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Role of the isospin asymmetry in nuclei and neutron stars, with an
emphasis on the density dependence of the nuclear symmetry energy, is
discussed. The symmetry energy is obtained using the isoscalar as well
as isovector components of the density dependent M3Y effective interac-
tion. The constants of density dependence of the effective interaction are
obtained by reproducing the saturation energy per nucleon and the satu-
ration density of spin and isospin symmetric cold infinite nuclear matter.
Implications for the density dependence of the symmetry energy in case of
a neutron star are discussed, and also possible constraints on the density
dependence obtained from finite nuclei are compared.

PACS numbers: 21.65.+f, 26.60.+c, 97.60.Jd, 21.30.Fe

1. Introduction

The symmetry energy is an important quantity in the equation of state
of isospin asymmetric nuclear matter. This currently unknown quantity
plays a key role to the understanding of the structure of systems as diverse
as the neutron rich nuclei and neutron stars. Theoretical studies based on
microscopic and many-body calculations and phenomenological approaches
predict various forms of the density dependence of the symmetry energy. In
general, they can be broadly classified into two different forms. One, where
the symmetry energy increases monotonically with increasing density (‘stiff’
dependence) [1] and the other, where the symmetry energy increases [2] ini-
tially up to normal nuclear density or slightly beyond and then decreases
at higher densities (‘soft’ dependence). Determination of the exact form of
the density dependence of the symmetry energy is of utmost importance for
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studying the structure of neutron rich nuclei, and studies relevant to astro-
physical problems, such as the structure of neutron stars and the dynamics
of supernova collapse [3]. For example, a ‘stiff’ density dependence of the
symmetry energy is predicted to lead a large neutron skin thickness com-
pared to a ‘soft’ dependence and can result in rapid cooling of a neutron
star, and larger neutron star radius, compared to a soft density dependence.

In view of rather large differences between the various calculations of the
symmetry energy present even at the subsaturation densities, the question
arises whether one can obtain empirical constraints from finite nuclei. Since
the degree of isospin diffusion in heavy-ion collisions at intermediate energies
is affected by the stiffness of the nuclear symmetry energy, these reactions,
therefore, can also provide constraints on the low energy behaviour of the
nuclear symmetry energy [1]. However, the high density behaviour remains
largely undetermined since the masses and corresponding radii of the neutron
stars are not measured whereas they can be obtained theoretically by solving
Tolman–Oppenheimer–Volkov equation. At present there exist only indirect
indications such as the neutron star cooling process. Recently search for the
experimental signatures of the moderately high density behaviour of the
nuclear symmetry energy has been proposed [2] theoretically using several
sensitive probes such as the π− to π+ ratio, tranverse collective flow and
its excitation function as well as the neutron–proton differential flow. In
the present work, the nuclear symmetry energy is calculated theoretically
using the isoscalar and isovector components of M3Y-Reid–Elliott effective
interaction supplemented by a zero range pseudo-potential [4] along with
the density dependence and its high density behaviour is explored.

2. The nuclear symmetry energy

The nuclear symmetry energy (NSE) Esym(ρ) is defined as the energy re-
quired per nucleon to change the spin and isospin symmetric nuclear matter
(SNM) to the spin symmetric pure neutron matter (PNM). In the present
work the NSE is obtained using the density dependent M3Y interaction
supplemented by a zero-range pseudo-potential (DDM3Y) as the effective
interaction between two interacting nucleons inside nuclear medium. The
M3Y interaction was derived by fitting its matrix elements in an oscilla-
tor basis to those elements of the G-matrix obtained with the Reid–Elliott
soft-core NN interaction. The ranges of the M3Y forces were chosen to en-
sure a long-range tail of the one-pion exchange potential as well as a short
range repulsive part simulating the exchange of heavier mesons [5]. The real
part of the nuclear interaction potential obtained by folding in the density
distribution functions of two interacting nuclei with the DDM3Y effective
interaction was shown to provide good descriptions for medium and high
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energy α and heavy ion elastic scatterings [4, 6]. The zero-range pseudo-
potential represented the single-nucleon exchange term while the density
dependence accounted for the higher order exchange effects and the Pauli
blocking effects. The real part of the proton–nucleus interaction potential
obtained by folding in the density distribution function of interacting nucleus
with the DDM3Y effective interaction is found to provide good descriptions
of elastic and inelastic scatterings of high energy protons [7] and proton
radioactivity [8].

