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Meson–meson scattering amplitudes within the ’t Hooft model are con-
sidered. The results show that within this model the meson–meson scat-
tering at low energies proceeds by the exchange of an isoscalar σ-like res-
onance, as well as of an isovector ρ-like resonance. Masses and widths for
those resonances are calculated, and their dependence on the quark masses
and the quark–gluon coupling strength is studied.
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1. Introduction

In a previous article [1] we discussed pion–pion scattering within the
’t Hooft model. We were able to obtain a σ-like resonance in the pion–
pion scattering amplitudes. That calculation, however, did not consider
isospin and gluon exchange. The motivation for correcting these two aspects
was twofold: first, we expected to get more realistic masses and widths,
and second, we wanted to check the findings of [2] using Minkowski space
calculations. Although the values for the mass and width of the isoscalar
(σ) resonance did change slightly in the desired direction, our model is still
unphysical. However, the amplitudes observe the right chiral limit even
without the gluon exchange contribution. This contradicts the conclusions
of references [2] and [3], where a Euclidean metric was used, although the
dimensionality was not truncated. It appears that the Euclidian metric is
a more serious handicap than the truncated dimensionality.

(143)
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2. Our model

We used the ’t Hooft model description of microscopic QCD and assumed
equal bare quark masses for both flavors as in the work of Cotanch and
Maris [2]. The difference between Ref. [2] and our work lies in the fact that
we use 1+1 dimensional Minkowski space instead of 4-dimensional Euclidean
space. Our calculation maybe more rigorous, but the price that we pay
for a reduced phenomenological content of our model is a lesser realistic
description of the sigma and rho masses and widths.

2.1. Quark exchange diagrams

Here, as in our former work [1], we calculated the box and crossed box
diagrams represented respectively in Fig. 1 and in Fig. 2. In Ref. [2] the
authors considered also the quark exchange diagram represented in Fig. 3.
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Fig. 1. The simplest box diagram. a, b, c and f denote the quark flavors.
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Fig. 2. Crossed box diagram.
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Fig. 3. The crossed box diagram we did not consider in [1].
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In the present paper we follow them and also include it. It turns out that
the contribution of the first and the third diagrams are proportional. We
studied only the forward scattering case (as the authors of [2]) and computed
the amplitudes MI where the subscript I denotes the isospin I = 0, 1, 2
corresponding to the projections of the total amplitude on the three possible
asymptotic isospin channels. Now let us discuss each box separately. First
we recall the usual pion wave functions:

|π+〉 = −|ud̄ 〉 ,

|π0〉 =
1√
2
|uū− dd̄ 〉 ,

|π−〉 = |dū 〉 , (1)

which we rewrite as:

|π+〉 = −δauδbd Ψab(k, P ) ,

|π0〉 =
1√
2
(δauδbu − δadδbd)Ψab(k, P ) ,

|π−〉 = δadδbu Ψab(k, P ) , (2)

where Ψab(k, P ) is the wave function determined as in [1], as a function of
the quark momentum k, the bound state momentum four-momentum P and
the flavors a and b.

Given this quark structure, it is straightforward to determine the specific
charge reactions to which each of the diagrams in Figs. 1–3 is linked. The
direct box diagram B1 (Fig. 1) contributes to two reactions, namely the
π+π0 → π+π0 and the π+π− → π+π− scattering reactions. In the first
case, the intermediate quark flavors are a = u, b = c = f = d or a = d̄,
b = c = f = ū. For the second reaction one has a = c = u, f = b = d or
a = c = d̄, f = b = ū. Therefore the box diagram B1 contributes twice for
each of the reactions. The symmetrized diagram (in terms of the outgoing
meson momenta) corresponds to backward scattering of these very same
reactions, and therefore does not contribute to forward scattering.

The crossed box diagram B2 (Fig. 2) also contributes to two different
channels with two different possible quark flavor combinations possible for
each. For the π+π0 → π+π0 scattering reaction either a = u, b = c = f = d
or a = d̄, b = c = f = ū is possible. For the π+π+ → π+π+ scattering
reaction one has a = b = u, c = f = d or a = b = d̄, c = f = ū. As
before, this diagram contributes twice for both reactions as well. Note that
because the two final state particles are the same, for the latter reaction
the symmetrized diagram B2S counts for the forward direction considered
here too. Finally, we consider the third diagram B3. This one shows up
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only if the projection of the isospin changes. For the π+π0 → π+π0 reaction
we have a = u, b = c = f = d or a = d̄, b = c = f = ū, and therefore
it contributes twice like the other two diagrams. Its symmetrized version
corresponds to backward scattering as in the case of the first diagram, hence
does not enter our calculations here.

