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der certain general constraints on the geometry, results on the scattering
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1. Introduction

Propagation of waves in bent structures is a classic topic in the theory of
guided waves [1]. A new and very exciting source of problems has recently
appeared in quantum mechanics, arising from todays possibility to produce
electrically conducting structures of ever smaller size by nanofabrication
techniques. The concept of wave propagation through crosses and bent
wires is also relevant for such mesoscopic systems [2, 3], which are expected
to become the building blocks of the next-generation electronics [4, 5].

A pressing challenge in this emerging area of applied physics is to investi-
gate properties (bound states, quasi-bound states, and scattering processes)
of these quantum systems, in particular the Quantum Wire (QW) which
is a narrow two-dimensional conducting surface which permits electrons to
propagate in the channels formed by this surface, but reguire the electron
wave function to vanish on the boundary of the surface (Dirichlet boundary
conditions). Since the width of the QW is roughly equal to the de Broglie
wavelength of a cold electron, wave effects will dominate the physics of the
system. As a consequence, quantum interference effects have been stud-
ied extensively by means of QWs and in recent years hundreds of papers
have discussed the basic and applied physics of such quantum heterostruc-
tures [6–9]. The most simple system is a strip Σ of infinite extent with a
bend in the center and open straight ends. The corresponding Hamiltonian,
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denoted by L, of the system is chosen as a multiple of the Dirichlet Lapla-
cian on the strip; this corresponds to infinitely hard walls at the boundary
∂Σ. No “classically forbidden” region exists for such a system and it thus
came as a surprise that they possess a bound state [10]. Remarkably, it was
later shown [11] that at least one bound state exists for any two-dimensional
surface of constant width; excluding surfaces of constant curvature, which
have no bound states. A qualitative explanation can be found in [8]. Many
efforts have thus been devoted to bound states in bent QWs (see [8] and
references therein), even taking into account external fields [12–14].

A key problem of solid-state electronics is understanding various col-
lision processes present in semiconductors and semiconductor structures.
Many processes exist, e.g., electron interactions with bulklike and confined
phonons, crystals defects and imperfections, and neutral and ionized im-
purities [6–9]. In quantum structures these collision mechanisms can be
significantly different from those in bulk materials. We shall focus on one
such mechanism, generated by bending and occuring for a fairly large class
of QWs.

Perhaps surprisingly, for systems which have been so widely studied, very
few papers exist on scattering theory. Quantum scattering theory is the sub-
field of quantum mechanics which concerns the large-time asymptotics of the
solutions of the Schrödinger equation and with the structure of the contin-
uous spectrum of the corresponding Schrödinger operator. One of its main
problems is to prove (or disprove) asymptotic completeness, which roughly
speaking, is a statement that all solutions of the Schrödinger equation under
consideration must follow asymptotically certain prescribed patterns. Prov-
ing asymptotic completeness is the first step in a detailed investigation of
scattering properties of any quantum system. Typically, applied physicists
enter after this step and the literature on computation of scattering proper-
ties in QWs is indeed vast. For arbitrary shaped wires, such computations
require numerical solution of the two-dimensional Helmholz equation to al-
low one to extract the transmission amplitudes. Numerous techniques have
been invented to solve this equation, e.g. wave function matching meth-
ods [10, 15] (for simple geometries), Green function techniques [6, 7, 16, 17],
and mode matching [18–20].

Our objective is to go one step further in the foundations underpinning
the physics of scattering for a wide class of QWs. The description of the
quantum theory of scattering (see, e.g. [21]) closely parallels the classical
formalism. In lieu of the classical orbit obeying Newton’s equation, we have
a state vector ψ(t) satisfying the time-dependent Schrödinger equation

i
d

dt
ψ(t) = Hψ(t) , ψ(0) = ψ0 . (1.1)
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The solution to (1.1) is given by ψ(t) = U(t)ψ0 = e−itHψ0, where U(t)
is the so-called evolution operator (defined via the spectral theorem), and
ψ0 is any vector in the appropiate Hilbert space H. In quantum scattering
theory one often has a “free” Hamiltonian H0 and a potential V such that
the “perturbed” Hamiltonian is H = H0 + V . For suitable initial data ψ0,
the solution U(t)ψ0 propagates from the region where the perturbation V
is large and we expect that it should be approximated well as t → ±∞ by
the solutions e−itH0φ± of the unperturbed Schrödinger equation; the free
evolution e−itH0 is denoted U0(t). The solution ψ(t) describes a process in
which the system, described by the asymptotic state φ− in the distant past,
interacts with the perturbation and is changed into the asymptotic state φ+

in the distant future. To study such solutions one defines the Møller wave
operators

W± = s− lim
t→±∞

U(−t)U0(t)Pac(H0) . (1.2)

Here Pac(H0) denotes the projection onto the subspace of absolute conti-
nuity of H0. Assuming that the wave operators exist, one says that they
are asymptotically complete if the ranges of W + and W−, denoted RanW±,
coincide with the subspace of continuity of H, denoted Hc(H). If the ranges
of W± equal the subspace of absolute continuity of H, then the wave opera-
tors are said to be strongly complete; in other words, the singular continuous
spectrum of H is empty. In that case the absolutely continuous parts of H0

and H are unitarily equivalent via the wave operators. When the wave op-
erators exist, one can define the scattering operator S in terms of the wave
operators by the relation S = (W+)∗W−. The only nonzero matrix elements
of the corresponding S-matrix are the diagonal scattering channel elements.
The wave operators and the scattering operator are basic quantities in the
mathematical description of the scattering process [21]. The S operator is a
unitary operator in the scattering channel if and only if RanW + = RanW−.