The central part of the effective interaction between two nucleons 1 and
2 can be written as [4]

v12(s) = v00(s) + v01(s)τ1 · τ2 + v10(s)σ1 · σ2 + v11(s)σ1 · σ2 τ1 · τ2 , (1)

where τ1, τ2 are the isospins and σ1, σ2 are the spins of nucleons 1,2 and s is
the distance between them. In case of SNM, only the first term, the isoscalar
term, contributes whereas for the isospin asymmetric-spin symmetric nuclear
matter only first two terms, the isoscalar and the isovector terms, contribute
and for the spin–isospin asymmetric nuclear matter all the four terms of
Eq. (1) contribute. Considering only the isospin asymmetric-spin symmetric
nuclear matter, the neutron–neutron, proton–proton, neutron–proton and
proton–neutron interactions, viz. vnn, vpp, vnp and vpn respectively, can be
given by the following:

vnn = vpp = v00 + v01 , vnp = vpn = v00 − v01 . (2)

The general expression for the density dependent effective NN interaction
potential is written as [8]

v00(s, ρ, ε) = tM3Y
00 (s, ε)g(ρ, ε) , v01(s, ρ, ε) = tM3Y

01 (s, ε)g(ρ, ε) , (3)

where ε = E/A is the energy per nucleon and the isoscalar tM3Y
00 and the

isovector tM3Y
01 components of M3Y interaction potentials [4] supplemented

by zero range potentials are given by the following:

tM3Y
00 (s, ε) = 7999[MeV]

e−4s

4s
− 2134[MeV]

e−2.5s

2.5s
− 276[MeVfm3](1−αε)δ(s)

(4)
and

tM3Y
01 (s, ε) = −4886[MeV]

e−4s

4s
+1176[MeV]

e−2.5s

2.5s
+228[MeVfm3](1−αε)δ(s) ,

(5)
where the constants 4 and 2.5 have the dimensions of fm−1, δ(s) has the di-
mension of fm−3 and the energy dependence parameter α=0.005/MeV. The



172 D.N. Basu, T. Mukhopadhyay

zero-range potentials of Eqs. (4), (5) represent the single-nucleon exchange
term. The dimensionless density dependent part appearing in Eq. (3) [9]
has been taken to be of a general form

g(ρ, ε) = C(1 − β(ε)ρn) (6)

which takes care of the higher order exchange effects and the Pauli block-
ing effects. This density dependence changes sign at high densities which is
of crucial importance in fulfilling the saturation condition as well as giving
different incompressibility K0 values for SNM in ground state with differ-
ent values of n for the nuclear equation of state (EOS) [9]. The value of
the parameter n = 2/3 was originally taken by Myers in the single folding
calculation [10]. The isospin asymmetry X can be conveniently defined as

X =
ρn − ρp

ρn + ρp
, ρ = ρn + ρp , (7)

where ρn, ρp and ρ are the neutron, proton and nucleonic densities respec-
tively. The asymmetry parameter X can have values between −1 to +1,
corresponding to pure proton matter and pure neutron matter respectively,
while for SNM it becomes zero. For a single neutron interacting with rest of
nuclear matter with isospin asymmetry X, the interaction energy per unit
volume at s is given by the following:

ρnvnn(s) + ρpvnp(s) = ρn[v00(s) + v01(s)] + ρp[v00(s) − v01(s)]

= [v00(s) + v01(s)X]ρ , (8)

while in case of a single proton interacting with rest of nuclear matter with
isospin asymmetry X, the interaction energy per unit volume at s is given
by the following:

ρnvpn(s) + ρpvpp(s) = ρn[v00(s) − v01(s)] + ρp[v00(s) + v01(s)]