Diagrams B1, B2, B2S and B3 are convolution integrals of the interme-
diate quark propagators, involved in the corresponding boxes, with the wave
functions Ψab(k, P ). Formulas for calculating each of them are provided in
the Appendix. We can condensate all the book keeping described above in
three equations defining the different charge scattering amplitudes in terms
of B1, B2, B2S and B3:

〈π+π+|M|π+π+〉 = 2(B2 +B2S) ,

〈π+π−|M|π+π−〉 = 2B1 ,

〈π+π0|M|π+π0〉 = 2
1

2
(B1 +B2 +B3) . (3)

In these last equations we choose not to include in B1, B2, B2S and B3 the
normalization factor 1√

2
of the π0 meson wave function. It originates the

factor 1
2 in the last equality. In the Appendix we show that B1 = B3, which

is in part due to the proportionality between the different pion wavefunctions
in equations (2).

In order to compute the isospin amplitudes we relate the meson–meson
scattering amplitudes and the isospin amplitudes MI (I = 2, 1, 0 labels total
isospin), by means of isospin coupling coefficients. We obtain:

〈π±π±|M|π±π±〉 = M2 ,

〈π±π∓|M|π±π∓〉 =
1

6
M2 +

1

2
M1 +

1

3
M0 ,

〈π±π0|M|π±π0〉 =
1

2
M2 +

1

2
M1 ,

〈π±π∓|M|π0π0〉 =
1

3
M2 −

1

3
M0 ,

〈π0π0|M|π0π0〉 =
2

3
M2 +

1

3
M0 . (4)

By inverting the three first equations of this set of equations, we determine
the amplitudes MI in terms of the different charge scattering processes.
Finally, by substituting the result back and using Eqs. (2), we get for MI

M0 = 3B1 −B2 + 2B2S − 3B3 = 2B2S −B2 ,

M1 = 2(B1 +B3 −B2S) = 2(2B1 −B2S) ,

M2 = 2(B2 +B2S) . (5)
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The amplitudes M0 and M1 are associated respectively with the contribu-
tion to meson–meson scattering of the exchange of the (isoscalar) σ and the
(isovector) ρ mesons.

2.2. Adding gluon exchange to the model

In this section we consider gluon exchange between the quarks, which
provides another mechanism for the effective meson–meson interaction.

The leading order diagrams that contribute are represented in the Figs. 4,
5 and 6. Gluon exchange on these diagrams are represented by the boxes
with the label a G. These boxes are the sum of all the ladder diagrams.

We label the diagrams of Figs. 4, 5 and 6 respectively by B21,B22 and
B2S1. Explicit formulas for them are given in the Appendix, by Eqs. (A.12),
(A.15) and (A.18), respectively. They correspond to corrections of gluon-
exchange to the quark-exchange.
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Fig. 4. Dressing up the crossed box: first contribution. Both quarks and gluons are
exchanged.
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G

Fig. 5. Dressing up the crossed box: second contribution. Both quarks and gluons
are exchanged.

P P

PP

G

Fig. 6. Dressing up the symmetrized crossed box: first contribution. Other contri-
butions are negligible. Both quarks and gluons are exchanged as well.

The diagrams in Fig. 7 (forward scattering) and Fig. 8 (backward scat-
tering) are, in contrast, pure gluon exchange contributions to meson–meson
scattering, which we label by Bgf and Bgb. They are only next to the lead-
ing order in 1/Nc. The analytical formulas for their contribution is given
in the Appendix, by Eqs. (A.24) and (A.25), respectively. The backward
scattering diagram contributes only when the two pions in the final state
have the same charge.
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Fig. 7. Gluon exchange for forward scattering.
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Fig. 8. Gluon exchange for backward scattering.

Including gluon exchange modifies Eq. (2) into

〈π+π+|M|π+π+〉 = 2(B̃2 + B̃2S +Bgf +Bgb) ,

〈π+π−|M|π+π−〉 = 2(B̃1 +Bgf ) ,

〈π+π0|M|π+π0〉 = B̃1 + B̃2 + B̃3 +Bgf (6)

with

B̃1 ≈ B1 ,

B̃3 ≈ B1 ,

B̃2 = B2 +B21 +B22 ,

B̃2S = B2S +B2S1 . (7)

Since the gluon corrections to the diagrams B1 and B3 are negligible, it
is a good approximation to consider the equality between B̃1 and B̃3.