Within the context of QWs we compare L (the “perturbed” QW Hamil-
tonian) and the “free” Hamiltonian L0 which is just the Dirichlet Laplacian
associated with a straight QW. Imposing suitable conditions on the geomet-
rical characteristics of the bend wire we will prove certain general properties
of scattering in such semi-open structures. The main result asserts that the
Møller wave operators exist and are strongly asymptotically complete. A
state-of-the-art version of the celebrated Mourre method is used to derive
the results.

The paper is organized as follows. We begin by demonstrating how
Hamiltonians, describing the motion of quantum particles confined to semi-
open, bend channels, can be expressed conveniently. For this purpose, in
Section 2, we recall some basic facts about curves and frames. The QW
Hamiltonians associated with straight and bend wires are introduced in Sec-
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tion 3 by means of sesquilinear forms. Their mathematical structure moti-
vates the investigation of a fairly general class of Hamiltonians on cylindrical
Lipschitz domains which is summarized in Sections 4, 5, and 6. For a pair of
such Hamiltonians we prove existence and strong asymptotic completeness
of their wave operators; see Theorem 6.3. The abstract results are based on
a limiting absorption principle, established in [22], valid in a framework of
weighted Sobolev spaces. In Section 7 we state our main results, which are
applications of the abstract theory to QWs; see Theorems 7.2–7.3.

For related work, we refer to [23–30]. Discussions of (general) systems
with constraints can be found in [31]. Quasi-bound states are discussed
in [32–34]; in the latter the stationary approach is used. The role of impurity
scattering is discussed in [35–40].

Having set the scene in this paper by establishing the basic scattering
theory, we hope that physicists and applied mathematicians will be attracted
to this exciting topic and pursue the study of scattering processes of QWs,
e.g. local decay of wave functions, low-energy properties, quasi-bound states,
eigenfunction expansions, appearence of quasi-bound states etc.

Finally, a few words about notation. We adopt the usual notation for
function spaces: C∞

0 , L2, etc. For a Lipschitz domain Ω ⊂ R
d or, alterna-

tively, a domain with a “boundary with minimal regularity” (see, e.g. [41])
the (local) Sobolev spaces H

s(Ω) and H
s
0(Ω) (s ∈ R) have the standard

properties. We adopt the standard notation of tensor calculus, we suppress
sums over indices, and the symbol δij refers to the components of the Eu-
clidean metric matrix 1. Moreover, we shall freely use various notation for
(partial) derivatives (e.g. dots, commas, ∂j , and ∂α with α being a multi-
index).

2. Curves, frames, and wires

We summarize some facts about curves and frames which enable us to
describe bend wires in a convenient way.

A (parametrized) curve in R
n is a C∞ mapping α : R → R

n, n ≥ 2. The
curve α is said to be regular provided α̇(ξ) 6= 0 for all ξ ∈ R. The variable
ξ is called the parameter of the curve. The tangent space Rξ0 = T ξ0R of
R at ξ0 ∈ R has a distinguished basis 1 = (ξ0, 1). The differential of α at
ξ0, dαξ0(1) ∈ T

α(ξ0)R
n, is well-defined and one has dαξ0(1) = α̇(ξ0); the

derivative of the R
n-valued function α(ξ) at ξ0.

A vector field along α : R → R
n is a differentiable mapping X : R → R

n.
The vector field along α given by ξ 7→ α̇(ξ) is the tangent vector field. We
think of X(ξ), i.e. the value of X at a given ξ ∈ R, as lying in the copy of
R

n identified with T
α(ξ)R

n.
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The curve α(ξ) is said to be a unit-speed curve or parameterized by arc
length if |α̇(ξ)| = 1 for all ξ ∈ R; any regular curve can be parametrized by
arc length (see, e.g. [42]).

Definition 2.1. Let α : R → R
n, n ≥ 2, be a curve.

(H1) A moving n-frame along α is a family of differentiable mappings
êi : R → R

n, 1 ≤ i ≤ n, such that for all ξ ∈ R, êi(ξ) · êj(ξ) = δij,
where δij is Kronecker’s delta function. Each êi(ξ) is a vector field along α,
and êi(ξ) is viewed as a vector in T

α(ξ)R
n.