= [v00(s) − v01(s)X]ρ . (9)

Summing the contributions for protons and neutrons and integrating over
the entire volume of the infinite nuclear matter and multiplying by the factor
1/2 to ignore the double counting in the process, the potential energy per
nucleon εpot can be obtained by dividing the total potential energy by the
total number of nucleons,

εpot =
g(ρ, ε)ρJv

2
, (10)

where

Jv = Jv00 + X2Jv01 =

∫ ∫ ∫

[

tM3Y
00 (s, ε) + tM3Y

01 (s, ε)X2
]

d3s . (11)
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Assuming interacting Fermi gas of neutrons and protons, the kinetic
energy per nucleon εkin turns out to be

εkin =

[

3~
2k2

F

10m

]

F (X) , F (X) =

[

(1 + X)5/3 + (1 − X)5/3

2

]

, (12)

where m is the nucleonic mass equal to 938.91897 MeV/c2 and kF, which
becomes equal to Fermi momentum in case of the SNM, is given by the
following:

k3
F = 1.5π2ρ . (13)

The two parameters of Eq. (6), C and β, are determined by reproduc-
ing the saturation conditions. It is worthwhile to mention here that due
to attractive character of the M3Y forces the saturation condition for cold
nuclear matter is not fulfilled. However, the realistic description of nuclear
matter properties can be obtained with this density dependent M3Y effec-
tive interaction. Therefore, the density dependence parameters have been
obtained by reproducing the saturation energy per nucleon and the satura-
tion nucleonic density of the cold SNM.

The energy per nucleon ε = εkin + εpot obtained for the cold SNM for
which X = 0 is given by the following:

ε =

[

3~
2k2

F

10m

]

+
g(ρ, ε)ρJv00

2
, (14)

where Jv00(ε) =
∫ ∫ ∫

tM3Y
00 (s, ε)d3s represents the volume integral of the

isoscalar part of the M3Y interaction supplemented by the zero-range po-
tential. The Eq. (14) can be rewritten with the help of Eq. (6) as

ε(ρ) =

[

3~
2k2

F

10m

]

+

[

ρJv00C(1 − βρn)

2

]

(15)

and differentiated with respect to ρ to yield equation

∂ε

∂ρ
=

[

~
2k2

F

5mρ

]

+
Jv00C

2
[1 − (n + 1)βρn] . (16)

The equilibrium density of the cold SNM is determined from the saturation
condition (∂ε/∂ρ) = 0. Then Eq. (15) and Eq. (16) with the saturation con-
dition can be solved simultaneously for fixed values of the saturation energy
per nucleon ε0 and the saturation density ρ0 of the cold SNM to obtain the
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values of the density dependence parameters β and C. Density dependence
parameters β and C, thus obtained, can be given by the following:

β =
[(1 − p)ρ−n

0 ]

[(3n + 1) − (n + 1)p]
, (17)

where

p =
[10mε0]
[

~2k2
F0

] , (18)

and
kF0

= [1.5π2ρ0]
1/3, (19)

C = −

[

2~
2k2

F0

]

5mJv00ρ0[1 − (n + 1)βρn
0 ]

, (20)

respectively. It is quite obvious that the density dependence parameter β
obtained by this method depends only on the saturation energy per nucleon
ε0, the saturation density ρ0 and the index n of the density dependent part
but not on the parameters of the M3Y interaction while the other density
dependence parameter C depends on the parameters of the M3Y interaction
also through the volume integral Jv00.

The incompressibility K0 of the cold SNM which is defined as

K0 = k2
F

∂2ε

∂kF2

∣

∣

∣

∣

kF=kF0

= 9ρ2 ∂2ε

∂ρ2

∣

∣

∣

∣

ρ=ρ0

(21)

can be theoretically obtained using Eq. (13), Eq. (16) and Eq. (21) as

K0 =

[

−

(

3~
2k2

F0

5m

)]

−

[

9Jv00Cn(n + 1)βρn+1
0

2

]

. (22)

Since the product Jv00C appears in the above equation, a cursory glance
reveals that the incompressibility K0 depends only upon the saturation en-
ergy per nucleon ε0, the saturation density ρ0 and the index n of the density
dependent part of the interaction but not on the parameters of the M3Y
interaction.

