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LOW-LYING DIPOLE STRENGTHS IN 162,164Dy NUCLEI
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Collective 1+ scissors mode states of 162,164Dy isotopes are investigated
in the framework of the rotational-invariant QRPA model. Results are com-
pared with the ones from both the nuclear resonance fluorescence (NRF)
and inelastic neutron scattering experiments. The M1 strengths as well as
the total M1 in these well deformed isotopes in 2–4 MeV are calculated to
be in a general agreement with especially the NRF values.

PACS numbers: 21.60.Ev, 21.60.Jz, 21.10.Re, 27.70.+q

1. Introduction

Observation of a new class of rather collective isovector magnetic dipole
excitation at the excitation energy of ∼ 3MeV in the heavy deformed rare-
earth nucleus 156Gd in high resolution electron scattering experiment at
the Darmstadt electron linear accelerator [1] and its first report [2] opened
a new area in nuclear spectroscopy. This predominantly orbital mode was
originally predicted in the two-rotor model [3] and it is now referred to as
the scissors mode, where the neutrons and protons are assumed to behave as
rigid deformed bodies making scissors-like oscillations against each other and
around a common axis. The first nuclear resonance fluorescence experiment
at the Stuttgart Dynamitron [4] confirmed these strong M1 excitations in
156Gd and in the neighboring Gd isotopes 158,160Gd. Since then there have
been numerous studies on the subject, both theoretical and experimental
(see, for instance, [6–9]). Various collective models and microscopic calcula-
tions in which the isovector M1 excitations are explained microscopically by
the quasiparticle random phase approximation (QRPA) have been included
in the theoretical approaches [3, 5, 6, 10].

Many data have been collected on scissors mode excitations for the rare-
earth nuclei. Accurate determination of the probability of theM1 transitions
has been shown to be very important in order to understand the structure
of these excitations [11].
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162Dy and 164Dy have been experimentally investigated at the Stuttgart
high resolution photon scattering facility [12], and have been observed to
exhibit interesting characteristics. Among them are the large B(M1)↑ at
2.9MeV in 162Dy, more 1+ states in 164Dy compared to 162Dy, which could be
associated with the “deformed” shell effects, and anomalously large summed
M1 strengths compared to the neighboring nuclei. In addition, the transition
probability of these well deformed nuclei have been shown to be concentrated
around 3MeV and there exist three 1+ states with very large B(M1) ↑
around 3.1MeV in 164Dy. The strengths extracted from more recent NRF
experiments on 162,164Dy [13] have been in perfect agreement with those
of [12]. The inelastic neutron scattering (INS) reaction, combined with the
Doppler-shift attenuation method (DSAM), has also been used in order to
study the 1+ scissors mode states [14]. Even though the M1 strengths
determined from [14] are in general agreement with those measured, for
instance, in [12] and [13], in 164Dy a significant discrepancy is observed for
the states above 3.1MeV for which the B(M1)↑ strengths are noticeably
lower than the NRF values.

In this work, the collective IπK = 1+1 scissors mode states of two even-
even dysprosium nuclei 162Dy and 164Dy are studied in the framework of the
rotational-invariant QRPA model. This model has been shown to describe
for instance the fragmentation of the scissors mode and the δ2 dependence
of the summed B(M1) ↑ strength of the Sm [21], Ce and Nd [18] isotopes
satisfactorily.

2. Description of 1
+ states

In the quasiparticle representation, the model Hamiltonian of a system
with nucleons interacting via pairing forces in the axially symmetric average
field can be written as

Hsqp =
∑

sτ

εs(τ)
(

α+
s (τ)αs(τ) + α+

s̃ (τ)αs̃(τ)
)

, (1)

where εs is the single quasiparticle energy, τ is n for neutrons and p for
protons, α+

s (αs) is the quasiparticle creation(annihilation) operator, and |s̃〉
is the time-reversal of the single particle state |s〉. This Hamiltonian, which
represents the quasiparticle excitations, is not invariant under rotational
transformations due to the axially symmetric isoscalar and isovector terms
of the average field.

