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WINDING STRINGS IN SINGULAR SPACETIMES
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Evolution of winding strings in spacetimes with cycles whose proper
lengths depend on time is examined. It was established earlier that ex-
tended objects wrapping the shrinking dimension in compactified Milne
spacetime enjoy classically nonsingular evolution. Extensions of this obser-
vation to other spacetimes are discussed.

PACS numbers: 11.25.–w, 11.27.+d, 98.80.Bp, 98.80.–k

1. Introduction

One of the most fascinating questions in cosmology concerns the nature
of the apparent singularity assumed to lie at the origin of the Big Bang.
For many reasons this question cannot be resolved within classical general
relativity, and it is natural to seek insights based on string theory, which
has provided numerous examples of consistent physics even in background
spacetimes which are classically singular. Perturbative examples of this in-
clude, for example, Euclidean orbifold compactifications [1]. This has fueled
hopes that the initial cosmological singularity would also find a consistent de-
scription, perhaps involving a smooth transition from what has been termed
a “pre-Big-Bang” era [2]. In recent years a lot of attention was devoted
to studies of string theory spacetimes with cosmologically relevant features
such as time-dependence and occurrence of space-like singularities. These
studies focused mostly on various time-dependent orbifolds [3–11] (the sub-
ject is reviewed in references [12] and [13]). This activity was hampered by
the lack of a proper second-quantized description of string theory, but some
semi-heuristic approaches to this have been formulated [14].

One of the simplest examples of a spacetime background with a space-
like singularity is compactified Milne space [4]. Interest in this particular
case is motivated by its apparent simplicity, as well as its possible signifi-
cance for the cyclic Universe scenario [15, 16] (as realized in the heterotic
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M-theory framework [17, 18]). This spacetime involves a compact direction
whose radius decreases linearly with time t until it reaches zero, and then
expands linearly at the same rate. Point particles, as well as generic config-
urations of extended objects, experience blue-shifting as the radius shrinks.
This effect disappears if the momentum in the shrinking direction vanishes,
but even for such special initial conditions the problem cannot be dismissed,
since any infinitesimal momentum in the shrinking direction will lead to
nonanalytic behavior of generic metric perturbations [19] as t goes to zero.
Turok et al. [19] argue that for those states one has to seek a description
based on an expansion in inverse powers of α′, i.e. opposite to the expansion
which leads to Einstein’s gravity at large distances. One may adopt also a
somewhat simple-minded view according to which the blue-shifted objects
decouple leaving an effective theory valid close to the singularity which now
involves only states corresponding to objects whose mass remains finite in
that region. The authors of [19] point out however that in contrast to point
particles, states of extended objects winding uniformly around the shrink-
ing direction evolve classically in a smooth and unambiguous way through
the singularity. This is due to the fact that for a wrapped object the di-
mension which is wrapped ceases to be a direction of possible physical mo-
tion. The main focus of [19] is actually on winding states of M2-branes in
M-theory, but the case of winding strings is interesting in its own right. In
the M-theory context such states arise as M2-branes wrapping tori, whose
moduli are time-dependent. Zero-modes of strings wrapped on the Milne cir-
cle can be viewed either as particles with time-dependent mass in Minkowski
space, or as particles of fixed mass in a spacetime geometry which is singu-
lar due to a conformal factor which vanishes at t = 0. Unambiguous and
smooth evolution of particles in such a situation is somewhat surprising,
and one would like to understand better how this comes about. A part of
Section 2 below is devoted to this issue.

This note extends the considerations of winding strings and membranes
appearing in [19] to somewhat more general background spacetimes involv-
ing shrinking cycles. Such backgrounds are of interest to cosmology, since
there is no reason to assume that only one compact dimension undergoes
periodic expansion and contraction, as in the simplest incarnations of the
cyclic universe scenario. Indeed, such spacetimes have recently been the fo-
cus of much activity aimed at understanding the current phase of accelerated
expansion of the universe [20–25]. It appears however that the observation
of Turok et al. does not directly generalize to cases when more than one
cycle is shrinking. The reasons for this are discussed in Section 5.