(H2) A moving n-frame is said to be a Frenet n-frame, or merely a Frenet
frame, if for all k, 1 ≤ k ≤ n, the k-th derivative α

(k)(ξ) of α(ξ) lies in the
span of the set {ê1(ξ), . . . , ên(ξ)}.
We recall (see, e.g. [42]):

Lemma 2.2. Suppose α : R → R
n, n ≥ 2, is a curve such that the vectors

α̇(ξ),α(2)(ξ), . . . ,α(n−1)(ξ) are linearly independent for all ξ. Then there
exists a unique Frenet frame with the following properties
• For 1 ≤ k ≤ n− 1, α̇(ξ),α(2)(ξ), . . . ,α(k)(ξ) and ê1(ξ), . . . , êk(ξ) have the
same orientation.
(H3) The vectors ê1(ξ), . . . , ên(ξ) have the positive orientation.
A frame for which properties (H1)–(H3) hold, together with the first as-
sertion in Lemma 2.2, is referred to as a distinguished Frenet frame. For
dimensions n ≥ 3 the first assertion of Lemma 2.2 rules out curves belong-
ing to subspaces of lower dimension.

Henceforth we consider a regular unit-speed curve α in association with
a Frenet frame {êi(ξ)}, 1 ≤ i ≤ n, ξ ∈ R such that the above-mentioned
properties (H1)-(H3) hold, together with
(H4) ê1(ξ) = α̇(ξ).

(H5) The vector ˙̂ei(ξ) lies in the span of ê1(ξ), . . . , êi+1(ξ).
Then we have:

Lemma 2.3. Under the above-mentioned hypotheses (H1)–(H5), the Serret–
Frenet formulae hold, i.e.,

˙̂ei = Ξ j
i êj, (2.1)

where Ξ ≡ (Ξ j
i ) is defined by

Ξ :=




0 κ1 0 · · · 0
−κ1 0 κ2 · · · 0

... −κ2
. . .

. . .

0 · · · −κn−2 0 κn−1

0 · · · −κn−1 0



. (2.2)
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The n× n matrix Ξ is skew-symmetric and the functions

κi(ξ) = ˙̂ei(ξ) · êi+1(ξ), i = 1, . . . , n− 1; (2.3)

are positive and smooth with respect to the parameter ξ.
A standard result in the theory of ordinary differential equations (see, e.g.
[43]) gives us the following result.

Lemma 2.4. Let the above-mentioned hypotheses (H1)–(H5) be fulfilled.
Then the initial value problem

Θ̇ j
i +Θ r

i Ξ
j
r = 0 , (2.4)

δrsΘ
r
i (ξ0)Θ

s
j (ξ0) = δij and det (Θ j

i (ξ0)) = 1 (2.5)

has a unique C∞ solution on R.
The initial condition (2.5) means that the matrix (Θ j

i (ξ0)) is a rotation
matrix in R

n−1 for ξ0 ∈ R. Introduce

Θ := (Θ j
i ) =

(
1 0
0 (Θ s

r )

)
.

Lemma 2.4 justifies the definition of the following moving frame e1, . . . , en

along α:
ei := Θ j

i êj . (2.6)

Having chosen the latter frame, we may proceed to wires. Let Br ⊂
R

n−1 denote the open ball centered at the origin and having radius r > 0.
Introduce the straight wire T := R×Br and define the bend wire T of radius
r about α by means of the map Γ : T → R

n given as

(ξ, η2, . . . , ηn) 7→ α(ξ) + ei(ξ)η
i . (2.7)

The Serret–Frenet equations (2.1) in conjunction with (2.5) imply that

ė1 = κ1ê2 and ėi = Θ j
i Ξ

1
j ê1 = −κ1Θ

2
i ê1 . (2.8)

The implicit function theorem ensures that the map Γ : T → T is a local
diffeomorphism provided κ1 ∈ L∞(R) and r‖κ1‖L∞(R) < 1. The diffeomor-
phism becomes global if T does not intersect itself. Henceforth we shall thus
impose the following constraints:

Assumption 2.5.

(i) Regularity at infinity: κ1 ∈ L∞(R).
(ii) Restriction on radius of Br: r‖κ1‖L∞(R) < 1.
(iii) T does not intersect itself.
In particular, a system of global co-ordinates (ξ, η), η := (η2, . . . , ηn) is
determined by the inverse map Γ−1.
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3. Model of quantum wires

The following set-up is standard [8, 11, 44]. Let R 3 ξ 7→ α(ξ) be a C∞,
unit-speed curve in R

n, n ≥ 2. With respect to the Frenet frame in (2.6) its
ith curvature is given by κi(ξ), i = 1, . . . , n − 1, in (2.3). The bend wire T
will be identified with

T = {x ∈ R
n : dist (x,α) < r } (3.1)

for some r > 0; cf. (2.7). Henceforth we impose Assumption 2.5.
The motion of a quantum particle confined to the wire T depends on its

interaction with the boundary, denoted ∂T , of T . Throughout we consider
the Dirichlet Laplacian −∆D,T , i.e., the Friedrichs extension of the map
ψ 7→ −∆ψ defined on C∞

0 (T ); this corresponds to infinitely hard walls at
∂T .

