h(−x)h+γ(x−1)h(x−1)h+ρ(x−1)h+ε(x−1)h) .

(3.30)

Here we have used cyclic transformation laws (A.6).
Comparing these two lines we obtain conditions: α = e−iθ3(q)β, β =

e−iθ3(q)γ, γ = e−iθ3(q)α and ρ = ε = 0. One can derive that exp(3iθ3(q)) = 1
so θ3(q) = (2kπ)/3 where k = 0, 1, 2 (k = 0 for physical states). Thus the
eigenstate of P [27] reads

Ψ(~z10, ~z20, ~z30)

= whwh
(
1 + ei

2πk
3 (−x)h(−x)h + ei

4πk
3 (x− 1)h(x− 1)h

)
, (3.31)

with k = 0, 1, 2 and where we have omitted the normalization constant.
Now we can act with a mirror permutation operator on (2.25) and test

its eigenequation (2.27). Using the mirror transformations (A.7), similarly
to (3.30), we obtain the following relation

whwh(−1)nh

(
ei

2πk
3 + (−x)h(−x)h + ei

4πk
3 (x− 1)h(x− 1)h

)

= ±whwh
(
1 + ei

2πk
3 (−x)h(−x)h + ei

4πk
3 (x− 1)h(x− 1)h

)
. (3.32)

Comparing both sides of (3.32) gives (−1)nh exp(i2πk
3 ) = ±1, (−1)nh =

± exp(i 2πk
3 ) and (−1)nh = ±1 where the SL(2,C) Lorentz spins nh = h−h.

These conditions are consistent with k = 0, 3
2 . Only the first case agrees

with the cyclic permutation condition. As we can see for odd nh we have
minus sign, so taking into account colour factors (−1)N , solution (3.32) is
C-even. For even nh we have plus sign thus solution is C-odd. The last case
is unnormalizable because when x → 0 or x → 1 it does not vanish so the
norm, with (s = 0, s = 0), is divergent [27].

Using the duality symmetry [26–30], which corresponds to h → 1 − h,
Bartels, Lipatov and Vacca constructed an eigenstate with q3 =0 and C=−1

Ψ(~z10, ~z20, ~z30) = whwhx(1 − x)x(1 − x)

×
(
δ(2)(x) − δ(2)(1 − x) +

xhxh

x3x3 δ
(2)

(
1

x

))
. (3.33)
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This wave-function cannot be constructed using the method described here
because it contains non-analytical function, the Dirac delta δ(2)(x).

Now, let us take the second wave-function with five parameters i.e. for
q3 = 0 and h ∈ {0, 1}. For h = 1 the vector of linearly independent solutions
reads

u(x) = [1, (−x), (−x)Log(−x) + (x− 1)Log(x− 1)] , (3.34)

and for h = 0 it is

u(x) = [Log(x− 1), 1,Log(−x)] . (3.35)

Combining them we obtain

Ψ(~z10, ~z20, ~z30) = whwh [αLog(x− 1) + β + γ(−x)Log(x− 1) + ρ(−x)
+ ε((−x)Log(−x) + (−x)Log(−x) + (x− 1)Log(x− 1))] .

(3.36)

Like in the previous case we write the eigenequation for the cyclic permuta-
tion

wh(=1)wh(=0) [(α− γ − ε)Log(x− 1) + (ρ− β) + α(−x)Log(x− 1)

+ (−β)(−x) + ε(−x)Log(−x) + α(x− 1)Log(−x)
+ ε(−x)Log(−x) + γLog(−x) + ε(x− 1)Log(x− 1)]

= eiθ3(q)w [αLog(x− 1) + β + γ(−x)Log(x− 1) + ρ(−x)
+ ε((−x)Log(−x) + (−x)Log(−x) + (x− 1)Log(x− 1))] . (3.37)

Thus we get conditions: α = e−iθ3(q)(α −γ −ε), β = e−iθ3(q)(ρ − β), γ =
e−iθ3(q)α, ρ = e−iθ3(q)(−β), 0 = e−iθ3(q)(γ − α) and ε = e−iθ3(q)ε. We have
two types of solutions.

The first one with θ3(q) = 0 when α = γ = −ε and β = ρ = 0. It has
a form

Ψ(~z10, ~z20, ~z30)=w [(−x)Log((−x)(−x))+(x−1)Log((x−1)(x−1))] .
(3.38)

We obtained in this way solutions with Log(x)-terms which have not been
found before. The similar expressions were shown in [24] as asymptotics of
the q̂3 eigenfunction. Acting with the mirror permutation operator on (3.38)
we get

Mw ((−x)Log((−x)(−x)) + (x− 1)Log((x− 1)(x− 1)))

= −w ((−x)Log((−x)(−x)) + (x− 1)Log((x− 1)(x− 1))) . (3.39)
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We obtained minus sign so this state is also symmetric under C-parity
(i.e. with C = +1).

Other solutions have θ3(q) = 2π/3, 4π/3. Thus, α = γ = ε = 0 and
ρ = −e−iθ3(q)β. The wave-function has a form

Ψ(~z10, ~z20, ~z30) = w (1 + x eiθ3(q)) . (3.40)

These solutions are not eigenstates of the M operator.

4. Known features of the spectrum

In this section we describe the spectra of the conformal charges obtained
by numerical solutions [23, 38]. To this end we apply the Baxter operator
method and the Janik–Wosiek method described in the previous section. For
N = 3 reggeized gluons the Hamiltonian method and the Baxter operator
method give the same results.

4.1. Advantages of Q-Baxter operator method

In order to find the spectrum of the conformal charges for higher N and
the Reggeon energy EN one can use the Q-Baxter operator method [23,31].
The Baxter operator Q(u, u) depends on two complex spectral parameters
u, u and commutes with the integrals of motion, qk and qk. It satisfies the
Baxter equations

t̂N (u)Q(u, u) = (u+ is)NQ(u+ i, u) + (u− is)NQ(u− i, u) , (4.1)

t̂N (u)Q(u, u) = (u+ is)NQ(u, u+ i) + (u− is)NQ(u, u− i) , (4.2)

where t̂N (u) is the auxiliary transfer matrix

t̂N (u) = 2uN + q̂2u
N−2 + . . .+ q̂N (4.3)

and similarly t̂N (u). We solve the Baxter equations [23] using the integral
ansatz which changes Eqs. 4.1 and 4.2 to differential equations. The latter
ones can be solved analogically to the Janik–Wosiek method which gives
Q-Baxter quantization conditions.

