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A number of multi-variate PDE (probability density estimators) meth-
ods are compared for the discrimination of signal from background in the
selection of neutral pion candidates reconstructed at the ALEPH experi-
ment at CERN. In this case-study, the question “Which method is the best
choice?” reveals that the answer depends strongly on the size of the data
set used to train and optimise the method, and the required simplicity of
the algorithm.

PACS numbers: 29.85.+c

1. Introduction

Multi-variate probability density estimators have become important
methods in the effective discrimination of signal and background in high
energy physics data analysis. Several alternative multi-variate PDE meth-
ods have appeared in the literature in recent years, demonstrations of these
methods often include a comparison with results from a neural network as
neural networks generally give the best performance. A direct comparison
between some of these PDE methods, using data generated from a toy Monte
Carlo, can be found in Ref. [1].

For the study presented in this paper, a number of PDE methods are
employed for the three-dimensional discrimination of signal from background
in the selection of neutral pion candidates reconstructed at the ALEPH
experiment [2] at CERN using a full physics and detector simulation. This
study therefore, provides a real-life case-study with data that contains the
complexities of particle dynamics, and the correlations that are often present
between variables in high energy physics. The study aims to provide the
reader with some useful experience and discussion to aid the researcher in
the choice of a PDE method. The issues covered are: algorithm simplicity,
discrimination performance, importance of statistics, and the time it takes
to train and optimise the algorithm (the run-time).
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The PDE methods under investigation are described in Sec. 2, results for
discrimination performance and run-time are given in Sec. 3, and a discussion
and conclusion is given in Sec. 4.

2. PDE methods

The PDE attempts to describe the signal probability, or purity, of a dis-
tribution that contains both signal and background data. The signal prob-
ability P (~x) for a multi-variate data ~x is shown in Eq. 1 where fS(~x) and
fB(~x) are estimates of the underlying feature functions of the signal and
background distributions respectively.

P (~x) =
fS(~x)

fS(~x) + fB(~x)
. (1)

Here the data is obtained from Monte Carlo simulations of the processes
that are under investigation.

The function P (~x) is used in the selection or rejection of events by ap-
plying a purity cut, Pcut: events with P (~x) ≥ Pcut (high signal probability)
are accepted, and events with P (~x) < Pcut are rejected. The value of Pcut

is optimised with respect to a performance measure which in this study is
chosen to be the product of the selected signal purity and efficiency, ε ×P,
and optimal is defined by the maximisation of this quantity. At least one
other parameter, specific to the method used to form the feature function
estimates, is involved in the optimisation of the PDE, optimisation therefore
involves a parameter search in at least two-dimensions. To avoid biases in
the training data (over-training), the function P (~x) is formed using a train-
ing data set, and the optimisation is performed using an independent test
data set.

In high energy physics, Monte Carlo simulations generally involve time-
consuming modelling of signal and background processes, and detector sim-
ulations. Therefore, because of computing constraints, training and test
data are limited in statistics. If statistics are not sufficient, the resultant
functions fS(~x) and fB(~x) will be poor estimates leading to an inaccurate
PDE and therefore less than optimal discrimination performance. The prob-
lem of limited statistics becomes greater as the dimensionality of the data
increases, the so-called “curse of dimensionality”.

To combat the problem of statistics, a PDE method employs an algo-
rithm for the formation of the feature function estimates such that the data
is generalised, or in other words, smoothed. However, over-smoothing leads
to loss of detail, the algorithm and its optimisation must be chosen carefully.
A number of such algorithms are summarised in the following sub-sections.
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2.1. The histogrammed PDE, HPDE

The histogram is the traditional algorithm for representing the distri-
bution of data. In a simple histogramming algorithm, the signal and back-
ground data are binned to create multi-dimensional histogrammed functions
fS(~x) and fB(~x). Training of the PDE simply involves the formation of the
histograms fS(~x) and fB(~x), and then a PDE histogram formed by dividing
the histogrammed functions according to Eq. 1. Optimisation of the PDE
is performed with respect to the binning: the histogramming procedure is
repeated for different total number of bins N , and the binning that gives
the best PDE performance is chosen. This procedure can be performed with
a relatively small number of iterations by searching through values of N

in the sequence: N = 2i with i = 1, 2, 3, 4, . . . , 16 (a total number of bins
N = 216 = 65536 should be enough for most data, the value can be increased
if required). The time taken to train and optimise the PDE is proportional
to the number of data n, i.e. the time complexity of the algorithm is O(n).

The optimal number of bins represents a balance between large N that
allows the histogram to model the form of the data though possibly with
large statistical bin-to-bin fluctuations, and small N that reduces (smooths)
bin-to-bin fluctuations but at the possible expense of losing the underlying
form of the data. At low statistics, or high dimensions, a good balance might
not be achievable resulting in a poor PDE performance. The requirement
that the data be bounded by upper and lower limits of the histogram can
also give rise to performance problems when statistics are low.