Due to these corrections, the amplitudes MI in Eqs. (4) are also modified
as follows:

M0 = 2B̃2S − B̃2 + 5Bgf ,

M1 = 2(2B̃1 − B̃2S −Bgb) ,

M2 = 2(B̃2 + B̃2S +Bgf +Bgb) . (8)
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3. Results

We considered different Bethe–Salpeter bound state wave functions cal-
culated by the techniques introduced in [1] and [5]. The models built here
differ from the ones studied in [1] in the value of the bare quark mass ratio,
taken in that reference to be m01/m02 = 3/4, but in this paper the ratio
we considered to be unity. We took the pion mass value mπ = 140MeV, as
in [1]. The models are defined in the following way: for a given bare quark
mass value we adjusted the coupling in such a manner that the pion mass
comes out to be mπ = 140MeV. The bare quark masses and the coupling
uniquely define the model.

We collect the results for the masses and widths of the two mesonic
isoscalar and isovector resonances obtained with these different models in
Table I.

TABLE I

Values obtained for the masses of the σ-like and ρ-like resonances (mσ and mρ) and
their widths (Γσ and Γρ), as a function of the quark–gluon coupling strength (g)
and bare quark mass (m0), all in MeV. The table also includes the values obtained
for the dressed-quark masses.

Model g m0 m mσ Γσ mρ Γρ

I 27.6 65.0 63.1 281 30 309 26

II 51.0 60.0 52.7 296 72 306 36

III 75.8 55.0 34.6 318 26 304 42

IV 91.4 52.0 6.70 337 35 295 27

Since Model II is the only model that satisfied the two conditions valid
for the observed and physical σ and ρ resonances, mρ > mσ and Γρ < Γσ,
we single out Model II, out of the four seen to provide a realistic pion mass
value, and show the features of its corresponding meson–meson resonances.
Therefore, for the second set of parameters from Table I, we show in Fig. 9
the ground state quark–antiquark wave function, and subsequently, in Fig. 10
and in Fig. 11, we plot the scattering amplitudes M.

The ’t Hooft model has the feature of generating dressed quark masses
smaller than the bare masses, and this effect increases with increasing magni-
tude of the coupling. As a consequence, the mass of the σ-like resonance gets
closer to the threshold with decreasing quark–gluon coupling. Nevertheless,
the mass of the ρ-like resonance is getting further away from the threshold
as the coupling decreases. This is indicative that the ρ-like resonance has
a structure more complex than two pion clusters. That the σ-like mass res-
onance decreases, while the ρ-like mass resonance increases for decreasing
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Fig. 9. The ground state wave function for Model II on Table I.
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Fig. 10. The M amplitudes for the σ meson in case II on Table I. The bare term
and the respective corrections are shown separately. The pure gluon exchange is
negligible.
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Fig. 11. The M amplitudes for the ρ meson in case II on Table I. The bare term
and the dressed term are shown separately. All corrections are negligible.
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quark–gluon coupling, is behind the success of Model II (with the interme-
diate value for that coupling) in providing mρ > mσ and Γρ < Γσ of the
real resonances. The running values of the quark–gluon coupling show that
these inequalities arise within the ’t Hooft model when the quark–antiquark
state, i.e. the pion, is weakly bound or shallow, but not as shallow as in
Model I.

Comparing Figs. 10 and 11, respectively, for the isospin zero and isospin 1
components of the meson–meson amplitude, we conclude that for the sigma-
like exchange (isospin 0 case), the dressing of the boxes due to gluon ex-
change dominates the other “pure” gluon-exchange corrections. For the case
of the ρ-like meson exchange, however, all contributions involving gluons
are seen to be negligible. This is consistent with a picture for the σ reso-
nance where the gluon degrees of freedom are very much present, essentially
through the dressing of the quark-exchange boxes.

We have also investigated the chiral limit (where the bare quark mass
m0 vanishes) of the meson–meson scattering amplitudes. We found that
all amplitudes vanish in that limit, even without including gluon exchange
between mesons. This is in contrast with the findings of [3], where those
diagrams were essential for a correct behavior in the chiral limit. This dif-
ference is due not only to the reduced dimensionality in our framework, but
also to the use here of the Minkowski metric instead of the Euclidean metric.