The Reggeon energy is determined by eigenvalues of the Baxter operator,
Qqk,qk

(u, u) and can be written as

EN (q, q̄) = −Im
d

du
ln

[
u2NQq,q̄(u+ i(1 − s), u+ i(1 − s̄))

×Q−q,−q̄(u+ i(1 − s), u+ i(1 − s̄))

]∣∣∣∣
u=0

, (4.4)
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with

±q = (q2,±q3, . . . , (±)NqN ) , (4.5)

while the quasimomentum θN

θN = i ln
Qq,q̄(is, is)

Qq,q(−is,−is)
. (4.6)

4.2. Trajectories

Solving the Q-Baxter quantization conditions [23] we obtain continuous
trajectories in the space of conformal charges. They are built of points,
(q2(νh), . . . , qN (νh)) which depend on a continuous real parameter νh enter-
ing q2, (2.21) and (2.22). In order to label the trajectories we introduce the
set of the integers

` = {`1, `2, . . . , `2(N−2)} , (4.7)

which parameterize one specified point on each trajectory for given h. Spe-
cific examples in the following sections will further clarify this point.

Next we calculate the observables along these trajectories, namely the
energy (2.14) and the quasimomentum (2.26). The quasimomentum is con-
stant for all points situated on a given trajectory. The minimum of the
energy, which means the maximal intercept, for almost all trajectories is
located at νh = 0. It turns out that the energy behaves around νh = 0 like

EN (νh; ` ground) = E ground
N + σNνh

2 + O(νh
2) . (4.8)

Thus, the ground state along its trajectory is gapless and the leading contri-
bution to the scattering amplitude around νh may be rewritten as a series
in the strong coupling constant:

A(s, t) ∼ −is
∞∑

N=2

(iαs)
N s−αsE

ground
N

/4

(αsσN ln s)1/2
ξA,N (t) ξB,N (t) , (4.9)

where αs = αsNc/π and ξX,N (t) are the impact factors corresponding to
the overlap between the wave-functions of scattered particle with the wave-
function of N -Reggeons, whereas σN measures the dispersion of the energy
on the trajectory around νh = 0.

On the other hand, the energy along the trajectories grows with νh and
for |νh| → ∞ and finally, we have EN (νh; `) ∼ ln νh

2. These parts of the
trajectory give the lowest contribution to the scattering amplitude.
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4.3. Symmetries

The spectrum of quantized charges q2, . . . , qN is degenerate. This degen-
eration is caused by two symmetries:

qk ↔ (−1)kqk , (4.10)

which comes from invariance of the Hamiltonian under mirror permutations
of particles, (2.27), and

qk ↔ qk , (4.11)

which is connected with the symmetry under interchange of the z-and z-
sectors. Therefore, the four points, i.e. {qk}, {(−1)kqk}, {qk∗} and {(−1)kqk

∗}
with k = 2, . . . , N , are related and all of them satisfy the quantization
conditions (3.28), (3.29) and have the same energy.

4.4. Descendent states

Let us first discuss the spectrum along the trajectories with the highest
conformal charge qN equal zero for arbitrary νh ∈ R. It turns out [23, 26,
27, 29] that the wave-functions of these states are built of (N − 1)-particle
states. Moreover, their energies [41] are also equal to the energy of the
ancestor (N − 1)-particle states:

EN (q2, q3, . . . , qN = 0) = EN−1(q2, q3, . . . , qN−1) . (4.12)

Thus, we call them the descendent states of the (N − 1)-particle states.

Generally, for odd N , the descendent state Ψ (qN=0)
N with the minimal

energy EN (qN = 0) = 0 has for q2 = 0, (i.e. for h = 0, 1), the remaining
integrals of motion q3 = . . . = qN = 0 as well. For h = 1 + iνh, i.e. q2 6= 0,
the odd conformal charges q2k+1 = 0 with k = 1, . . . , (N − 1)/2 while the
even ones q2k 6= 0 and depend on νh.

On the other hand, for even N , the eigenstate with the minimal energy
Ψ

(qN =0)
N is the descendent state of the (N − 1)-particle state which has min-

imal energy with qN−1 6= 0. Thus, Emin
N (qN = 0) = Emin

N−1(qN−1 6= 0) > 0.
Studying more thoroughly this problem one can obtain [23,29] a relation

between the quasimomentum θN of the descendent state and the ancestor
one θN−1, which takes the following form

eiθN

∣∣∣∣
qN=0

= −eiθN−1 = (−1)N+1 . (4.13)

Additionally, one can define a linear operator ∆ [23, 29] that maps the

subspace V (qN−1)
N−1 of the (N−1)-particle ancestor eigenstates with the quasi-

momentum θN−1 = πN into the N -particle descendent states with qN = 0
and θN = π(N + 1) as
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∆ : V
(θN−1=πN)
N−1 → V

(θN =π(N+1))
N . (4.14)

It turns out that this operator is nilpotent for the eigenstates which form
trajectories [29], i.e. ∆2Ψ = 0. Thus, the descendent-state trajectory can
not be ancestor trajectory for (N+1)-particle states. However, it is possible
to built a single state [23] with q2 = q3 = . . . = qN = 0, i.e. for only one
point νh = 0, that has EN = 0 and the eigenvalue of Baxter Q-operator
defined as

Qq=0
N (u, u) ∼ u− u

uN
, (4.15)

where a normalization factor was omitted. For N = 3 this state corresponds
to the wave-function defined in (3.38).

Additional examples of the descendent states for N = 3 will be described
later in the next sections.

5. Numerical results

5.1. Quantum numbers of the N = 3 states

In this section we present the spectrum of q3 for three reggeized gluons.
For the first time such solutions for Re[q3] = 0 were obtained in [40]. The
authors of Ref. [40] used the method of the q̂3 eigenfunctions described in
Sec. 5. Similar quantization condition was also constructed in [26]. Solutions
with Re[q3] 6= 0 were found in [37, 38]. Moreover, in the latter paper the
solutions with nh 6= 0 are described.

The first solution using the Baxter Q-operator method was described in
Ref. [23]. Later, similar results were also obtained in Ref. [25]. It turns
out that the Baxter Q-operator method [23] for N = 3 is equivalent to the
method of the q̂3 eigenfunctions described in Sec. 5. For higher N > 3 only
the Baxter Q-operator method was used to find the quantization values of
qN and the energy.