The considerations reported below are presented in terms of bosonic
string theory. More realistically one would need to embed this in a super-
string setting, which involves additional degrees of freedom on the world-
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sheet. In particular, choices need to be made as to the boundary conditions
for spacetime fermions when they are continued around any cycles. The
mass and interpretation of quantum string states corresponding to the clas-
sical winding modes discussed here will depend on how this is done. This
note does not address this issue; the considerations presented here are clas-
sical, in the spirit of [19]. It should also be kept in mind that considerations
of time-dependent backgrounds of this type require verifying consistency at
the quantum level (which for strings implies checking beta-functions for the
worldsheet sigma model). Examples are known where this can be done, but
this aspect of the problem is left for future work.

The focus on winding modes in a cosmological setting has been a leitmotif
in string cosmology since the early papers by Brandenberger and Vafa [26].
Quite recently the condensation of light winding states in a context very
close to the one discussed here appeared in considerations of chronology
protection [27].

While this note was being written a couple of papers [28, 29] appeared,
where similar issues are addressed.

2. Strings in Milne spacetime

This section is devoted to the example of compactified Milne space dis-
cussed in [19]. Compactified Milne spacetime has the metric

ds2 = −dt2 + β2t2dθ2 + dxkdxk, k = 1 . . . d − 1 , (2.1)

where the coordinate θ describes an S1, so that

θ ≈ θ + 2π , (2.2)

and βt is the (instantaneous) radius1 of the S1. The coordinate t is the
time, assumed to run from −∞ to ∞. This metric is locally flat, but it has
a curvature singularity at t = 0 unless β = 1.

The classical dynamics of a relativistic string in a background metric G
can be described by means of the Nambu–Goto action [32, 33]

S = −
1

4πα′

∫

dτdσ
√

(∂τX ∂σX)2 − (∂τX t∂τX)(∂σX ∂σX) , (2.3)

where Xµ(τ, σ) denote the string embedding and the “dot” denotes the scalar
product defined by G. Using the notation

(X0, . . . , Xd) ≡ (T,X1, . . . , Xd−1,Θ)

1 In fact, as discussed in [19], one could just as well have a segment instead of S
1 here.

The only important point is that this dimension is shrinking as the singularity is
approached.
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the string zero-modes in the winding sector labeled by w are of the form

T = t(τ), Xk = xk(τ), Θ = wσ . (2.4)

For these objects motion in the shrinking direction is a gauge degree of
freedom, so these objects are naturally immune to blue-shifting [19]. Indeed,
their mass is to first approximation given by their tension times their length,
and since their length tends to zero as the classical singularity is approached,
they become light (and instantaneously massless) as it is crossed.

The action in the zero-mode sector follows from the Nambu-Goto action
upon substituting the metric (2.1) and the ansatz (2.4). It is given by

S0 = −

∫

dτ m(t)

√

ṫ2 − ~̇x
2
, (2.5)

where ~x denotes the transverse coordinates x1 . . . xd−1, the dot denotes a
derivative with respect to τ , and

m(t) =
|wt|β

2α′
≡ m0|t| . (2.6)

This can be interpreted as the action for a particle in Minkowski space, with
a mass depending on time according to (2.6).

It is convenient to fix the gauge T = τ (synchronous gauge), which leaves
the transverse coordinates xk as the independent degrees of freedom. The
action becomes

S0 = −

∫

dt m(t)

√

1 − ~̇x
2
. (2.7)

The momentum conjugate to ~x

~p =
m(t)~̇x

√

1 − ~̇x
2

(2.8)

is conserved. The Hamiltonian is simply

H =
√

~p 2 + m2(t) . (2.9)

As stressed by Turok et al. [19] this is not singular at t = 0. The equations
of motion

d~x

dt
=

~p
√

~p 2 + m(t)2
(2.10)
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are solved uniquely by

~x = ~x0 +
~p

m0
asinh

(

m0

|~p|
t

)

, (2.11)

where ~x0 is an integration constant [19].
One can also find this solution starting with the Polyakov form of the

action in conformal gauge [32, 33]:

S = −
1

4πα′

∫

dσdτ(−∂+T∂−T + T 2(∂+Θ∂−Θ) + ∂+
~X∂− ~X ) (2.12)

and imposing Virasoro constraints T++ = T−− = 0, where

T±± = −∂±T∂±T + T 2(∂±Θ∂±Θ) + ∂± ~X∂± ~X (2.13)

are the nontrivial components of the worldsheet energy-momentum tensor
in lightfront coordinates σ± ≡ τ ± σ.