4. Conclusions and discussion

We have included isospin in the ’t Hooft model, which is an ab initio QCD
in 1 + 1 dimensions, and calculated meson–meson scattering. The results
show that the ’t Hooft model can accommodate the description of meson–
meson scattering in terms of exchanges of isoscalar (σ-like) and and isovector
(ρ-like) mesons, which has been for a long time the picture suggested by
experiment, and was recently verified by phenomenological theories [2] for
confinement.

We verified that gluon exchange helps differentiating the two different
isospin resonances present in the meson–meson scattering amplitude. Specif-
ically, gluon exchanges affect dramatically the isoscalar σ-like resonance. We
found also that all gluon exchange corrections vanish for the chiral limit to
be satisfied.

Research supported by the Fundação para a Ciência e Tecnologia,
Portugal, under grant contract number SFRH/BPD/5661/2001. We thank
Jiri Adam for useful discussions.
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Appendix A

To give a flavor how do we get the definition of the amplitudes, let us con-
centrate first on the first amplitude. By drawing down the non-symmetrized
version of the first diagram, one gets:

B1 =
1

Nc

∞
∫

−∞

dk−

∞
∫

−∞

dk+Ψ(−k,−P )Ψ(k, P̃ )Ψ(P+P̃ − k, P )Ψ(k−P−P̃ ,−P̃ )

×S(k)S(k − P̃ )S(k−P−P̃ )S(k − P ) , (A.1)

where S is the quark propagator as given in [1]. For the quark that has the
momentum k, this propagator is

S(k) =
k−

2k−k+ −m2 + iε
. (A.2)

Simplifying by k− one gets

S(k) =
1

k+ − k1
, (A.3)

where k1 is defined by Eq. (A.5). Similarly all other propagators are reduced
to similar entities. and that is how we arrive to the following equations
defining B1, B2, B2S and B3:

NcB1 =

∞
∫

−∞

dk−

∞
∫

−∞

dk+Ψ(−k,−P )Ψ(k, P̃ )Ψ(P+P̃−k, P )Ψ(k−P−P̃ ,−P̃ )

× 1

k+ − k1

1

k+ − k2

1

k+ − k3

1

k+ − k4
,

NcB2 =

∞
∫

−∞

dk−

∞
∫

−∞

dk+Ψ(−k,−P )Ψ(k, P̃ )Ψ(P − k, P )Ψ(−k,−P̃ )

× 1

(k+ − k1)2
1

k+ − k2

1

k+ − k4
,

NcB2S =

∞
∫

−∞

dk−

∞
∫

−∞

dk+Ψ(k, P )Ψ(−k,−P )Ψ(k−P−P̃ ,−P̃ )Ψ(P+P̃−k, P̃ )

× 1

(k+ − k4)2
1

k+ − k1

1

k+ − k′3
,
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NcB3 =

∞
∫

−∞

dk−

∞
∫

−∞

dk+Ψ(−k,−P )Ψ(k, P̃ )Ψ(P+P̃−k, P )Ψ(k−P−P̃ ,−P̃ )

× 1

k+ − k1

1

k+ − k2

1

k+ − k3

1

k+ − k4
. (A.4)

The poles of the propagators are defined as

k1 =
m2

1

2k−
− iε sign(k−) ,

k2 = P̃+ +
m2

2

2(k− − P̃−)
− iε sign(k− − P̃−) ,

k3 = P+ + P̃+ +
m2

1

2(k− − P− − P̃−)
− iε sign(k− − P− − P̃−) ,

k′3 = P+ − P̃+ +
m2

1

2(k− − P− + P̃−)
− iε sign(k− − P− + P̃−) ,

k4 = P+ +
m2

2

2(k− − P−)
− iε sign(k− − P−) (A.5)

and the light cone components of the momenta in the usual fashion:

k+ =
1√
2
(k0 + k1) ,

k− =
1√
2
(k0 − k1) . (A.6)

We can see that the definitions ofB1 and B3 are the same, therefore B1 = B3.
We first describe how B1 is calculated. In order to perform the k+

integration, one needs to close the contour in the complex plane and consider
the residues of all poles inside the contour. There are 16 different possible
combinations of signs of the imaginary parts of the poles. Some of these
cases can be excluded, because they correspond to values of k− which make
the k+ integral vanish.