5.2. Lattice structure

Solving the quantization conditions (3.28) and (3.29) for N = 3 and for
h = (1 + nh)/2, i.e. with νh = 0, we reconstruct the full spectrum of q3. It is

convenient to show the spectrum in terms of q1/3
3 rather than q3. Since q1/3

3
is a multi-valued function of complex q3, each eigenstate is represented on
the complex q

1/3
3 -plane by N = 3 different points. Thus, the spectrum is

symmetric under the transformation

q
1/3
3 ↔ exp(2πik/3)q

1/3
3 , where 0 < k < 3 . (5.1)
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Additionally, mirror symmetry (4.10) results in a more regular structure.
For the total SL(2,C) spin of the system h = 1/2, which means nh = 0
and νh = 0, we present the spectrum in Fig. 1. One can easily notice that
the spectrum has the structure close to the equilateral triangle lattice of the
leading order WKB approximation (5.8). Indeed, apart from a few points

close to the origin, the quantized values of q1/3
3 are located almost exactly

at the vertices of the WKB lattice. The WKB formula [21] gives

[
qWKB
3 (`1, `2)

]1/3
= ∆N=3

(
1

2
`1 + i

√
3

2
`2

)
, (5.2)

where `1 and `2 are integers, such that their sum `1 + `2 is even. Here the
lattice spacing is denoted by

∆3 =


 3

41/3π

1∫

−∞

dx√
1 − x3



−1

=
Γ 3(2/3)

2π
= 0.395175 . . . . (5.3)

The lattice of q1/3
3 extends onto the whole complex plane except the interior

of the disk with the radius ∆3:
∣∣q1/3

3

∣∣ > ∆3 , (5.4)

situated at q3 = 0.
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Fig. 1. The spectrum of quantized q
1/3

3
for the system of N = 3 particles. On the

left the total SL(2,C) spin of the system is equal to h = 1

2
, while on the right

h = 1. Different symbols stand for different quasimomenta θ3: stars θ3 = 0, boxes

θ3 = 4π/3, triangles θ3 = 2π/3.
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In accordance with (5.2), a pair of integers `1 and `2 parameterize the

quantized values of q1/3
3 . Going further, one can calculate the quasimomen-

tum as a function of `1 and `2. It has a following form

θ3(`1, `2) =
2π

3
`1 (mod 2π) . (5.5)

Thus, as we can see states with the same value of Re[q
1/3
3 ] have the same

quasimomentum. In Fig. 1, different quasimomenta are distinguished by
stars, boxes and triangles.

The same lattice structure is exhibited by the spectra with different nh.
However, they have different corrections to the leading order WKB approx-
imation for q1/3

3 . These spectra are presented in Figs. 1 and 2. The correc-
tions to the lattice structure depend on q2 as seen in (5.8). Since the WKB
lattice is obtained in the leading order of the expansion for large confor-
mal charges, 1 � |q1/2

2 | � |q1/3
3 |, the corrections are bigger for lower |q1/3

3 |.
Later, we shall discuss some other features of the corrections to the WKB
leading order approximation.

As we can see in Figs. 1 and 2 for h ∈ Z we have additionally trajectories
with q3 = 0. They are called the descendent states because their spectra are
related to the spectra for the N − 1 = 2 Reggeon states. We discuss this
point further below.
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Fig. 2. The spectrum of quantized q
1/3

3
for the system of N = 3 particles. On the

left the total SL(2,C) spin of the system is equal to h = 3

2
, while on the right

h = 2. Different symbols stand for different quasimomenta θ3: stars θ3 = 0, boxes

θ3 = 4π/3, triangles θ3 = 2π/3.
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5.3. Trajectories in νh

In the previous section we considered the dependence of q3 on nh for
νh = 0. However, the spectrum of conformal charges also depends on the
continuous parameter νh with h = (1 + nh)/2 + iνh. It turns out that the
spectrum is built of trajectories parameterized by real parameter νh. Each
trajectory crosses one point (star, box, triangle) in Figs. 1, 2. An example
of three such trajectories is presented in Fig. 3. They are numbered by
(`1, `2) = (0, 2), (2, 2) and (4, 2) whereas they quasimomentum θ3(`1, `2) =
0, 4π/3 and 2π/2, respectively.
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Fig. 3. The dependence of quantized q3(νh; `1, `2) on the total spin h = 1/2 + iνh.

Three curves correspond to the trajectories with (`1, `2) = (0, 2) , (2, 2) and (4, 2).

The trajectories cumulate at νh = 0. When we increase νh, q1/3
3 tends

to infinity and the structure of quantized charges starts to be less regular,
especially for trajectories with lower |q1/3

3 |. We can see this in Fig. 4 where

Re[q
1/3
3 ] Re[q

1/3
3 ]

Im
[q

1
/
3

3
]

Im
[q

1
/
3

3
]

Fig. 4. The trajectories of q
1/3

3
projected on νh = 0. On the left panel h = 1

2
+ iνh,

while on the right one h = 1+iνh. Stars denotes νh = 0, boxes νh = 1 and triangles

νh = 2.
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we project trajectories with h = 1
2 + iνh on the νh = 0 plane. Here stars

denote point with νh = 0, boxes with νh = 1 and circles νh = 2. Grey lines
are drawn to show the projection of the trajectories for intermediate values
of νh. For nh 6= 0 we notice that the spectra start to rotate with νh. In
Fig. 4 and 5 we present trajectories with positive nh = 0, 1, 2, 3. Due to the
symmetry (4.11), which means h → 1 − h∗ or nh → −nh with q3 → q∗3, or
equivalently, νh → −νh but q3 → q3, the spectrum for the negative nh is the
same as for the positive ones but it rotates in the opposite direction with νh.

Re[q
1/3
3 ] Re[q

1/3
3 ]

Im
[q

1
/
3

3
]

Im
[q

1
/
3

3
]

Fig. 5. The trajectories of q
1/3

3
projected on νh = 0. On the left panel h = 3

2
+ iνh,

while on the right one h = 2+iνh. Stars denotes νh = 0, boxes νh = 1 and triangles

νh = 2.

Some of the results presented in this section were found in earlier works
[36,38]. Trajectories with quasimomentum θ3 = 0 and nh = 0 were obtained
in Refs. [36, 38]. The case for h = 2 + iνh with quasimomentum θ3 = 0 was
discussed in Ref. [38]. In this work we additionally analyse the spectra for
h = 1 + iνh and h = 3/2 + iνh.

5.4. Energy and dispersion

For all trajectories in (q2, q3)-space we can calculate the energy of the
reggeized gluons using Eq. (4.4). Example of the energy spectrum for tra-
jectories from Fig. 3 with h = 1

2 + iνh is shown in Fig. 6.
The energy along the trajectories is a continuous gapless function of νh.

As we can see the energy E3 grows with rising |νh|. For nh = 0 it has
a minimum value minνh

E3(νh; `1, `2) at νh = 0. In the case nh 6= 0, due the
bending of the trajectories some minima of the energy are moved away from
νh = 0 [38]. However, the ground state corresponds to the point(s) on the



2638 J. Kotański

(4,2)

(2,2)

(0,2)

–2.5

–2

–1.5

–1
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PSfrag replacements

−E3/4

νh

Fig. 6. The energy spectrum corresponding to three trajectories shown in Fig. 3.