Below we shall rigorously introduce the QW Hamiltonians associated
with a straight wire and the bend wire given in (3.1).
“Free” QW. On L2(T ) we consider the sesquilinear form l0 with domain
Q(l0) = H

1
0(T ) defined by

l0[u, v] := 〈u,i, δ
ijv,j〉L2(T), u, v ∈ H

1
0(T ) . (3.2)

It is a densely defined, symmetric, non-negative closed form. A form core
of l0 is C∞

0 (T ). Kato’s representation theorem [41, Theorem VI.2.4] gives a
unique Hamiltonian1 L0 in L2(T ) with domain

D(L0) : =
{
v ∈ H

1
0(T ) : ∃u ∈ L2(T ) such that

l0[v, ϕ] = 〈u, ϕ〉L2(T ) ∀ϕ ∈ H
1
0(T ) . (3.3)

We have

D(L0) = {u ∈ H
1
0(T ) : ∆u ∈ L2(T ) } (3.4)

L0u = −∆u if u ∈ D(L0) . (3.5)

The Dirichlet Laplacian −∆D,Br
on L2(Br) generated by the sesquilinear

form
q[u, v] := 〈u,i, δ

ijv,j〉, u, v ∈ H
1
0(Br) , (3.6)

has purely discrete spectrum consisting of energies (0 <)λ1 < λ2 ≤ λ3 ≤ · · · .
The latter constitutes the threshold set Λ := {λn : n ∈ N}. The unper-
turbed Hamiltonian L0 clearly has the tensor decomposition L0 = −∂2

ξ ⊗

I + I ⊗−∆D,Br
. Moreover, one has σ(L0) = σess(L0) = [λ1,∞).

1
i.e. a self-adjoint operator.
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“Perturbed” QW. The bend wire T can be identified with a Riemannian
manifold (T,m) with m := (mij) being the metric generated from (2.7).
Evidently, mij := Γ,i · Γ,j and, due to (2.8), we have that

m = diag (l2, 1, . . . , 1) where l(ξ, η) := 1 + ηiΘ j
i Ξ

1
j . (3.7)

Denoting by dη the (n− 1)-dimensional Lebesgue measure in Br, a volume
element of T is defined via dτ := l(ξ, η) dξdη because |m| := detm = l2.
To obtain a unique self-adjoint realization of the Dirichlet Laplacian −∆D,T

in L2(T ), we set (mij) := m−1 and define a sesquilinear form l̃ with do-

main Q(̃l) = H
1
0(T, dτ) by l̃[u, v] := 〈u,i,m

ijv,j〉L2(T,dτ), for u, v ∈ Q(̃l).

It is clearly densely defined, symmetric, non-negative and closed on Q(̃l).
Invoking once again Kato’s representation theorem, we get a unique non-

negative Hamiltonian L̃ satisfying D(L̃) ⊂ Q(̃l) and l̃[u, v] = 〈u, L̃v〉L2(T,dτ)

for u ∈ Q(̃l), v ∈ D(L̃). For any element

u ∈ D(L̃) := { v ∈ H
1
0(T, dτ) : ∂i|m|

1
2mij∂jv ∈ L2(T, dτ) }

one has
L̃u = −|m|−

1
2 ∂i|m|

1
2mij∂ju .

In other words, L̃ equals the Dirichlet Laplacian −∆D,T expressed by means
of the co-ordinates (ξ, η), η = (η2, . . . , ηn).
Transformation to flat boundary. It is advantageous to transform the wire
to a flat boundary which is possible under Assumption 2.5. Indeed, the

Hamiltonian L̃ can be transformed into a unitarily equivalent operator L of
the form

L = −∂im
ij∂j + Vbend (3.8)

acting in L2(T ). In particular, we get rid of the weight |m|
1
2 in the vol-

ume element. This trick of “flattening” goes back to [45] (in a different
physical context). For this purpose we introduce the unitary operator U :

L2(T, dτ) → L2(T ) defined by u 7→ |m|
1
4u. Setting L := UL̃U−1, we obtain

Lu = −|m|−
1
4 ∂i|m|

1
2 mij∂j|m|−

1
4u, for

u ∈ D(L) = {u ∈ H
1
0(T ) : ∂i|m|

1
2mij∂j|m|−

1
4u ∈ L2(T ) } .