For instance, a pole k1 in the upper half plane implies that the pole k2

cannot be in the lower half-plane, otherwise one would have k− > P̃− =

(
√

µ2+p2 +p)/
√

2 > 0, in contradiction with the initial hypothesis k− < 0.
Likewise the poles k3 and k4 cannot be in the lower half-plane either. There-
fore, if k1 is in the upper half-plane, the other 3 poles are also in the upper
half plane. This would imply the k+ integral to vanish, since one may close
the contour below the k+ axis. Therefore, we can exclude the case when k1

is in the upper half plane.
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After a detailed analysis one finds that there are only three cases that
have a non-vanishing contribution to the integral: (i) only k3 is in the upper
half plane, (ii) the poles k2 and k3 are in the upper half plane, (iii) only k1

is in the lower half plane.
As for case (i), it implies k− > P̃− and k− < P− + P̃−. Under these

circumstances, ψ(P + P̃ − k, P ) = 2/(πi)(k3 − k2)|ε=0ϕ((P + P̃ − k)−/P−)

and ψ(k − P − P̃ ,−P̃ ) = 2/(πi)(k2 − k1)|ε=0ϕ((P + P̃ − k)−/P̃−), where
ϕ is the solution of the ’t Hooft equation, while the other vertex functions
have to be evaluated using

Ψ(p, r) =
g2

−iπ2
P
∫

dk−D(k−)ϕ(p− + k−, r−) , (A.7)

as done in [1]. D is the gluon propagator and g is the quark–gluon coupling
strength. The contribution from case (i) becomes

B1(i) = − 2i

π3Nc

P̃
−

+P
−

∫

P̃
−

dk−
1

(k3 − k4)

×ϕ

(

(P+P̃−k)−
P−

)

ϕ

(

(P+P̃−k)−
P̃−

)

Ψ(−k,−P )Ψ(k, P̃ ) . (A.8)

After treating the other two cases in a similar fashion, we find that B1 is:

B1 = − 2i

π3Nc

P̃
−

+P
−

∫

P̃
−

dk−
1

(k3 − k4)

×ϕ
(

(P + P̃ − k)−
P−

)

ϕ

(

(P + P̃ − k)−

P̃−

)

ψ(−k,−P )ψ(k, P̃ )

+
2i

π3Nc

P
−
∫

0

dk−
1

(k1 − k3)

×
(

ϕ

(

k−
P−

))2

Ψ(k− − P− − P̃−,−P̃ )Ψ(P− + P̃− − k−, P )

− 2i

π3Nc

P̃
−
∫

P
−

dk−

(

k3 − k4

(k2 − k3)(k2 − k4)
+

k2 − k1

(k3 − k1)(k3 − k2)

)

×ϕ
(

k−−P−−P̃−

−vP̃−

)

ϕ

(

k−

P̃−

)

Ψ(P−+P̃−− k−,−P )Ψ(−k−,−P ). (A.9)
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Likewise, we compute B2 which we find to be

B2 =
2i

π3Nc

P̃
−
∫

P
−

dk−
1

k2 − k4

(

ϕ

(

k−

P̃−

))2

Ψ(−k−,−P )Ψ(k−, P )

− i

2πNc

(

2

π

)4
P
−
∫

0

dk−(2k1−k2− k4)

(

ϕ

(

k−

P̃−

))2(

ϕ

(

k−
P−

))2

. (A.10)

Similarly, B2S is:

B2S = − i

2πNc

(

2

π

)4
P
−
∫

0

dk−(k1 + k′3 − 2k4)

×
(

ϕ

(

k−
P−

))2
(

ϕ

(

k− − P̃− + P−
P−

))2

+
i

2πNc

(

2

π

)2
0
∫

P
−
−P̃

−

dk−
1

k3 − k1

×
(

ϕ

(

k− + P̃− − P−

P̃−

))2

Ψ(−k,−P )Ψ(k, P ) . (A.11)

At the end we set ε = 0 and m1 = m2.
The terms involving both gluon and quark exchange are discussed as

follows. the crossed box has two corrections, B21 and B22. The first is
approximated as:

B21 =
4i

π6

P
−
∫

0

dk−

P̃
−
∫

0

dl−ϕ

(

k−
P−

)

ϕ

(

k−

P̃−

)

ϕ

(

l−
P−

)

ϕ

(

l−

P̃−

)

G21 ,(A.12)

with

G21 = −g2Σn
2

π3

ϕn

(

k
−

(k
−

+l
−

)

)

ϕn

(

l
−

(k
−

+l
−

)

)