The ground state is located on the (0, 2)-trajectory at νh = 0.

plane of q1/3
3 (see Fig. 1) closest to the origin. For N = 3 the ground state is

located on the (0, 2)-trajectory at νh = 0 and nh = 0 with quasimomentum
equal θ3 = 0. Due to the symmetry (4.10) it is doubly-degenerated and its
conformal charge and energy take the following values:

iqground
3 = ±0.20526 . . . , Eground

3 = 0.98868 . . . . (5.6)

In the vicinity of νh = 0 the accumulation of the energy levels is described
by the dispersion parameter (4.8) σ3 = 0.9082.

We show comparison of the WKB result of Eq. (5.2) with the exact
expressions for q3 at h = 1/2 in Fig. 1 and Table I. One can find that
the expression (5.2) describes the excited eigenstates with good accuracy.
In the case where the eigenstates have smaller q3 agreement becomes less
accurate. Thus, for the ground state with iq3 = 0.20526 . . . the accuracy of
(5.2) is ∼ 20%. Obviously, in the region where the WKB expansion is valid,

i.e. |q1/3
3 | � |q1/2

2 |, Eq. (5.2) can be systematically improved by including
subleading WKB corrections.

TABLE I

Comparison of the exact spectrum of q
1/3

3
at h = 1/2 with the approximate WKB

expression (5.2). The last line defines the corresponding energy E3(0; `1, `2).

(`1, `2) (q exact
3

)
1/3

(
qWKB
3

)1/3 −E3/4

(0, 2) 0.590 i 0.684 i −0.2472

(2, 2) 0.358 + 0.621 i 0.395 + 0.684 i −0.6910

(4, 2) 0.749 + 0.649 i 0.790 + 0.684 i −1.7080

(6, 2) 1.150 + 0.664 i 1.186 + 0.684 i −2.5847

(8, 2) 1.551 + 0.672 i 1.581 + 0.684 i −3.3073

(10, 2) 1.951 + 0.676 i 1.976 + 0.684 i −3.9071



Three Particle Pomeron and Odderon States in QCD 2639

5.5. Descendent states for N = 3

One also can notice in Figs. 4 and 5 that for odd nh we have states with
q3 = 0. For nh = 0 and νh = 0 it has the energy E3 = 0, so it is lower
than (5.6). These states are descendants of the states with two Reggeons
[23, 26–29]. We constructed them in Sec. 3 using the q̂3 eigenfunction
method. The wave-functions of these states are described by (3.31), (3.33),
(3.38) and (3.40). These states have the same properties and the energy as
the corresponding states with N − 1 = 2 particles, E3(q2, q3 = 0) = E2(q2),
with [15, 16]:

E2(q2) = 4Re[ψ(1 − h) + ψ(h) − 2ψ(1)]

= 8Re

[
ψ

(
1 + |nh|

2
+ iνh

)
− ψ(1)

]
, (5.7)

where ψ(x) = d/dx(lnΓ (x)) and q2 = −h(h − 1). Moreover, their wave-
functions are built of the two-Reggeon states [23,29] and the quasimomentum
θ3 = 0. Contrary to the states with q3 6= 0, the states with q3 = 0 (3.33)
couple to a point-like hadronic impact factors [42–44], like the one for the
γ∗ → ηc transition.

5.6. Corrections to WKB

The WKB formula for the lattice structure of the conformal charge q3

was derived in paper [21]. This formula tells us that for q3 → ∞

q
1/3
3 =

Γ 3(2/3)

2π
Q(n)

[
1+

b

|Q(n)|2
−
(

b

|Q(n)|2
)2

+

∞∑

k=3

ak

(
b

|Q(n)|2
)k
]
,

(5.8)
where

Q(n) =
1

2
(l1 + l2) + i

√
3

2
(l1 − l2) =

3∑

k=1

nk e
iπ(2k−1)/3 , (5.9)

and l1, l2, n = {n1, . . . , nN} are integers, while the coefficient

b =
3
√

3

2π
q2

∗ , (5.10)

where star denotes complex conjugation.
After numerical calculations we have noticed that better agreement with

the exact results is obtained for

b =
3
√

3

2π

(
q2

∗ − 2

3

)
. (5.11)
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In order to show this, we calculated the values of the conformal charge q3

for h = (1 + nh)/2 for nh = 0, 1, . . . , 19. We evaluated numerically q3 with

Im[q3] = 0, i.e. a
(r)
k , and separately with Re[q3] = 0, i.e. a

(i)
k where the

superscript (i) and (r) refers to imaginary and real parts, respectively. Then

we fitted expansion coefficients a(r,i)
k for large |q3| in the range 0 . . . 5000

with high numerical precision. In order to save space in Table II we present
results only for nh = 0, 1, 2 and 3.

TABLE II

The fitted coefficient to the series formula of q
1/3

3
(5.8) with nh = 0, 1, 2 and 4.

nh coef. k = 3 k = 4 k = 5 k = 6 k = 7

0 a
(r)
k

0.509799695633 −10.065761318 −76.722084 −1508.9274 −44580.

a
(i)
k

3.490200304367 20.065761318 104.722084 −600.068 −40411.

a
(r)
k

+ a
(i)
k

4.000000000000 10.000000000 28.000000 −2108.995 −84991.

1 a
(r)
k

−2.585231705744 −34.383865187 −209.366287 −1828.065 −26404.

a
(i)
k

6.585231705744 44.383865187 237.366287 340.913 −16641.

a
(r)
k

+ a
(i)
k

4.000000000000 10.000000000 28.000000 −1487.152 −43046.

2 a
(r)
k

1.336317342408 1.2054728742 −3.08256385 −31.51219 −196.87

a
(i)
k

2.663682657592 8.7945271258 31.08256385 110.89046 377.64

a
(r)
k

+ a
(i)
k

4.000000000000 10.0000000000 28.00000000 79.37827 180.77

3 a
(r)
k

2.250754858908 6.7220206127 22.76106772 79.325249 268.13

a
(i)
k

1.749245141092 3.2779793873 5.23893228 −0.430149 −75.81

a
(r)
k

+ a
(i)
k

4.000000000000 10.0000000000 28.00000000 78.895100 192.32

Coefficients ak for k = 0, . . . , 2 agree with formula (5.8), i.e. a0 = 1,
a1 = 1 and a2 = −1, but as we previously mentioned in (5.10) and (5.11),
the expansion parameter b/ |Q(n)|2 is different. This difference comes from
the fact that the series formula (5.8) with (5.10) is derived in the limit

1 � |q1/2
2 | � |q1/3

3 |. Since in (5.11) the value of q∗2 is much bigger then 2/3
the value of the parameter b from (5.11) in the above limit goes to (5.10).
One may suppose therefore, that the factor 2/3 in Eq. (5.11) as subleading
was omitted in the derivation presented in Ref. [21].