There is also an alternative way of interpreting the action (2.5): one can
regard it as the action for a particle with fixed mass in a spacetime with
metric

ds2 = t2(−dt2 + dxkdxk) . (2.14)

This metric is singular: its determinant vanishes at t = 0. Invariants built
from the Riemann tensor also diverge there, so from the point of view of
differential geometry this is a real singularity, rather than a coordinate one.

It is illuminating to write the metric (2.14) in terms of a different time
coordinate, namely |ξ| = t2/2:

ds2 = −dξ2 + 2|ξ|dxkdxk . (2.15)

If ξ is positive this is the Friedman–Robertson–Walker metric for a uni-
verse filled with radiation and ξ would be identified with the cosmic time
(t being the conformal time). Allowing negative cosmic times in (2.15) is
an extension of the standard Friedman–Robertson–Walker spacetime, but
in contrast to the usual sense of extending the domain of validity of the
coordinate system, it does not remove singularity at ξ = 0 (t = 0) which is
a real singularity of the curvature. In spite of this fact, one is allowed to
consider time like geodesics describing smooth evolution of massive parti-
cles through the singular locus in the extended Friedman–Robertson–Walker
spacetime. To understand this point one has to consider the interpretation
of the ξ = 0 locus more carefully. One may argue that while the metric has a
real singularity, the problem of finding a time-like curve of minimum metric
length is consistent in spite of this fact because the length of any time-like
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curve is perfectly well defined even if it happens to cross the singular locus.
Within the framework of general relativity one cannot determine how the
singular locus is to be interpreted, but in the current context the situation
is clear: the interpretation of the coordinates x is given — they are global
Minkowski coordinates and the issue of degeneration does not arise. At t = 0
only the compact dimension shrinks to a point. There is no singularity of
the d-dimensional metric2.

3. Winding states in general cases with a shrinking cycle

This section is devoted to moving beyond the case of compactified Milne
spacetime. It is rather clear that the example reviewed in the previous
section is easy to generalize. A similar picture should be valid whenever
there is a cycle which degenerates with time. Strings wrapped on it will
have zero-modes which to an observer probing distances much larger than
the radius of the cycle will appear as particles with a time-dependent mass.
This argument should be valid at least in an appropriate adiabatic limit.

To be more explicit, let us focus on metrics which admit an isometry.
By a choice of coordinates one can always express such a metric as

ds2 = e2φ(du + A)2 + ds2
⊥ , (3.1)

where
ds2

⊥
= hµνdxµdxν , A = Aµdxµ (3.2)

and xµ, u are the spacetime coordinates with µ = 0 . . . d − 1. It will be
assumed that φ, hµν , Aµ do not depend on the coordinate u. This admits
the interpretation of u as a coordinate on anS1, that is, subject to periodic
identification.

Let us consider zero-modes of strings in this background. The zero-mode
ansatz reads:

(XA(σ, τ)) = (t(τ), x1(τ), . . . , xd−1(τ), wσ) . (3.3)

This class of configurations describes ground states of a string winding w
times around the direction u ≡ xd. The Nambu-Goto action for these modes
reduces to

S0 = −

∫

dτ m
√

−hµν ẋµẋν , (3.4)

where now

m =
|w|

2α′
eφ . (3.5)

2 The original Milne metric (2.1) is d + 1-dimensional.
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This has an obvious interpretation. From the point of view of winding string
zero-modes only the spacetime transverse to the cycle is visible. The Nambu-
Goto action reduces to that of a particle with mass given by (3.5) moving
in the geometry described by the metric ds2

⊥
. This mass is just the string

tension multiplied by the proper length of the winding string.
Suppose now that φ depends only on time and that hµν is static. In

that case, at least for slowly varying φ, it is natural to regard R(t) ≡ eφ

as the radius of the compact direction. If the original spacetime involves a
cycle which shrinks to zero and re-expands (for example, if φ ∼ γ ln(|t|) for
positive γ), then the situation is similar to the Milne example.

Equivalently, one can regard (3.4) as the action of a massive particle in
a spacetime described by the metric

ds2 = e2φhµνdxµdxν . (3.6)

These two possibilities clearly correspond to the freedom of choosing either
the Einstein frame or the string frame in the field theory low energy effective
action. The metric (3.6) has a real singularity under the above assumptions,
but (as discussed in the previous section) one expects that there should be
smooth geodesics passing through the singular locus. While it may be hard
to find geodesics for a specific metric of the form (3.6) explicitly, in many
cases one may confirm this expectation by computing the Hamiltonian and
verifying that it is not singular.