M2
n − 2(k2 + l2)(k− + l−)

. (A.13)

Here the index n refers to the order of the mesonic bound state (first eigen-
value, second, etc.), Mn ϕn to their bound state mass and wave function, g
is the quark–gluon coupling strength, while k2 and l2 are

k2 = P+ +
m2

2(k− − P−)
, l2 = P̃+ +

m2

2(k− − P̃−)
. (A.14)
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The second is approximated as:

B22 =
4i

π6

P
−
∫

0

dk−

P
−
∫

0

dl−ϕ

(

k−
P−

)

ϕ

(

k−

P̃−

)

ϕ

(

l−
P−

)

ϕ

(

l−

P̃−

)

G22 ,(A.15)

with

G22 = g2 2

π3

∑

n

ϕn

(

P
−
−k

−

P
−

+P̃
−

+l
−
−2k

−

)

ϕn

(

P̃
−
−k

−

P
−

+P̃
−

+l
−
−2k

−

)

M2
n − 2(P+ + P̃+ + l1 − 2k1)(P− + P̃− + l− − 2k−)

,

(A.16)
where the momenta k2 and l2 are

k2 = P+ +
m2

2(k− − P−)
, l2 = P̃+ +

m2

2(k− − P̃−)
. (A.17)

The third is approximated as:

B2S1 =
4i

π6

P
−
∫

0

dk−

P
−
∫

0

dl−ϕ

(

k−
P−

)2

ϕ

(

P̃− − P− − l−

P̃−

)2

G2S1 , (A.18)

with

G2S1 = g2 2

π3

∑

n

ϕ2
n

(

P̃
−
−k

−

2P
−
−k

−
−l

−

)

M2
n − 2(2P+ − k2 − l2)(2P− − k− − l−)

, (A.19)

where the momenta k2 and l2 are

k2 = P+ +
m2

2(k− − P−)
, l2 = P+ +

m2

2(l− − P−)
. (A.20)

We now discuss the gluon exchange terms.
For the backward scattering term, first we define the terms A1 and A2:

A1 =
1

π2(k3 − k1)
ϕ

(

k− − P−

P̃−

)

Ψ(k,−P )θ(k− − P−)θ(P− + P̃− − k−)

− 1

π2(k1 − k3)(k1 − k2)
Ψ(k − P,−P )θ(P− − k−)Ψ(P − k, P̃ )

A2 =
1

π(l3 − l1)
ϕ

(

l− − P−

P̃−

)

Ψ(l,−P )θ(l− − P−)θ(P− + P̃− − l−)

− 1

π2(l1 − l3)(l1 − l2)
Ψ(l − P,−P )Ψ(P − l, P̃ )θ(P− − l−) , (A.21)
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where the momenta k1, k2, k3, l1, l2 and l3 are

k1 =
m2

2k−
,

k2 = P+ +
m2

2(k− − P−)
,

k3 = P̃+ + P+ +
m2

2(k− − P̃− − P−)
,

l1 =
m2

2l−
,

l2 = P+ +
m2

2(l− − P−)
,

l3 = P̃+ + P+ +
m2

2(l− − P̃− − P−)
. (A.22)

We also give the explicit form of G, the dressed two quark propagator

Ggb =
∑

n

ϕn

(

k
−

k
−

+P
−

+P̃
−

+l
−

)

ϕn

(

P
−

+P̃
−

k
−

P
−

+P̃
−
−k

−
+l

−

)

M2
n − 2(k1 + l3)(k− + P− + P̃− + l−)

. (A.23)

By neglecting the contribution of the pole of G, we have

Bgb = g2 8i

π3N2
c

P
−

+P̃
−

∫

0

dk−

P
−

+P̃
−

∫

0

dl−A1A2Ggb . (A.24)

The forward scattering term is much simpler:

Bgf = − 8i

π3N2
c

P
−

+P̃
−

∫

0

dk−

P
−

+P̃
−

∫

0

dl−

(

ϕ

(

k−
P−

)

ϕ

(

l−

P̃−

))2

Ggf , (A.25)

where the propagator G is also simpler

Ggf = g2
∑

n

ϕ2
n

(

k
−

k
−

+l
−

)

M2
n − 2(k1 + l2)(k− + l−)

, (A.26)

and the notations for k1 and l2 are modified as

k1 = P+ +
m2

2(k− − P−)
, l2 = P̃+ +

m2

2(k− − P̃−)
.

(A.27)
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