Secondly, we see that the coefficients ak with k > 2 start to depend on
nh. Thus, to describe the behaviour of q1/3

3 properly, we have to introduce
a second expansion parameter, for example q2. We can also notice that for
k > 2 for a few first coefficients a(i)

k +a
(r)
k ∈ Z and this sum does not depend

on nh.
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Moreover, we can see that after the numerical fitting we obtain two
different sets of the expansion coefficients, {a(r)

k } and {a(i)
k }, defined in (5.8),

for real and imaginary q
1/3
3 , respectively. Thus, in order to describe full-

complex values of q1/3
3 in terms of the series (5.8) we have to use both sets

of coefficients, one for real and one for imaginary part of q1/3
3 . Alternatively,

we can perform expansion with two small parameters, i.e. q∗2/|Q(n)|2 and
1/|Q(n)|2. Since the leading terms, i.e. with a0, a1 and a2, for real and

imaginary q
1/3
3 are equal and known analytically, good approximation is

obtained using Eq. (5.8) with (5.11) and neglecting higher order terms with
ak≥3.

6. Summary

In this work we have considered the scattering processes in the Regge
limit (2.1) where the compound reggeized gluon states, i.e. Reggeons, prop-
agate in the t-channel and interact with each other. We have performed cal-
culations in the generalized leading logarithm approximation (GLLA) [7–9],
in which a number of Reggeons in the t-channel is constant. We attempted to
find a scattering amplitude of hadrons with multi-Reggeon exchange. How-
ever, a structure of reggeized gluon states as well as their properties have
turned out to be so reach, complicated and interesting that in this work we
have focused on description of the Reggeon state properties as well as on
analysing the spectra of the energy and integrals of motion. The case for
N = 2 reggeized gluons was calculated in Ref. [4, 15, 16]. Thus in this work
we focused on N = 3 Reggeon states and dependence of their spectrum on
conformal Lorentz spin nh and scaling dimension 1 + 2νh defined in (2.22).

In order to simplify the problem one applies the multi-colour limit [10],
which makes the N -Reggeon system (2.10) SL(2,C) symmetric (2.5) and
completely integrable. In this limit the equation for the N -Reggeon wave-
function takes a form of Schrödinger equation (2.14) for the non-compact
XXX Heisenberg magnet model of SL(2,C) spins s [45–47]. Its Hamiltonian
describes the nearest neighbour interaction of the Reggeons [13,14] propagat-
ing in the two-dimensional transverse-coordinates space (2.5). The system
has a hidden cyclic and mirror permutation symmetry (2.25). It also pos-
sesses the set of the (N − 1) of integrals of motion, which are eigenvalues of
conformal charges [33], q̂k and q̂k, (2.19), (2.20). Therefore, the operators of
conformal charges commute with each other and with the Hamiltonian and
they possess a common set of the eigenstates. However, for the N = 3 case
the multi-colour limit does not change the Hamiltonian and its spectrum.
We have the two integrals of motion q̂2 and q̂3 and additionally constant
two-dimensional total momentum p.
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Eigenvalues of the lowest conformal charge, q2, may be parameterized
(2.21) by the complex spins s (2.7) and the conformal weight h, where h can
be expressed by the integer Lorentz spin nh and the real parameter νh related
to the scaling dimension (2.22). Solving the eigenequation for q2 we have de-
rived ansatzes for N -Reggeons states with an arbitrary number of Reggeons
N as well as arbitrary complex spins s. Since the N = 3 Reggeon ansatz
separates variables, the q3-eigenequation can be rewritten as a differential
equation of a Fuchsian type with three singular points (3.4) [18]. We have
solved this equation by a series method. Gluing solutions for different sin-
gular points, (3.9), (3.14) and (3.19), and taking care for normalization and
single-valuedness of the Reggeon wave-function (3.8) we have obtained the
quantization conditions (3.28), (3.29) for integrals of motion (q2, q2, q3, q3)
which we have solved numerically [23, 38]. For q3 = q3 = 0 the series solu-
tions have a simple form and we were able to resum them. Thus, we have
obtained analytical expressions for the three-Reggeon wave-functions with
q3 = 0 (3.31), (3.40).

In this work we have calculated the behaviour of the q3-spectrum for the
conformal Lorentz spins nh = 0, 1, 2, 3 and the scaling dimension 1 + 2iνh.
Some results for nh > 0 were presented before in Ref. [24] for nh = 1 and

Refs. [38] for nh = 3. The quantized values of q1/3
3 for given nh and fixed νh

exhibit the WKB lattice structure (5.2), which for N = 3 takes a form an
equilateral-triangle lattice (5.2), Figs. 1–5. The non-leading WKB correc-
tions move the quantized value of q3 away from the lattice and cause that
that the quantized values of q3 lie outside a disk located around the origin
of the lattice, i.e. near q3 = 0. However, for odd nh there exist states with
q3 = 0. They are called descendent states because their wave-functions are
effectively built of N = 2 Reggeon states. The non-descendent state with
the lowest energy belongs to nh = 0 sector and its energy is positive (5.6).
This state is double-degenerated and it appears to be the nearest one to the
origin of the q1/3

3 lattice. However, the ground state for N = 3 is the de-
scendent one with nh = 1 and energy E3 = 0 (5.7). Having found the exact
values of q3 we are able to calculate corrections to the WKB approxima-
tion (5.11), Table II. These corrections differ from the corrections obtained
earlier in Ref. [21]. The difference seems to be caused by using only one
expansion parameter η for two various conformal charges, q2 and q3. The
obtained corrections are subleading to the WKB approximation [21] which is

an expansion for large values of conformal charges, i.e. 1 � |q1/2
2 | � |q1/3

3 |.
The above calculations are of interest not only for perturbative QCD but

also to statistical physics as the SL(2,C) non-compact XXX Heisenberg spin
magnet model [45–47]. This work opens the way for further studies related
to the multi-Reggeon states as well as calculations of scattering amplitude
for concrete processes.
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Appendix A

Conformal invariants and other variables

Let us consider a difference of coordinates (z1 − z2). It changes under
the SL(2,C) transformation (2.5) as

(z′1 − z′2) =

(
az1 + b

cz1 + d
− az2 + b

cz2 + d

)
= (cz1 + d)−1(cz2 + d)−1(z1 − z2) . (A.1)

One can see that during the transformation (A.1) the factors (czi + d)−1

appear in front of the difference. These factors also exist in the transfor-
mation law of the wave-function (2.23). In order to cancel these factors one
can construct a fraction where the same additional factors appear in the
denominator and numerator of the constructed fraction variable.