By commutating the first order differential operators appearing in L with

m− 1
4 and inserting the original expression for m, we derive (3.8) with

Vbend := −
5

4

(l,1)
2

l4
+

1

2

l,11
l3

−
1

4

δijl,il,j
l2

+
1

2

δijl,ij
l

. (3.9)
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4. Abstract Hamiltonian on a cylindrical domain

Instead of working directly with L and L0, the Hamiltonians for the QWs,
we shall study two abstract Hamiltonians A and A0 defined on a cylindrical
Lipschitz domain M = R × Q, where Q ⊂ R

n−1, n ≥ 2, is an open and
bounded Lipschitz domain. Specifically, A and A0 act as follows

A = −∂im
ij∂j + V and A0 = −∂iδ

ij∂j (4.1)

on L2(M) with Dirichlet boundary conditions; as usual sums over indices are
suppressed. The structure of A is motivated by the discussion in Section 3
and the expression (3.8). The matrix-valued function M ≡ (mij) is real-
valued and symmetric on M and V is a multiplication operator induced by
a real-valued function on M. In the sequel x = (x1, x̃) is a vector of R ×Q

and 〈x〉 := (1 + |x|2)
1
2 for x ∈ M. We shall impose the following conditions

on M and V .

Assumption 4.1. The following inequalities are understood in the sense of
matrices.
(i) There exist positive constants c and C such that

c ≤M(x) ≤ C for a.e. x ∈ M.

(ii) There exists µ1 > 1 and a positive constant C1 such that vij(x) :=
mij − δij(x) satisfies

|vij(x)| ≤ C1〈x1〉
−µ1 for a.e. x ∈ M.

(iii) There exists µ2 > 1 and a positive constant C2 such that

|∂1m
ij(x)| ≤ C2〈x1〉

−µ2 for a.e. x ∈ M.

In particular, Assumption 4.1(ii) implies that
(ii)’

lim
d→∞

‖χ(±x1 ≥ d)(mij(x) − δij)‖L∞(M) = 0 ∀i, j = 1, . . . , n.

Assumption 4.2.

(i) Let V ∈ L∞(M).
(ii) There exists ν1 > 1 and a positive constant C3 such that

|V (x)| ≤ C3〈x1〉
−ν1 for a.e. x ∈ M.

(iii) There exists ν2 > 1 and a positive constant C4 such that

|∂1V (x)| ≤ C4〈x1〉
−ν2 for a.e. x ∈ M.



206 M. Melgaard

In particular, Assumption 4.2(ii) implies that
(ii)’

lim
d→∞

‖χ(±x1 ≥ d)V (x)‖L∞(M) = 0 .

We then introduce the sesquilinear form ã with domain H
1
0(M)×H

1
0(M)

defined by ã[ϕ,ψ] = 〈∂iϕ,m
ij∂jψ〉 for ϕ,ψ ∈ H

1
0(M). It is clearly densely

defined and symmetric. In view of Assumption 4.1 the matrix M is bounded
and uniformly positive and, consequently, the form ã is non-negative and
closed. Invoking Kato’s representation theorem, we get an unique Hamilto-

nian Ã. Since, moreover, Assumption 4.2 ensures that V is bounded, the
KLMN theorem [46, Theorem X.17] asserts that the sesquilinear form sum

a[ϕ,ψ] := ã[ϕ,ψ] + 〈ϕ, V ψ〉, ϕ, ψ ∈ Q(a) = Q(ã) = H
1
0(M) , (4.2)

is closed and semi-bounded from below and hence it generates a Hamilto-
nian A.

5. Limiting absorption principle

The following spectral properties and limiting absorption principle (LAP)
of A were obtained in [22]; the main result being the LAP. In very general
terms, the LAP can be stated as follows for a self-adjoint operator T in a
separable Hilbert space H. Let R(ζ) = (T − ζ)−1, Im ζ 6= 0, be the resolvent
operator and let X ,Y be Hilbert spaces such that X is densely and continu-
ously embedded in H (and thus have a stronger norm). Then one says that
T satisfies the LAP in an open set Λ ⊂ R if the limits

R±(λ) = lim
ε→0+

R(λ± iε) , λ ∈ Λ ,

exist in the norm topology of B(X ,Y), the space of bounded operators from
X into Y. The importance of the LAP lies in the fact that it implies some
significant spectral properties of T (e.g, if a dense subset of H can be identi-
fied with elements of the dual space Y∗ then T is absolute continuous in Λ).
Furthermore, the LAP is an efficient tool to establish the scattering theory
of T , as we demonstrate below.

The key ingredient in the proof of strong asymptotic completeness is a
LAP valid in a framework of weighted Sobolev spaces H

s
(γ)(M) := {ψ ∈

D′(M) : 〈x〉γψ ∈ H
s(M)} equipped with its natural norm; here D ′(M)

denotes the space of distributions. Evidently, for any γ ≥ 0, one has contin-
uous embeddings H