A satisfactory description of the scissors mode 1+ states is possible by
restoration of the broken invariance [19, 20], and the rotational invariance
of the quasiparticle Hamiltonian in Eq. 1 can be restored by including the
effective isoscalar (h0) and isovector (h1) forces. These terms are selected in
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such a way that the new Hamiltonian commutes with the Jν components of
the total angular momentum

[Hsqp + h0 + h1, Jν ] = 0 , (2)

where ν = ±. Detailed definitions of h0 and h1 are given in [21]. Consid-
ering these restoring forces and the isovector spin–spin interactions, which
generate the 1+ states, one obtains the model Hamiltonian of the system as

H = Hsqp + h0 + h1 + Vστ , (3)

where

Vστ =
1

2
κστ

∑

i6=j

~σi ~σj~τi~τj (4)

with ~σ and ~τ being the Pauli spin and isospin matrices, respectively. Several
works have been published without restoring the broken rotational invariance
(see, for instance, [16] and [17]).

In RPA, the excited collective 1+ states are defined as single-phonon
states described by

|ψi〉 = Q+
i |ψ0〉 =

1√
2

∑

ss′,τ

[ψi
ss′(τ)C

+
ss′

(τ) − φi
ss′(τ)Css′(τ)]|ψ0〉 , (5)

where Q+
i represents the phonon creation operator, |ψ0〉 is the phonon vac-

uum, C+
ss′

(Css′) are the two-quasiparticle creation (annihilation) operators

with Css′ = {αsαs′}IπK=1+1, and ψi
ss′ and φi

ss′ are two-quasiparticle ampli-
tudes satisfying the normalization condition

∑

ss′,τ

[

ψi2

ss′(τ) − φi2

ss′(τ)
]

= 1 . (6)

The dispersion equation for the excitation energy of 1+ states

ω2
i Jeff(ωi) = 0 (7)

is obtained solving the equations of motion

[Hsqp + h0 + h1 + Vστ , Q
+
i ] = ωiQ

+
i , (8)

and using the conventional procedure of RPA. In Eq. (7), ωi represent the
energies and

Jeff = J − 8κστ

X2

Dσ

+
ω2

i

γ1 − F1
J2

1 − 8κστ

ω2
i

γ1 − F1

JX2
1 − 2J1XX1

Dσ

, (9)
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with the four parts on the right side of the equation representing contribution
of the restoring isoscalar (h0) and the isovector forces (h1), the spin forces
and the interference of all the three forces, respectively. Definition of the
individual symbols in Eq. (9) as well as the neutron–neutron and proton–
proton two-quasiparticle amplitudes are explicitly given in [21].

The most characteristic quantity of 1+ states is the reduced M1 transi-
tion probability in terms of the nuclear magneton squared (µ2

N) is given by

B(M1, 0+ → 1+
i ) =

3

4π

∣

∣

∣
Rp(ωi) +

∑

τ

(gτ
s − gτ

l )Rτ (ωi)
∣

∣

∣

2
µ2

N , (10)

where gs is the spin and gl is the orbital gyromagnetic ratios of the free
nucleons

Rp(ωi) =
∑

ss′

(p)
εss′Lss′jss′(ψ

i
ss′ + φi

ss′) , (11)

and

Rτ (ωi) =
∑

ss′

(τ)
εss′Lss′sss′(ψ

i
ss′ + φi

ss′) , (12)

where εss′ are two-quasiparticle energies, sss′ and jss′ are the single particle
matrix elements of the spin and angular momentum operators, respectively.
Lss′ are expressed through the u and v parameters of the Bogolyubov canon-
ical transformation as Lss′ = usvs′ − us′vs.