The fraction variable

x =
(z1 − z2)(z3 − z0)

(z1 − z0)(z3 − z2)
≡ (z1z2z3z0) , (A.2)

is invariant under the SL(2,C) transformations (2.5). There is only one
independent invariant for four coordinates [34, 48]. One can see that the
fractions coming from the SL(2,C) transformation (A.1) cancel because

• the variable is a function of the coordinate differences (A.1),

• the coordinates in the numerator and denominator of the variable x
are the same.

Therefore, simplifying the partial fractions we can obtain expression like
((azi + b)(czj +d)− (azj + b)(czi +d)) which with making use of ad− cb = 1
goes to (zi − zj). As we can see, we have to build SL(2,C)-invariants from
differences of the coordinates.

It is easy to see that performing permutations of coordinates we can
construct six different dependent invariants

(z1z2z3z0) = x , (z3z2z1z0) = 1/x ,

(z2z3z1z0) = 1/(1 − x) , (z1z3z2z0) = 1 − x ,

(z3z1z2z0) = (x− 1)/x , (z2z1z3z0) = x/(x− 1) . (A.3)
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Let us take another product of zij

w′ =
(z′1−z′2)

(z′1−z′0)(z′2−z′0)
= (cz0+d)2

(z1−z2)
(z1− vz0)(z2−z0)

= (cz0+d)2w . (A.4)

One can see that since in the denominator we have two additional z0 variables
after the transformation we obtain a multiplying factor (cz0 +d)2. Similarly
for wh we obtain

w′h = (cz0 + d)2hwh . (A.5)

Now one can compare this transformation to the transformation of the
SL(2,C) wave-function (2.23).

For N = 3 the variables w = (z3 − z2)/((z3 − z0)(z2 − z0)) and x =
((z1 − z2)(z3 − z0))/((z1 − z0)(z3 − z2)) transform under the cycling permu-
tation (2.25) as

(x− 1) → (−x)
(x− 1)

→ 1

(−x) → (x− 1) ,

(−x) → 1

(x− 1)
→ (x− 1)

(−x) → (−x) ,

w → w(x− 1) → w(−x) → w , (A.6)

while under the mirror permutation:

(x− 1) → (x− 1)

(−x) → (x− 1) ,

(−x) → 1

(−x) → (−x) ,

w → wx→ w . (A.7)

For higher N we have more invariants. All of them can be constructed
[26] from

xr =
(zr−1 − zr)(zr+1 − z0)

(zr−1 − z0)(zr+1 − zr)
,

N∏

r=1

xr = (−1)N ,

N∑

r=1

(−1)r
N∏

k=r+1

xk = 0 . (A.8)

Variables xr are subject to the two conditions:

N∏

r=1

xr = (−1)N (A.9)
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and
N∑

r=1

(−1)r
N∏

k=r+1

xk = 0. (A.10)

From (A.9) we have x1 = (−1)N/
∏N

r=2 xr. From (A.10) we can calculate

x2 =

N∑
r=2

(−1)r
N∏

k=r+1

xk

N∏
k=3

xk

. (A.11)

Interchangeably, one can derive from (A.9), xN = (−1)N/
∏N−1

r=1 xr, and
next from (A.10)

xN−1 =
(−1)N

N−1∑
r=1

(−1)r
N−2∏
k=r

xk

. (A.12)

Thus, we see that we have for N particles N−2 independent invariants built
of the particle coordinates zi.

Appendix B

Solutions for N = 3 and s = 0 around x = 0+

The eigenequation for q̂3 (3.3) is a differential equation of the third or-
der so around each singular point, x = 0, 1,∞, it has three independent
solutions. Around x = 0+ we have an indicial equation

(h− n− r)(r + n− 1)(n+ r) = 0 , (B.1)

so its solutions are given by r1 = h, r2 = 1 and r3 = 0. As we can see
we have two cases when h 6∈ Z (one solution with Log(x)) and h ∈ Z (one
solution with Log(x) and one solution with Log2(x)). As we will see below
we also have to consider separately solutions with q3 = 0.

Using the same method we can also found solutions around x = 1 and
∞. However, to save the space we do not present them.
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Solutions for q3 6= 0 and h 6∈ Z

In the first case, i.e. for h 6∈ Z and q3 6= 0 the solutions look as follows

u1(x) = xr1

∞∑

n=0

an,r1x
n ,

u2(x) = xr2

∞∑

n=0

an,r2x
n ,

u3(x) = xr3

∞∑

n=0

bn,r3x
n + xr2

∞∑

n=0

an,r2x
nLog(x) , (B.2)

where a0,r is arbitrary (e.g. equal to 1)

a1,r =
(iq3 − (h− 2r)(h− r)r)

(h− 1 − r)r(1 + r)
a0,r , (B.3)

and

an,r =
(h−m+ 1)(h−m+ 2)(m − 2)

(h−m)(m− 1)m
an−2,r

+
(iq3 − (1 + h−m)(m− 1)(h− 2(m− 1)))

(h−m)(m− 1)m
an−1,r , (B.4)

with m = n+r, whereas b0,r3 = ((h−1)/iq3)a0,r2 and b1,r3 is arbitrary. One
can notice that coefficient b0,r3 is well defined only for q3 6= 0. Moreover,

b2,r3 =
2+(h−3)h−iq3

2(2−h) b1,r3 +
3h−8

2(2−h) a1,r3 +
6+h(h−6)

2(2−h) a0,r3 , (B.5)

and

bn,r3 =
(h+ 1 −m)(h−m+ 2)(m− 2)

(h−m)(m− 1)m
bn−2,r3

+
iq3 − (1 + h−m)(m− 1)(h− 2(m− 1))

(h−m)(m− 1)m
bn−1,r3

+
h2 + h(7 − 4m) + (m− 2)(3m− 4)

(h−m)(m− 1)m
an−3,r3

− h2 − 6h(m − 1) + 6(m− 1)2

(h−m)(m− 1)m
an−2,r3

− 2m− 3m2 + h(2m− 1)

(h−m)(m− 1)m
an−1,r3 , (B.6)

where m = r3 + n.
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Solution with q3 = 0

In this case a0,r defined in (B.2) is arbitrary (e.g. equal to 1). For the
first solution with r1 = h we have a1,r1 = 0 whereas for the third one a1,r3

is arbitrary (let us take 0). It turns out that we do not need Log-solutions.
The second solution is more complicated. One can derive the exact formula
for

an,r2 = a0,r2

n∏

k=1

k − h

k + 1
=

Γ (1 − h+ n)

Γ (1 − h)Γ (n+ 2)
a0,r2 , (B.7)

and performing summations

u1(x) = xr1

∞∑

n=0

an,r1x
n = xh a0,r1 ,

u2(x) = xr2

∞∑

n=0

an,r2x
n = a0,r2x

∞∑

n=0

Γ (1 − h+ n)

Γ (1 − h)Γ (n+ 2)
xn

= −a0,r2

1

h
((1 − x)h − 1) ,

u3(x) = xr3

∞∑

n=0

an,r3 x
n = a0,r3 . (B.8)

Gathering solutions (B.8) we have

u(x) = A+B(−x)h +C(x− 1)h , (B.9)

where A, B, C are arbitrary. The above solution was presented by Lipatov
and Vacca in Refs. [26, 29].