−1
(γ)(M) ⊂ H

−1(M) and H
1
0(M) ⊂ H

1
(−γ)(M). This

version of the LAP, suitable for the study of scattering theory, is the content
of assertion 4 in the following theorem, wherein Υ denote the set of eigenval-
ues of the Dirichlet Laplacian −∆D,Q on on the bounded Lipschitz domain
Q in R

n−1, n ≥ 2.
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Theorem 5.1. Let M, Q and Υ be as above. Suppose that the matrix M
satisfies Assumption 4.1 (i), (ii)’ and (iii) and that the potential V satisfies
Assumption 4.2(i), (ii)’ and (iii). Then the operator A in (4.1) has the
following properties:
1. The essential spectrum of A equals the semi-axis [υ1,∞) with υ1 = inf Υ .
2. The set of eigenvalues of A can accumulate only to the points of Υ and
each eigenvalue away from Υ has finite multiplicity.
3. The operator A has no singular continuous spectrum.
4. For any γ > 1/2, the holomorphic functions

C± 3 ζ 7→ (A− ζ)−1 ∈ B(H−1
(γ)(M),H1

(−γ)(M)) (5.1)

extends continuously to C±∪ (R \ [σp(A)∪Υ ]) in the uniform topology; here
C± := {z ∈ C : ±Im z > 0}.
Since Eidus’ classic paper [47], the LAP has been extensively considered
in spectral and scattering theory (see, e.g. [48, 49]). Although the proof of
Theorem 5.1(4) follows a procedure well-known for the Laplace operator, the
variable principle part of A requires a refined version of Mourre’s method [50]
within the context of pseudo-self-adjoint operators (see, e.g. [51]) and a sub-
stantially more complicated analysis of commutators. For further discussion
and for a proof of Theorem 5.1 we refer to [22], wherein the reader also finds
a list of related results.

6. Abstract result on scattering

We begin by introducing the “unperturbed” Hamiltonian A0. On L2(M)
we consider the sesquilinear form a0 with domain Q(a0) = H

1
0(M) defined

by
a0[ϕ,ψ] := 〈∂iϕ, δ

ij∂jψ〉, ϕ, ψ ∈ H
1
0(M). (6.1)

It is a densely defined, symmetric, non-negative closed form. A form core
of a0 is C∞

0 (M). Kato’s representation theorem gives a unique Hamiltonian
A0 in L2(M) with domain

D(A0) :=
{
ψ ∈ H

1
0(M) : ∃ϕ ∈ L2(M) such that

a0[ψ, u] = 〈ϕ, u〉L2(M) ∀u ∈ H
1
0(M)

}
. (6.2)

We have

D(A0) = {ψ ∈ H
1
0(M) : ∆ψ ∈ L2(M) } (6.3)

A0ψ = −∆ψ if ψ ∈ D(A0). (6.4)

The Dirichlet Laplacian −∆D,Q on L2(Q) generated by the sesquilinear form

q[ϕ,ψ] := 〈∂iϕ, δ
ij∂jψ〉, ϕ, ψ ∈ H

1
0(Q), (6.5)
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has purely discrete spectrum consisting of eigenvalues (0 <)υ1 < υ2 ≤ υ3 ≤
· · · . The latter constitute the threshold set Υ := {υn : n ∈ N}. The
unperturbed Hamiltonian H0 has the tensor decomposition A0 = −∂2

1 ⊗ I+
I ⊗−∆D,Q and, furthermore, one has σ(A0) = σess(A0) = [υ1,∞).

We proceed to scattering theory for the pair (A,A0). The following
classic result goes back to Lavine [52].

Theorem 6.1. Let T1 and T2 be two self-adjoint operators in a separable
Hilbert space H with spectral projections ET1(Ω) and ET2(Ω). Assume that
there exist sets Ωj, j ∈ N, and operators Ek, Fk, 1 ≤ k ≤ N , such that:
(i) Ω = ∪j∈NΩj where each Ωj is a bounded open interval, and Ωj ∩Ωk = ∅
if j 6= k.
(ii) The operator Ek is T1-bounded and locally T1-smooth on Ωj, for 1 ≤
k ≤ N , and j ≥ 1.
(iii) The operator Fk is T2-bounded and locally T2-smooth on Ωj, for 1 ≤
k ≤ N , and j ≥ 1.
(iv) T2 − T1 =

∑N
k=1 F

∗
kEk is valid in the sense of forms, i.e.

〈T2u, v〉H − 〈u, T1v〉H =
N∑

k=1

〈Fku,Ekv〉H, u ∈ D(T2), v ∈ D(T1).