4. Examples

This section is devoted to some simple examples. First consider space-
times of the form

ds2 = −dt2 + β2t2ndθ2 + d~x 2 , (4.1)

for integers n > 1. In this case there is a curvature singularity regardless of
the periodicity of θ. The discussion of winding strings can be carried out
just as for the Milne case discussed in Section 2, the only modification being
that the effective mass (2.6) has to be replaced by

m(t) =
|w|β

2α′
|t|n . (4.2)

The equation of motion (2.10) can also be integrated analytically, giving
a smooth and unique answer which can be expressed in terms of elliptic
functions. It is amusing to note that defining the “cosmic time” ξ = tn one
has a Friedman–Robertson–Walker spacetime with a(ξ) = ((n + 1)ξ)n/(n+1)

which corresponds to the equation of state p = κρ with κ = (2 − n)/3n.
Thus the case n = 2 corresponds to pressureless dust.
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Another simple example is the metric considered by a number of authors
(see e.g. [30]) as an analytic continuation of Witten’s two-dimensional black
hole [31]:

ds2 = −dt2 + β2 tanh2 t dθ2 + d~x2 . (4.3)

This metric needs to be supplemented with the appropriate dilaton pro-
file [31]. When the coordinate θ is periodically identified there is a conical
singularity similar to what occurs for the Milne spacetime. The Nambu-
Goto action for zero-modes of the form (3.3) in synchronous gauge reduces
to the same for as (2.7) but with

m(t) =
β

2α′
|w tanh t| . (4.4)

In this case it is also simple to integrate the equation of motion (2.10) ana-
lytically, and one finds a unique and nonsingular result. This is perhaps not
surprising, since the metric (4.3) reduces to Milne at small t.

5. Multiple cycles

It is natural to ask whether the arguments given in the previous sec-
tions generalize to situations where there are multiple shrinking cycles. On
physical grounds one expects that any non-vanishing momentum in those
directions will lead to divergences as the cycles shrink. Thus, even if an
extended objects is wrapping one shrinking cycle it will still have singular
evolution if it can move in another direction which is shrinking. At the very
least, one can say that the system will be unstable. It might seem at first
glance that if all shrinking directions were wrapped, then blue-shift singu-
larities would not appear, by a directly generalizing the arguments of Turok
et al. [19]. Whether this can work or not depends on whether there is enough
gauge symmetry to render motion the wrapped dimensions unphysical (“pure
gauge”). In the case of wrapped strings it is easy to see that already in the
case of two cycles shrinking at the same time there is a linear combination of
them which is “pure gauge” in the above sense, and an orthogonal direction
which is not. Thus the system is unstable against blue-shift divergences once
there is any momentum in the latter dimension. So for strings one can have
zero-modes smoothly crossing the singular locus only in the case of a single
shrinking dimension.

One can verify this explicitly in a simple class of spacetimes generalizing
(3.1), namely

ds2 =

p
∑

i=1

e2φidu2
i + ds2

⊥ , (5.1)
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where one has p commuting isometries along the directions parameterized
by ui and

ds2
⊥ = hµνdxµdxν . (5.2)

Here φi, hµν depend only on the “transverse” coordinates x⊥ ≡ (x1, . . . , xd−p)
and possibly on t. Thus one can interpret the ui as being subject to pe-
riodic identification3. For simplicity, suppose also that the “dilatons” φi

depend only on time. A specific example would be a string winding a two-
dimensional torus with time-dependent radia:

ds2 = −dt2 + t2(β2
1(dxd)2 + β2

2(dxd−1)2) + ds2
⊥ . (5.3)

This is a simple generalization of the Milne example where two torus cycles
shrink to zero radius and then expand at the same rate.