The energy per nucleon for nuclear matter with isospin asymmetry X
can be rewritten as

ε(ρ,X) =

[

3~
2k2

F

10m

]

F (X) +

(

ρJvC

2

)

(1 − βρn)

=

[

3~
2k2

F

10m

]

F (X) −

[

ρ

ρ0

] [

Jv

Jv00

]

[

~
2k2

F0
(1 − βρn)

5m[1 − (n + 1)βρn
0 ]

]

, (23)
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where Jv = Jv00 + X2Jv01 and Jv01(ε) =
∫ ∫ ∫

tM3Y
01 (s, ε)d3s represents the

volume integral of the isovector part of the M3Y interaction supplemented
by the zero-range potential.

3. Density dependence of nuclear symmetry energy

and constraints from finite nuclei

The nuclear symmetry energy (NSE) Esym(ρ) which is the energy re-
quired per nucleon to change the SNM to pure neutron matter (PNM) is
defined as

Esym(ρ) = ε(ρ, 1) − ε(ρ, 0) . (24)

The calculations have been performed using the values of the satura-
tion density ρ = 0.1533 fm−3 [11] and the saturation energy per nucleon
ε = −15.26 MeV [12] for the SNM obtained from the coefficient of the vol-
ume term of Bethe–Weizsäcker mass formula which is evaluated by fitting
the recent experimental and estimated atomic mass excesses from Audi–
Wapstra–Thibault atomic mass table [13] by minimising the mean square
deviation. For a fixed value of β, the parameters α and C can have any pos-
sible simultaneous values as determined from SNM. Using the usual values of
α = 0.005 MeV−1 for the parameter of energy dependence of the zero range
potential and n = 2/3 [9], the values obtained for the density dependence
parameters C and β and the SNM incompressibility K0 are 2.07, 1.668 fm2

and 293.4 MeV respectively. The general theoretical observation by Colo’
et al. is that the non-relativistic [14] and the relativistic [15] mean field
models predict for the K0 values which are significantly different from one
another, namely ≈ 220–235 MeV and ≈ 250–270 MeV respectively. Consid-
ering the uncertainties in the extractions of ε0 [12] and ρ0 values from the
experimental masses and electron scattering, present non-relativistic mean
field model estimate for K0 is rather close to the relativistic mean field model
estimates. However if one uses n = 1/3 instead of n = 2/3 then the value of
K0 comes out to be 226.1 MeV which is close to the lower limit of the other
non-relativistic calculations. Using Eq. (15) and Eq. (23), the NSE is given
by

Esym(ρ) = (22/3
− 1)

3

5
E0

F

(

ρ

ρ0

)2/3

+
C

2
ρ(1 − βρn)Jv01 , (25)

where the Fermi energy E0
F =

~2k2

F0

2m for the SNM at ground state. The
first term of the right hand side is the kinetic energy contribution with
density dependence of ρ2/3 whereas the second term arising due to nuclear
interaction has a density dependence of the form of a1ρ + a2ρ

n+1 with a1

and a2 as constants with respect to density and values of n are limited to
1/3 to 2/3 for any reasonable values of incompressibility. It is interesting
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to note that the effective interaction which provides unified description for
radioactivity, nuclear matter and nuclear scattering with n = 2/3 predicts
the density dependence for the NSE to be of the form a0ρ

2/3 +a1ρ+a2ρ
5/3.