Solution with q3 6= 0, q2 = 0 and h = 1

For h = 0, i.e. q2 = 0, and q3 6= 0 we have a different set of solutions.
Here we have three solutions of the indicial equation (B.1) which are integer
r1 = 1, r2 = 1, r3 = 0 so the solutions are given by

u1(x) = xr1

∞∑

n=0

an,r1x
n ,

u2(x) = xr2

∞∑

n=0

bn,r2x
n + xr1

∞∑

n=0

an,r1x
nLog(x) , (B.10)

u3(x) = xr3

∞∑

n=0

cn,r3x
n + 2xr2

∞∑

n=0

bn,r2x
nLog(x) + xr1

∞∑

n=0

an,r1x
nLog2(x) ,
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where a0,r is arbitrary (e.g. equal 1)

a1,r =
r + r2(2r − 3)

r2(1 + r) − iq3
a0,r , (B.11)

and

an,r =−(m−3)(m−2)2

(m−1)2m
an−2,r+

(m−2)(m−1)(2m−3)−iq3
(m−1)2m

an−1,r , (B.12)

with m = n+ r, whereas

b1,r2 = 1
2 (−iq3b0,r2 + a0,r1 − 5a1,r1) , (B.13)

bn,r2 = −(n− 1)2(n− 2)

n2(n+ 1)
bn−2,r2 +

(2m3 − 3m2 +m− iq3)

n2(n+ 1)
bn−1,r2

+
6n(n−1)−1

n2(n+1)
an−1,r1+

(n−1)(5−3n)

n2(n+1)
an−2,r1−

(2+3n)

n(n+1)
an,r1 ,(B.14)

while c0,r3 = (−2)/(iq3) a0,r1 , c1,r3 is arbitrary and

c2,r3 = −1

2
iq3c1,r3 + b0,r2 − 5b1,r2 + 3a0,r1 − 4a1,r1 , (B.15)

cn,r3 = −(n− 2)2(n− 3)

n(n− 1)2
cn−2,r3 +

−iq3 − 6 + n(13 + n(2n− 9))

n(n− 1)2
cn−1,r3

− 2(n− 2)(3n− 8)

n(n− 1)2
bn−2,r2 +

26 − 36n+ 12n2

n(n− 1)2
bn−1,r2

− 6n2 − 8n+ 2

n(n− 1)2
bn,r2 +

2(7 − 3n)

n(n− 1)2
an−3,r1 −

6(3 − 2n)

n(n− 1)2
an−2,r1

+
2(2 − 3n)

n(n− 1)2
an−1,r1 . (B.16)

Solution with q2 = q3 = 0 and h = 1

In this case a0,r is arbitrary (e.g. equal to 1). For the first solution with
r1 = (h = 1) we have a1,r1 = 0 and for the third one a1,r3 with r3 = 0 is
arbitrary (let us take 0). The second solution is more complicated. We need
Log-solutions

u2(x) = xr2

∞∑

n=0

bn,r2x
n + xr1

∞∑

n=0

an,r1x
nLog(x) . (B.17)
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Using recurrence relations with b1,r2 = 1
2a0,r1 (and an,r1 = 0 for n > 0)

b2,r2 =
1

3
b1,r2 ,

bn,r2 = −(n− 1)2(n− 2)

n2(n+ 1)
bn−2,r2 +

(n− 1)n(2n− 1)

n2(n+ 1)
bn−1,r2 , (B.18)

one can derive an exact formula for bn,r2 = b1,r2 2/((n+ 1)n) and performing
summations with arbitrary b0,r2(= 0) we have x

∑∞
n=0 bn,r2x

n = 2b1,r2(x +
Log(1 − x) − xLog(1 − x)), so that

u1(x) = xr1

∞∑

n=0

an,r1x
n = a0,r1 = x a0,r1 ,

u2(x) = a0,r1(x+ Log(1 − x) − xLog(1 − x) + xLog(x)) ,

u3(x) = xr3

∞∑

n=0

an,r3x
n = a0,r3 . (B.19)

Gathering solutions (B.19) we have

u(x) = A+B(−x) + C((x− 1)Log(x− 1) + (−x)Log(−x)) , (B.20)

where A, B, C are arbitrary. See also Ref. [24].

Solution with q3 6= 0, q2 = 0 and h = 0

For h = 0, i.e. q2 = 0, and arbitrary q3 6= 0 we have three solutions

u1(x) = xr1

∞∑

n=0

an,r1x
n ,

u2(x) = xr2

∞∑

n=0

bn,r2x
n + xr1

∞∑

n=0

an,r1x
nLog(x) ,

u3(x) = xr3

∞∑

n=0

cn,r3x
n + 2xr2

∞∑

n=0

bn,r2x
nLog(x) + xr1

∞∑

n=0

an,r1x
nLog2(x) ,

(B.21)

where r1 = 1, r2 = 0 and r3 = 0. Here a0,r is arbitrary (e.g. 1)

a1,r =
−iq3 + 2r2

r(1 + r)2
a0,r , (B.22)
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and

an,r = −(m− 2)2

m2
an−2,r +

−iq3 + 2(m− 1)3

(m− 1)m2
an−1,r , (B.23)

with m = n+ r, whereas b0,r2 = −1/(iq3) a0,r1 and b1,r2 is arbitrary while

b2,r2 =
1

4
((2 − iq3)b1,r2 + 6a0,r1 − 8a1,r1) , (B.24)

bn,r2 = −(n− 2)2

n2
bn−2,r2 +

−iq3 + 2(n− 1)3

n2(n− 1)
bn−1,r2

− (n−2)(3n−4)

n2(n−1)
an−3,r1 +

6(n−1)

n2
an−2,r1 +

2−3n

n2(n−1)
an−1,r1 .(B.25)