3. Results and discussion

The collective 1+ scissors mode states of two even–even dysprosium
nuclei 162Dy and 164Dy are studied in the framework of QRPA. Calcula-
tions have been performed using both the non-rotational and the rotational-
invariant model. For both calculations, the spin–spin interaction constant is
chosen as κ = 21/AMeV where A is the mass number, the average field de-
formation parameter δ is calculated according to [22] in the first order using
the deformation parameters β2 defined from the experimental quadrupole
moments [23], and the ground state neutron and proton pairing energies are
calculated based on [24]. Results from the non-rotational model have indi-
cated that it overestimates the summed B(M1) ↑ sometimes twice the ex-
perimental value. Furthermore, comparison between the non-rotational and
the rotational-invariant model has shown that separation of the rotational
branch from the 1+ states increases the fragmentation and collectivization
of the 1+ states, consistent with the comments in [21]. As a consequence,
only the rotational model results are given here.
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Results of the calculation as well as of the experimental data for the
two nuclei of interest are illustrated in Fig. 1, where energies of 1+ states
are plotted against the reduced transition probability B(M1)↑ in the energy
interval 2–4MeV. Experimental data points are taken from [13] (filled circles)
and [14] (blank circles). The arrow at 2.9MeV in 162Dy (upper plot in
Fig. 1) indicates that INS measurement of the B(M1)↑ at this energy is
larger than the indicated value (see [14]). The 164Dy states with tentative
parity assignments based on K = 1 from [13] are not included in the figure
(bottom plot).

Fig. 1. Energy and B(M1) ↑ strengths for each 1+ state for 162Dy (top plot) and
164Dy (bottom plot) from NRF (filled circles), INS (open circles) and rotational-

invariant QRPA (verticle lines).

Calculation results are also given in Table I. Energies with B(M1) ↑<
0.025µ2

N are excluded from both the figure and the tables. The summed
B(M1)↑ strengths from the experiments and the theory are given in Table II,
where the experimental errors have been obtained by quadratically adding
up the individual errors from the contributing energy levels in the interval
2–4MeV. In the following, theory results and their comparison with the data
are discussed for 162Dy and 164Dy separately.
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TABLE I

Calculation results for energy and B(M1) ↑ for 162Dy and 164Dy.

162Dy 164Dy

Etheo(MeV) B(M1) ↑ (µ2
N) Etheo(MeV) B(M1) ↑ (µ2

N)

2.486 0.185 2.425 0.257

2.575 0.612 2.489 0.362

2.723 0.452 2.762 0.308

2.935 1.361 3.034 1.059

3.174 0.152 3.184 0.882

3.578 0.539 3.238 0.037

3.813 0.027 3.328 0.158

3.953 0.363 3.665 0.182

3.846 0.164

3.963 0.079

TABLE II

Experimental and theoretical summed B(M1) ↑ strengths for 162Dy and 164Dy in
the energy interval 2–4 MeV.

∑

B(M1) ↑ (µ2
N)

162Dy 164Dy

NRF 3.24±0.13 5.061±0.149

INS > 1.93± (> 0.32) 2.88±0.39

Theory 3.691 3.488

3.1. Results for 162Dy

Data from [12–14] indicate a few 1+ states with a large B(M1)↑ at
2.9MeV. The theory almost perfectly estimates this state with a noticeably
large B(M1)↑ comparable with the experimental data. Calculation results
are also somewhat consistent with the data in terms of the location of the
cluster at low energies. Since the INS data determine just the lower limit
for the strength at 2.9MeV, calculation results for the summed B(M1)↑
are compared with the NRF data only. Even though the calculated summed
strength is a little larger than that of the NRF data, which could be expected
since the experimental data may not have detected or may not sometimes be
certain about every 1+ state, they still could be considered to be in a good
agreement.
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3.2. Results for 164Dy

As mentioned in Section 1, this nucleus has much larger fragmentation
than the 162Dy isotope and has a very large summed B(M1)↑ compared
to the neighboring nuclei. Although the NRF data [12, 13] give consistent
results, the INS data agree with the NRF data only in the energy below
3.1MeV (bottom plot in Fig. 1). Above that, although both the NRF and
INS data give three states, the B(M1)↑ values measured from the former are
nearly a factor of 3 larger than those obtained from the latter. The theory
successfully predicts two states around 3.1MeV with a B(M1)↑ consistent
with the NRF data (see the bottom plot in Fig. 1). It also estimates several
states with relatively smaller B(M1)↑ at lower energies, which is also in good
agreement with the data, both the NRF and INS. Meanwhile, although the
summed B(M1) ↑ predicted by the theory is larger than that of the INS as
expected, it is smaller than the value measured by NRF. However, it should
be noted that the theory prediction is still consistent with the NRF within
the statistical uncertainty.

The authors would like to thank A.A. Kuliev for enlightening discussions.