In Fig. 1 plots of E/A for SNM, PNM and NSE as functions of ρ
ρ0

are

shown for n = 2/3. The density dependence of the NSE at subnormal density
from isospin diffusion [1] in heavy-ion collisions at intermediate energies has
an approximate form of 31.6[ ρ

ρ0
]1.05 MeV. In Fig. 2 this low energy behaviour

of NSE ≈ 31.6[ ρ
ρ0

]1.05 MeV is plotted along with NSE obtained using Eq.(25)

for two extreme values of n = 1/3 and 2/3. At a density around ρ ≈ ρ0 both
curves gives the same value of the NSE and at subnormal densities both
forms are very close. At higher energies the present NSE using DDM3Y
interaction peaks at ρ ≈ 1.8ρ0 and becomes negative at ρ ≈ 4ρ0. A negative
NSE at high densities implies that the pure neutron matter becomes the
most stable state. Consequently, pure neutron matter exists near the core of
the neutron stars and since E/A for PNM is always positive, it is unbound
by the nuclear force but bound due to gravitational attraction.
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Fig. 1. The energy per nucleon ε = E/A of SNM (spin and isospin symmetric nu-

clear matter), PNM (pure neutron matter), NSE (nuclear symmetry energy Esym)

are plotted as functions of ρ/ρ0 for the present calculations using DDM3Y interac-

tion and the saturation energy per nucleon equal to −15.26 MeV.
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Fig. 2. The NSE (nuclear symmetry energy Esym) as a function of ρ/ρ0 for the

present calculations using DDM3Y interaction is compared with the low energy

behaviour extracted from isospin diffusion in heavy-ion collisions.

4. Cooling of neutron stars and the nuclear symmetry energy

The knowledge of the density dependence of nuclear symmetry energy is
important for understanding not only the structure of radioactive nuclei but
also many important issues in nuclear astrophysics, such as nucleosynthesis
during presupernova evolution of massive stars and the cooling of protoneu-
tron stars. A neutron star without neutrino trappings can be considered as a
n, p, e matter consisting of neutrons (n), protons (p) and electrons (e). The
neutrinos do not accumulate in neutron stars and the β equilibrium proton
fraction xβ [= ρp/ρ] is determined by [16]

~c
(

3π2ρxβ

)1/3
= 4Esym(ρ)(1 − 2xβ) . (26)

The β equilibrium proton fraction is therefore entirely determined by
the NSE. The β equilibrium proton fraction calculated using the present
NSE is plotted as function of ρ

ρ0
in Fig. 3. The maximum of xβ ≈ 0.048

occurs at ρ ≈ 1.4ρ0 and goes to zero at ρ ≈ 3.9ρ0 for n = 2/3. The
NSE extracted from the isospin diffusion in the intermediate energy heavy-
ion collisions, having the approximate form of 31.6[ ρ

ρ0
]1.05 MeV, provides a

monotonically increasing β equilibrium proton fraction and therefore cannot
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be extended beyond normal nuclear matter densities. Present calculation,
using NSE given by Eq. (25), of the β equilibrium proton fraction forbids
the direct URCA process since the equilibrium proton fraction is always
less than 1/9 [16] which is consistent with the fact that there are no strong
indications that fast cooling occurs. Although SNM incompressibility is
slightly on the higher side, yet the present calculations provide a rather ‘soft’
nuclear symmetry energy. Using n = 1/3 for which SNM incompressibility
is 226.1 MeV and close to the lowest acceptable limit, results are very much
similar for the β equilibrium proton fraction excepting that it goes to zero
at ρ ≈ 5.1ρ0.
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Fig. 3. The β equilibrium proton fraction calculated with NSE (nuclear symmetry

energy) obtained using DDM3Y interaction is plotted as a function of ρ/ρ0.

5. Summary and conclusion

In summary, we have calculated the symmetry energy using the isoscalar
and the isovector components of M3Y effective NN interaction. The low
density behaviour of the symmetry energy is found to be consistent with the
nuclear symmetry energy extracted from the isospin diffusion in heavy-ion
collisions at intermediate energies. Although the nuclear incompressibility
is on the higher side, yet the present calculations provide a ‘soft’ nuclear
symmetry energy. The calculated β equilibrium proton fraction forbids the
direct URCA process which is consistent with the fact that there are no
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strong indications that fast cooling occurs. Present theoretical calculations
provide density dependence of the nuclear symmetry energy that can be
verified by the experimental signatures in several sensitive probes such as
the π− to π+ ratio, tranverse collective flow and its excitation function as
well as the neutron-proton differential flow.
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