The coefficient c0,r3 = 2/(iq3)(2a0,r1 + b1,r2) and c1,r3 is arbitrary and

c2,r3 =
1

4
(2 − iq3) c1,r3 + 3b1,r2 − 4b2,r2 + 3a0,r1 −

5

2
a1,r1 , (B.26)

cn,r3 = −(n− 2)2

n2
cn−2,r3 +

−iq3 + 2(n− 1)3

n2(n− 1)
cn−1,r3

− 2(n− 2)(3n − 4)

n2(n− 1)
bn−2,r2 +

12(n− 1)

n2
bn−1,r2 +

2(2 − 3n)

n(n− 1)
bn,r2

+
2(5 − 3n)

n2(n− 1)
an−3,r1 +

12

n2
an−2,r1 +

2(1 − 3n)

n2(n− 1)
an−1,r1 . (B.27)

Solution with h = 0 and q2 = q3 = 0

In this case a0,r is arbitrary. For the first solution with r1 = 1 we have
recurrence relations a1,r1 = 1

2a0,r1

a2,r1 =
1

3
a1,r1 ,

an,r1 = −(n− 1)2

n+ 1
an−2,r1 +

2n2

n+ 1
an−1,r1 . (B.28)

Summing series up we derive an exact formula for

u1(x) = xr1

∞∑

n=0

an,r1x
n = x

∞∑

n=0

xna0,r1

1

n+ 1
= −Log(1 − x) . (B.29)
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In the second solution, with r2 =0, we have arbitrary a1,r2 (let us take 0)
and solution is u2(x) = a0,r2 . The third one is with Log-solutions

u3(x) = xr3

∞∑

n=0

bn,r3x
n + xr2

∞∑

n=0

an,r2x
nLog(x) . (B.30)

Using recurrence relations with arbitrary b0,r3

b2,r3 =
1

2
b1,r3 ,

bn,r3 = −(n− 2)3

n2
bn−2,r3 +

2(n− 1)2

n2
bn−1,r3 , (B.31)

one can derive an exact formula for bn,r3 = b1,r3
1
n and performing summa-

tions with arbitrary b0,r3(= 0) we have
∑∞

n=0 bn,r3x
n = −b0,r3Log(1 − x).

All these solutions look like

u1(x) = xr1

∞∑

n=0

an,r1x
n = −a1,r3Log(1 − x) ,

u2(x) = xr2

∞∑

n=0

an,r2x
n = a0,r2 ,

u3(x) = xr3

∞∑

n=0

bn,r3x
n+a0,r2Log(x) = −b0,r3Log(1 − x)+a0,r2Log(x) .

(B.32)

Gathering solutions (B.32) we obtain

u(x) = A+BLog(−x) +CLog(x− 1) , (B.33)

where A, B, C are arbitrary. See also Ref. [24].

Solution with q3 6= 0 and h = 2

For h = 2 and q3 6= 0 we have three solutions

u1(x) = xr1

∞∑

n=0

an,r1x
n ,

u2(x) = xr2

∞∑

n=0

bn,r2x
n + xr1

∞∑

n=0

an,r1x
nLog(x) ,

u3(x) = xr3

∞∑

n=0

cn,r3x
n + 2xr2

∞∑

n=0

bn,r2x
nLog(x) + xr1

∞∑

n=0

an,r1x
nLog2(x) ,

(B.34)
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with r1 = 2, r2 = 1, r3 = 0. Here a0,r1 is arbitrary (e.g. 1)

a1,r1 =
−iq3 + 2r(r − 1)(r − 2)

r(r2 − 1)
a0,r1 (B.35)

and

an,r1 = −(m− 3)(m − 4)

m(m− 1)
an−2,r1+

−iq3 + 2(m− 1)(m− 2)(m− 3)

(m− 2)(m− 1)m
an−1,r1 ,

(B.36)
with m = n+ r1, whereas b0,r2 = −2/(iq3) a0,r1 and b1,r2 is arbitrary while

b2,r2 =
1

6
(−iq3 b1,r2 + 4a0,r1 − 11a1,r1) , (B.37)

bn,r2 = −(n− 2)(n− 3)

n(n+ 1)
bn−2,r2 +

−iq3 + 2(n− 2)(n− 1)n

n(n2 − 1)
bn−1,r2

− 11 + 3(n− 4)n

n(n2 − 1)
an−3,r1 + +

6(n− 2)n+ 4

n(n2 − 1)
an−2,r1

+
1 − 3n2

n(n2 − 1)
an−1,r1 . (B.38)

Moreover, c0,r3 = 2
iq3
b0,r2 and c1,r3 = −4(b0,r2+b1,r2 )

iq3
− 6a0,r1

iq3
and c2,r3 is

arbitrary while

c3,r3 =
1

6
(−iq3c2,r3 + 2b0,r2 + 8b1,r2 − 22b2,r2 + 12a0,r1 − 12a1,r1) , (B.39)

cn,r3 = −(n− 3)(n− 4)

n(n− 1)
cn−2,r3 +

−iq3 + 2(n− 3)(n− 2)(n− 1)

n(n− 1)(n− 2)
cn−1,r3

+
2(3n(6 − n) − 26)

n(n− 1)(n− 2)
bn−3,r2 + +

4(11 − 12m+ 3m2)

n(n− 1)(n− 2)
bn−2,r2

− 2(2 − 6m+ 3m2)

n(n− 1)(n− 2)
bn−1,r2 −

6(n− 3)

n(n− 1)(n− 2)
an−4,r1

+
12

n(n− 1)
an−3,r1 −

6

n(n− 2)
an−2,r1 . (B.40)

Solution with q3 = 0 and h = 2

In this case a0,r is arbitrary (e.g. equal to 1). For the first solution with
r1 = 2 we have remaining coefficients an>0,r1 = 0. The second solution, with
r2 = 1, has an arbitrary a1,r2 (we can take it as 0), a2,r2 = 0 and third one
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with arbitrary a1,r3 , a2,r3 (we also set them to 0). All these solutions look
like

u1(x) = xr1

∞∑

n=0

an,r1x
n = x2a0,r3 ,

u2(x) = xr2

∞∑

n=0

an,r2x
n = xa0,r2 ,

u3(x) = xr3

∞∑

n=0

an,r3x
n = a0,r3 . (B.41)

Gathering solutions (B.41) we have

u(x) = A+B(−x)2 +C(x− 1)2 , (B.42)

where A, B, C are arbitrary. As we can see this solution corresponds to the
solution with q3 = 0 and arbitrary h 6∈ {0, 1}. For other integer h 6∈ {0, 1}
we can observe the same correspondence.
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