2.2. The smoothed histogrammed PDE, SHPDE

The simple histogramming method can be improved by, for example,
applying a smoothing procedure to the feature function histograms, or ap-
plying variable bin width to increase binning in regions of high statistics and
high gradients, and reduce binning in regions of low statistics. To demon-
strate the improvements that can be gained, a simple Laplace histogram
smoothing algorithm (averaging of neighbouring bins) is employed: a mask
containing three consecutive bins (multiplied by each dimension) is scanned
along the histogram, the value of the central bin of the mask is replaced with
the mean of all values in the mask, in order to conserve the total number of
entries in the histogram, the change in the value of the central bin is divided
and subtracted equally from each member of the mask, all changes in the
mask are reversed if any negative values result, this procedure is repeated
five times.

The result of this procedure is the smoothing of bin-to-bin fluctuations;
this enables a larger number of bins to be used in cases where statistics are
limited.
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2.3. The kernel PDE, KPDE

Smoothing of the data in the kernel PDE method [3, 4] is obtained by
replacing each data point with a multi-variate Gaussian kernel; the width of
the kernel is optimised with respect to the PDE performance measure. The
functions fS(~x) and fB(~x) are built by summing all Gaussian kernel functions
in the training data. During optimisation the computation of functions fS(~x)
and fB(~x) is repeated for every point in the test data; the time complexity
of the KPDE algorithm is therefore O(n2). In its simplest form the KPDE
is simple to implement, and has the advantage of not requiring a knowledge
of the range of the data. Improvements to the KPDE performance can be
gained using a variable (adaptive) kernel width [5] such that a wider kernel
is used in regions of low statistics.

2.4. The histogrammed kernel PDE, HKPDE

In an attempt to reduce the run-time of the KPDE method, the func-
tions fS(~x) and fB(~x) may be histogrammed prior to the optimisation phase
thereby reducing the time complexity of the algorithm to O(n). However,
this technique is only useful at high statistics, and inherits some of the dis-
advantages of histogramming: the range of the data needs to be defined, and
some uncertainty in the PDE values is introduced. Additional optimisation
of the binning is also required.

2.5. The range-search PDE, RSPDE

Smoothing of the data in the Range-Search PDE method [6] is obtained
by counting signal and background data in a volume around the point of
interest. The volume shape may be a hyper-cube, or ellipsoid, with di-
mensions typically taken from the range, or the RMS, of the data, in each
dimension. The scale of the volume is optimised with respect to PDE per-
formance. Counting is performed in the training data while the “points of
interest” are taken from the test data. As for the KPDE algorithm, the
time complexity is O(n2). In its simplest form the RSPDE is simple to im-
plement, and again, has the advantage of not requiring a knowledge of the
range of the data. In Ref. [6] the run-time is reduced by storing events in
two multi-dimensional binary trees, though this is achieved at the expense
of a much more complicated algorithm.

3. PDE performances

The performance of the above five PDE methods, in their simple forms,
are compared using data from a sample of 250,000 hadronic decays of the
Z boson, generated with the JETSET 7.4 Monte Carlo [7]. The events are
passed through the ALEPH detector simulation and reconstruction program.
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Reconstructed photons are selected and combined in pairs to create pion
candidates for the decay π0 → γγ. Details of these data in the context of
π0 selection can be found in the study of the reaction ω → π+π−π0 [8].
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Fig. 1. Parameters used in the discrimination between signal and background; pion

candidates are more likely to be signal if they have smaller values of θ and χ2,

energy provides some discrimination information as the distribution of θ is energy-

and mass-dependent.
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In this comparison, the discrimination of pion signal from its background
is optimised such that the product of the selected signal efficiency and purity
is maximised. The pion candidates have already been selected from an in-
variant mass window giving an initial ε×P value of 0.32. To improve further
the discrimination between signal and background, three-dimensional PDEs
are formed from the following discriminators: the χ2 from a constraint of
the mass of a candidate to the nominal π0 mass, the angle θ between the
daughter photons in the lab frame, and the energy E of the pion candidate.
The distributions of these discriminators are shown in Fig. 1.

For this study the data is separated into forty data sets each contain-
ing 500 000 pion candidates. Training is performed on one data set, and,
optimisation and selection is performed on a second independent data set.
The procedure is repeated twenty times to obtain mean values and their
standard deviations. To obtain results for both low and high statistics, the
total number of pion candidates n is varied from 50 to 500 000 according to
n = 5 × 10d where d is a data scale that takes the values 1, 2, 3, 4 and 5.