Suppose p cycles are wrapped by the string. In such a situation the
zero-mode ansatz generalizing (3.3) takes the form

(XA(σ, τ)) = (t(τ), x1(τ), . . . , xd−p(τ), w1σ, . . . , wpσ) , (5.4)

where w1 . . . wp are winding numbers. This class of configurations describes
ground states of a string winding around the isometry directions. The
Nambu-Goto action (2.3) for these modes reduces to

S0 = −

∫

dτ m
√

−hµν ẋµẋν , (5.5)

where now

m =
1

2α′

√

∑

i

w2
i e

2φi . (5.6)

The interpretation is that winding strings move in the transverse space and
their mass is determined by their proper length. The Hamiltonian is given
by (2.9) with the time-dependent mass given by (5.6). It would seem at this
point that there is no blue-shift divergence. The problem with this reasoning
is that already the ansatz (5.4) does not allow for any motion in the isometry
directions. If one allows for any nonvanishing momentum in these directions
the blue-shift divergence will appear. There is no argument generalizing
that of [19] that can prevent this from happening. The problem is not
apparent, because in formula (5.4) there are no τ dependent terms in the
isometry directions. For the case of of a single shrinking dimension this was
justified by the analysis performed in [19], which pointed out that for strings
uniformly winding this dimension motion in this direction is not physical.

3 All periodic coordinates are taken to have a fixed periodicity 2π.
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This can be seen directly from the way worldsheet reparametrization acts
on the embedding coordinates:

δXµ(τ, σ) = va(τ, σ)∂aX
µ(τ, σ) . (5.7)

Consider a zeromode in a compact direction

Θ(τ, σ) = wσ + pτ . (5.8)

This should be compared with (2.4) — the above configuration includes
nonzero momentum p. However by a diffeomorphism (5.7) with

vσ = −
pτ

w
(5.9)

one can “gauge away” any nonzero momentum in (5.8) (as long as there
is nontrivial winding). Obviously, this no longer suffices if there is more
than one shrinking cycle, because there is not enough gauge freedom — in
that case only one combination of momenta in the compact directions can
be “gauged away”. This statement can also be verified by analyzing the
equations of motion which follow from the Nambu-Goto action. Equiva-
lently, one can analyze them starting with the Polyakov action (2.12) and
the Virasoro constraints. Just as in the argument given above one can see
that there is always only one linear combination of momenta which is set
to zero without instability. In the Polyakov approach this direction is given
by the linear combination of cycles defined by zero-modes of the Virasoro
constraints4. The directions orthogonal to this dimension do however suffer
from a blue-shift instability. A systematic analysis could also be carried out
in the Hamiltonian formalism, as done by Turok et al. [19] for the case of
Milne space. Clearly, for the case of higher p-branes there will also be limits
to how many cycles can shrink without necessarily leading to instability.

6. Conclusions

It was noted in [19] that at the classical level extended objects winding
the shrinking circle in Milne spacetime evolve smoothly through the singu-
larity. This note discussed the extension of the arguments given there to
some more general examples.

The main focus of [19] was the physics of winding membrane zero-
modes. The discussion of M-theory membranes in Milne spacetime presented
there generalizes to some of the more general spacetimes discussed above
(i.e. (3.1) and (5.1)) in the case of winding strings. However when more than

4 Specifically, this linear combination can be read off from the level-matching constraint
L̄0 = L0 (using standard notation).
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one cycle shrinks there are limits on the dimensionality of extended objects
which evolve smoothly and are stable. Specifically, in case of winding strings
such stable and smooth evolution (along the lines of [19]) is possible only if
no more than one cycle is shrinking.

The winding string examples discussed earlier in this paper can be viewed
as membranes multiply wrapped on tori with some of the torus cycles de-
generating in time. Instead of the Nambu-Goto action for the string one be-
gins with the membrane action and an appropriate zero-mode ansatz. This
leads to a nonsingular Hamiltonian if all shrinking dimensions are wrapped
(up to the limitations discussed in Section 5). The effective description thus
obtained pertains to a string if only one membrane dimension is wrapped,
or a particle if two membrane dimensions are wrapped.

The arguments presented here were based on two approximations: they
were limited to the classical approximation, and furthermore to a minisuper-
space approximation which ignored all non-zero string modes. To draw firm
conclusions about the physics of this problem it would be crucial to under-
stand the validity of this procedure. This would require a proper quantum
treatment, taking into account all worldsheet degrees of freedom, not just
the embedding coordinates X. Such attempts, with a somewhat different
focus, can be found for example in references [9, 10]. Those works raise
the possibility of significant back-reaction signalled by copious graviton cre-
ation. In [19] this was addressed in a WKB-type approximation which did
not point to such effects, but this still has to be regarded as an open ques-
tion. It is clearly fascinating to pursue these issues and understand what
message can be inferred from the apparently smooth passage enjoyed by
winding extended objects in singular spacetimes.

The authors would like to thank Robert Budzyński, Andrzej Krasiński
and Jerzy Lewandowski for helpful discussions.
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