(v) Both sets σ(T1) \Ω and σ(T2) \ Ω have Lebesgue measure zero.
Then the generalized wave operators

W± = s− lim
t→±∞

eitT2e−itT1Pac(T1) ,

W̃± = s− lim
t→±∞

eitT1e−itT2Pac(T2)

exist and are complete.
For our purpose, we choose T1 = A0 and T2 = A and Ω = R \ Υ . For
u ∈ D(A) and v ∈ D(A0) we have

〈Au, v〉L2(M) − 〈u,A0v〉L2(M) = a[u, v] − a0[v, u]

=

∫

M

(∂iu)(x)v
ij(∂jv)(x) dx

+

∫

M

|V (x)|
1
2u(x)|V (x)|

1
2 sign V (x)v(x) dx , (6.6)

where, on the right-hand side, we suppress the summations over i, j. Hence,
by introducing the operators Eij , Fij : H

1
(−γ)(M) → L2(M), γ = max{µ, ν},

1 ≤ i, j ≤ n + 1, µ := maxj=1,2 µj/2 (see Assumption 4.1 for the decay
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parameters µj), ν = maxj=1,2 νj/4 (see Assumption 4.2 for the decay pa-
rameters νj), defined by

Eiju := 〈·〉µvij∂ju, Fiju := −〈·〉−µ∂iu 1 ≤ i, j ≤ n ,

En+1u := 〈·〉ν |V |
1
2 , Fn+1 = 〈·〉−ν |V |

1
2 signV , (6.7)

we have, in view of (6.6), that

A−A0 =
∑

1≤i,j≤n

F ∗
ijEij + F ∗

n+1En+1 (6.8)

holds in the sense of forms. In addition, we need the following auxiliary
result.

Lemma 6.2. Let γ > 1/2 and let g ∈ L∞(M) be a function satisfying
〈·〉γg ∈ L∞(M). Then
1. The operator G : H

1
(−γ)(M) → L2(M), Gu := g∂αu (where α is a multi-

index with order |α| ≤ 1) is bounded.
2. The unbounded operator defined by G in L2(M), also denoted by G, is
A-bounded.
3. The operator G is locally A-smooth on R \ Υ .

Proof. Evidently, the hypotheses on g and γ ensure that the first statement
holds. The second statement follows from the inclusions D(A) ⊂ H

1
0(M) ⊂

H
1
(−γ)(M). To prove the third assertion we need to verify that for any

compact set K ⊂ R \ Υ , the operator GEA(K) is A-smooth. A sufficient
requirement for this is that (see, e.g. [48, Theorem XIII.30])

sup
λ∈K,0<ε<1

‖G(A − λ− iε)−1G∗‖B(L2(M)) <∞ . (6.9)

From Theorem 5.1 we infer that

sup
λ∈K,0<ε<1

‖(A− λ− iε)−1‖
B(H

−1
(γ)(M),H

1
(−γ)(M))

<∞

and therefore (6.9) is fulfilled. This proves the third statement.

We next recall the following notion. A real-valued function φ, defined
on R+, is admissible provided

lim
t→∞

∞∫

0

∣∣∣∣∣∣

∫

I

e−itφ(λ)−isλ dλ

∣∣∣∣∣∣

2

ds = 0

for any bounded interval I ⊂ R+. Our main result is:
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Theorem 6.3. Let Assumption 4.1 and Assumption 4.2 be satisfied. Then
1. The wave operators W± = s− limt→±∞ eitAe−itA0 exist and are strongly
asymptotically complete.
2. If φ is an admissible function, then W± = s− limt→±∞ eitφ(A)e−itφ(A0).

Proof. It follows immediately from the discussion above, Theorem 5.1,
Lemma 6.2 and Theorem 6.1.

Related results are found in [53], also being based upon a variant of
Mourre’s method.

7. Main results for quantum wires

Herein we establish the main results on QWs by carrying over the ab-
stract results on Hamiltonians of the type (4.1) to the QW Hamiltonians L0

and L. We impose the following decay conditions on the curvatures.

Assumption 7.1.

(i) Ξ 1
r (ξ), Ξ̈ 1

r (ξ) −→ 0 as |ξ| → ∞ for r = 2, . . . , n .

(i)’ There exists α > 1 such that Ξ 1
r (ξ), Ξ̈ 1

r (ξ) = O (|ξ|−α) for r = 2, . . . , n .

(ii) Ξ s
r , Ξ̇

2
r ∈ L∞(R) for r, s = 2, . . . , n.

(iii) There exists β > 1 such that

Ξ̇ 1
r (ξ),

...
Ξ

1
r (ξ), Ξ 2

r (ξ), Ξ̈ 2
r (ξ), (Ξ̇ s

r Ξ
2
s )(ξ), (Ξs

r Ξ̇
2
s )(ξ) = O

(
|ξ|−β

)

for r = 2, . . . , n.
Our main results are the following two theorems. The first theorem states the
basic spectral properties of L and, most importantly for scattering theory,
it states the LAP for L in a framework of weighted Sobolev spaces.

Theorem 7.2. Let Assumption 2.5 and Assumption 7.1(i), (ii) and (iii) be
satisfied. Then
1. The essential spectrum of L equals the semi-axis [λ1,∞) with λ1 = inf Λ.
2. The set of eigenvalues of L can accumulate only to the points of Λ and
each eigenvalue away from Λ has finite multiplicity.
3. The operator L has no singular continuous spectrum.
4. For any γ > 1/2, the holomorphic functions

C± 3 ζ 7→ (L− ζ)−1 ∈ B
(
H

−1
(γ)(T ),H1

(−γ)(T )
)

(7.1)

extends continuously to C± ∪ (R \ [σp(L) ∪ Λ]) in the uniform topology.