3.1. ε ×P performance

The mean maximum ε × P values for each PDE method are shown in
Fig. 2 for different number of data. The figure also includes a comparison
with results from a feed-forward artificial neural network (ANN); one hidden
layer with seven nodes was found to be optimal for this data. The error bars
represent the standard deviation of the twenty mean values. Results for the
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Fig. 2. Comparison of optimal ε × P values for five PDE methods. The total

number of data points scales as n = 5 × 10d. Results from an artificial neural

network (ANN) are also shown.
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KPDE, HKPDE, and RSPDE are not computed at high statistics due to the
very large run-times necessary for these methods.

From Fig. 2, it can be seen that given enough statistics all methods
perform equally well, raising the ε×P value from an initial 0.32 to about 0.40,
this represents a significant improvement in the selected signal significance.
At lower statistics, results begin to fluctuate, this is apparent in the larger
standard deviations, and scattering of the points.

The form of the results can be explained by considering two main effects.
First, the fluctuations in the results, i.e. the standard deviations, appear
to be only statistical in nature, i.e. they are independent of the method as
each method experiences fluctuations of the same size for the same number
of data. Second, some ε × P values exceed 0.4, this does not represent
improved performance1, but instead over-training during optimisation using
the test data set.

At the lowest statistics, d = 1 (n = 50), the three poorest performers
are the methods involving histogramming, though only the simple histogram
method has a performance that is significantly lower, this method shows no
discrimination performance for this number of data. At first inspection, the
highest performer appears to be the KPDE method, but assuming that its
high ε×P value of about 0.42 is due to over-training then we can conclude
that the performance of this method when applied to real data is actually
poorer and a resultant efficiency calculation may contain a significant sys-
tematic error.

The results from the neural network appear to exhibit, on average, nei-
ther over-training nor performance loss; the ε × P values are consistent
throughout the range of data scale. This is not surprising as neural net-
works are well known for their good discrimination behaviour. However, the
“black box” nature of the neural network is not preferred by researchers due
to the difficulty in assessing systematic errors.

3.2. Timing

Run-time can be an important factor when choosing a PDE algorithm,
especially in shared environments where, for example, jobs may be controlled
by a queue manager, or on desktop computers that may have low CPU
power. The average run-times2 for each PDE method, including appropriate
scales representing the number of repetitions employed in the optimisation
procedure, are shown in Fig. 3 as a function of the data scale. For the Kernel
and Range-Search methods the highest data scale values are predicted.

1 We know, from the high statistics data, that the optimal performance is measured as

ε ×P ≈ 0.40.
2 The CPU times are recorded using an Intel 3.73 GHz Pentium 4 PC running the

Linux operating system.
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From this log–log plot, the O(n) time complexity of the HPDE, SHPDE,
HKPDE, and ANN methods, and the O(n2) time complexity of the KPDE
and RSPDE can be seen. At largest data scale, d = 5, (n = 500 000 pion
candidates), the RSPDE and KPDE methods are predicted to take of the or-
der of days, and weeks, respectively to train. By far the fastest methods are
the simple and smoothed histogrammed PDEs that take only a few minutes
to process 500 000 three-dimensional data points. However, at low statistics
the run-times of any method are only a few seconds or less and so run-time
for small data sets is not likely to be an issue for the researcher. Also, at low
statistics, techniques to speed up O(n2) algorithms may not be effective, as
is the case for HKPDE method where the procedure of histogramming intro-
duces and extra optimisation parameter which in turns makes the algorithm
relatively slower at small and medium data scales.
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Fig. 3. Comparison of average run-times (Intel 3.73 GHz Pentium 4 PC) for five

PDE methods, and the ANN. The total number of data points scales as n = 5×10d.

The time complexity of the methods are seen to be either O(n) or O(n2).

4. Discussion and conclusion

It is found, for a real high energy physics discrimination problem, in
three-dimensions, that a number of PDE methods perform equally given
enough statistics. At very high statistics, above 10 000 events, a simple
histogramming method may be sufficient, and is of the order of magnitude
faster than basic implementations of other PDE methods. Histogramming
also carries the advantage that the results can be visualised directly.
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As statistics reduce, PDE performance becomes unstable sometimes re-
sulting in over-training and sometimes in under-training; in either case the
discrimination performance in real data will be diminished, and efficiency
calculations will contain errors. This fundamental problem applies equally
to all the PDE methods studied in this paper down to 50 events. The ex-
ception is the HPDE method that fails to discriminate with this number of
events.

At low statistics the histogram PDE method does not perform well un-
less additional smoothing is applied. Here, the Kernel and Range-Searching
PDE methods show significant improvements. Although advanced imple-
mentations of some PDE methods are available, for example in the ROOT
package [9], the simplicity and performance of the KPDE and RSPDE meth-
ods in their basic forms may be attractive to researchers who prefer, for var-
ious reasons, to implement routines themselves. These algorithms are also
very fast if the number of data is less than 1 000. Also, as these two algo-
rithms are conceptually quite different with respect to the way they form
estimates of feature functions, they can be used as a systematic check on
each other.
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