REFERENCES

[1] A. Richter, Proceedings of the Int. Conf. on Nuclear Physics, Ed. by P. Blasi
and R.A. Ricci, Tipografica Compositori Bologna, Italy, Vol. 2, pp.189–217,
1983.

[2] D. Bohle, A. Richter, W. Steffen, A.E.L. Dieperink, N. Lo Iudice, F. Palumbo,
O. Scholten, Phys. Lett. B137, 27 (1984).

[3] N. Lo Iudice, F. Palumbo, Phys. Rev. Lett. 41, 1532 (1978).

[4] U.E.P. Berg, C. Bläsing, J. Drexler, R.D. Heil, U. Kneissl, W. Naatz,
R. Ratzek, S. Schennach, R. Stock, T. Weber, B. Fischer, H. Hollick,
D. Kollewe, Phys. Lett. B149, 59 (1984).

[5] F. Iachello, Phys. Rev. Lett. 53, 1427 (1984).

[6] A. Richter, Nucl. Phys. A507, 99c (1990).

[7] P. von Brentano, A. Zilges, R.D. Heil, R.-D. Herzberg, U. Kneissl, H.H. Pitz,
C. Wesselborg, Nucl. Phys. A557, 593c (1993).

[8] A. Richter, Prog. Part. Nucl. Phys. 34, 261 (1995).

[9] U. Kneissl, J. Margraf, H.H. Pitz, P. von Brentano, R.-D. Herzberg, A. Zilges,
Prog. Part. Nucl. Phys. 34, 285 (1995).

[10] R. Nojarov, Prog. Part. Nucl. Phys. 34, 297 (1995).

[11] U. Kneissl, Prog. Part. Nucl. Phys. 24, 41 (1990).

[12] C. Wesselborg, P. von Brentano, K.O. Zell, R.D. Heil, H.H. Pitz, U.E.P. Berg,
U. Kneissl, S. Lindenstruth, U. Seemann, R. Stock, Phys. Lett. B207, 22
(1988).



2712 M. Bektasoglu, H. Yakut

[13] J. Margraf, T. Eckert, M. Rittner, I. Bauske, O. Beck, U. Kneissl, H. Maser,
H.H. Pitz, A. Schiller, P. von Brentano, R. Fischer, R.-D. Herzberg,
N. Pietralla, A. Zilges, H. Friedrichs, Phys. Rev. C52, 2429 (1995).

[14] E.L. Johnson, E.M. Baum, D.P. DiPrete, R.A. Gatenby, T. Belgya, D. Wang,
J.R. Vanhoy, M.T. McEllistrem, S.W. Yates, Phys. Rev. C52, 2382 (1995).

[15] A.A. Kuliev, N.I. Pyatov, Yad. Fiz. 9, 313, 955 (1969); Phys. Lett. 28B, 443
(1969).

[16] S.I. Gabrakov, A.A. Kuliev, N.I. Pyatov, Yad. Fiz. 12, 82 (1970);
S.I. Gabrakov, A.A. Kuliev, N.I. Pyatov, Joint Institute for Nuclear Research
(JINR) Dubna, E4–4908, (1970).

[17] S.I. Gabrakov, A.A. Kuliev, N.I. Pyatov, D.I. Salamov, H. Schulz, Nucl. Phys.
A182, 625 (1972).

[18] A.A. Kuliev, E. Guliyev, M. Gerçeklioğlu, J. Phys. G28, 407 (2002).

[19] A. Faessler, R. Nojarov, F.G. Scholtz, Nucl. Phys. A515, 237 (1990).

[20] A.A. Kuliev, N.I. Pyatov, Yad. Fiz. 20, 297 (1974).

[21] A.A. Kuliev, R. Akkaya, M. Ilhan, E. Guliyev, C. Salamov, S. Selvi,
Int. J. Mod. Phys. E9, 249 (2000).

[22] K.E.G. Löbner, M. Vetter, V. Hönig, At. Data Nucl. Data Tables A7, 495
(1970).

[23] S. Raman et al., At. Data Nucl. Data Tables, 36, 1 (1987).

[24] P. Möller, J.R. Nix, Nucl. Phys. A536, 20 (1992); P. Möller, J.R. Nix,
W.J. Swiatecki, At. Data Nucl. Data Tables, 59, 185 (1995).