Theorem 7.2(i)–(iii) first appeared in [44]. The second result is the main
contribution on scattering theory for the class of QWs which we consider:
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Theorem 7.3. Let Assumption 2.5 and Assumption 7.1(i)’, (ii) and (iii)
be satisfied. Then
1. The wave operators W± = s− limt→±∞ eitLe−itL0 exist and are strongly
asymptotically complete.
2. If φ is an admissible function, then W± = s− limt→±∞ eitφ(L)e−itφ(L0).

Proofs of Theorems 7.2–7.3. Bear in mind the expressions for L in (3.8) and
the one for Vbend in (3.9). In view of our abstract results, the proofs amount
to translating Assumption 4.1 and Assumption 4.2 into conditions on the
curvatures. By invoking the expression for l in (3.7), we get from (2.5) that

l,ij = 0, δijl,il,j = δrsΞ 1
r Ξ

1
s ,

and an application of (2.4) yields

l,1(·, η) = ηiΘ r
i

(
Ξ̇ 1

r −Ξ s
r Ξ

1
s

)
,

l,11(·, η) = ηiΘ r
i

(
Ξ̈ 1

r −Ξ s
r Ξ

1
s − 2Ξ s

r Ξ̇
1
s +Ξ s

r Ξ
t
s Ξ

1
t

)
.

In this way we have all terms appearing in Vbend. In view of Assumption 4.2
we must also compute

(Vbend),1 = 5
(l,1)

3

l5
− 4

l,1l,11
l4

+
l,111
2l3

+
δij

2

[
l,1l,il,j
l3

−
l,1l,ij + l,1il,j

l2
+
l,1ij

l

]
.

wherein

l,1ij = 0, (δijl,il,j),1 = 2δrsΞ̇ 1
r Ξ

1
s ,

l,111(·, η) = ηiΘ r
i

(...
Ξ

1
r − 3Ξ̇ s

r Ξ̇
1
r − 3Ξ s

r Ξ̈
1
s − Ξ̈ s

r Ξ
1
s

+Ξ̇ s
r Ξ

t
sΞ

1
t + 2Ξ s

r Ξ̇
t
sΞ

1
t + 3Ξ s

r Ξ
t
s Ξ̇

1
t −Ξ s

r Ξ
t
sΞ

u
t Ξ

1
u

)
.

From here on it remains to check that the conditions imposed in Assump-
tion 4.1 and Assumption 4.2 give the ones formulated in Assumption 7.1.
Using that |ηjΘ s

j | < r (r being the radius of T ), this is rather easy to
check.

It is instructive to formulate the results in the two-dimensional case.

Theorem 7.4. Suppose n = 2 and let Assumption 2.5 be satisfied.
1. If κ(ξ), κ̈(ξ) → 0 as |ξ| → ∞ and there exists α > 1 such that κ̇(ξ),

...
κ (ξ) =

O(|ξ|−α), then the assertions of Theorem 7.2 hold.
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2. If there exists β > 1 such that κ(ξ), κ̇(ξ), κ̈(ξ),
...
κ (ξ) = O(|ξ|−β), then the

assertions of Theorem 7.3 hold.
In two dimensions strong asymptotic completeness and σsc(L) = ∅ were
established by stationary scattering theory by Duclos et al. [24] provided
κ(ξ), κ̇(ξ)2, κ̈(ξ) = O(|ξ|−(1+ε)). A similar result in two dimensions, under
the same assumptions, was recently established by Melgaard [30] using a
hybrid of the time-dependent Enss–Mourre method [23, 50]; a slightly dif-
ferent spectral result is obtained as a result of the method. Comparing
the latter results with the ones herein, the results (σsc(L) = ∅ and LAP) of
Theorem 7.4(1) demand a stronger decay condition on κ̇ and requires that

...
κ

decays as O(|ξ|−α) at infinity for α > 1. On the other hand, Theorem 7.4(1)
requires much slower decay on κ and κ̈ compared to the afore-mentioned re-
sults. As for asymptotic completeness, the results of Theorem 7.4(2) require
a weaker decay condition on κ̇ and that

...
κ decays as O(|ξ|−β) at infinity for

β > 1.

8. Conclusions and perspectives

A rigorous treatment of the basic scattering properties of a nanoparticle
moving in a narrow, bend channel (a so-called quantum wire) is developed
by means of abstract results for a Hamiltonian considered on a cylindrical
Lipschitz domain. Under certain general restrictions on the geometry of the
wire, expressed in terms of the curvature, the following properties are estab-
lished: (1) The Møller wave operators exist and the S operator is unitary
in the scattering channels. (2) The singular continuous spectrum is empty.
These properties underpin much of the existing literature on scattering and
transmission processes for such mesoscopic systems and set the stage for
future work on related issues (e.g. local decay of wave functions, low-energy
scattering, quasi-bound states etc).
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