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The recently found shock wave solution in the scalar field model with
the field potential V (φ) = |φ| is generalised to the case V (φ) = |φ| − 1

2
λφ2.

We find two kinds of the shock waves, which are analogous of compression
and expansion waves. The dependence of the waves on the parameter λ is
investigated in detail.

PACS numbers: 03.50.Kk, 05.45.–a, 11.10.Lm

1. Introduction

Interesting and still poorly studied group of field-theoretic models are
these with V-shaped potentials. Physical systems with just few degrees of
freedom and V-shaped potential are studied quite frequently. There are nu-
merous results for systems such as e.g. bouncing oscillators. These systems
are mainly studied in context of chaotical behaviour and grazing bifurca-
tion [1–7]. The V-shaped potentials appear in research of plasma physics [8].
Furthermore, they can play an important role in pinning phenomena which
can describe a process of vortices attaching to lines of impurities [9, 10].
Apart from the applications, they are also very interesting on purely theo-
retical grounds because of scale invariance of vacuum sector, [11].

There are only few analytical results for the field-theoretic models with
V-shaped potentials. An example of such model, which originally derives
from a mechanical system, has been proposed in [12]. The model considered
there is obtained as a continuum limit of the system of coupled pendu-
lums that are allowed to take the angular positions belonging to the interval
[−φ0, φ0]. This leads to appearance of a V-shaped potential, and conse-
quently to nontrivial dynamics of the system. The angle φ = 0 corresponds
to the pendulum in upward vertical position. A simpler model has been
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proposed in [11]. It derives from coupled system of bouncing balls. The
potential in that model has the form V (φ) = |φ|. It can be regarded as a
limit case of a large group of V-shaped symmetric potentials.

In the present paper we consider the classical scalar field model with the
potential V (φ) = |φ|− 1

2
λφ2, where λ is a real constant. Such potentials with

λ 6= 0 naturally appear in the case of system of coupled pendulums [12], as
well as in the system of bouncing coupled balls obtained from system studied
in [11] by adding new couplings, see Fig. 2. Specifically, we investigate shock
wave solutions1. In the particular case of λ = 0 they have been discussed
in [13].

The field-theoretic model with the potential |φ| has special symmetry.
If φ(x, t) is solution of equation of motion, then ν2φ(x

ν , t
ν ), where ν is a

positive constant, obeys this equation as well, see [13]. This symmetry is
“on shell” type because the action functional is not invariant with respect to
the scaling transformation. In general, in real physical system, apart from
term |φ|, the V-shaped potential has also another terms. A squared term is
an example of the simplest perturbation that breaks the scaling symmetry.
Investigation of effects of such perturbation is a very important issue.

Our paper is organised as follows. In Section 2 we show connections
between the model and physical systems. Section 3 contains analysis of
solutions that have the properties of expansion shock waves. In Section 4
we investigate symmetric compression shock waves. Section 5 summarises
the paper.

2. The modified model and related physical systems

2.1. General definition

Let us consider the model of a real scalar field φ in one dimension. The
Lagrangian has the form

L = 1

2
(∂tφ)2 − 1

2
(∂xφ)2 − V (φ) , (1)

where φ = φ(x, t) depends on rescaled position x and time t which are
dimensionless. The potential has the form

V (φ) = |φ| − 1

2
λφ2 . (2)

1 In this and previous papers we use terminology “shock wave” so as to name disconti-
nuity that moves. There is a criterion in theory of hydrodynamics that distinguishes
between shock waves and different kinds of discontinuities as e.g. contact discontinu-
ity, tangential discontinuity etc., see e.g. [15]. Our system is clearly different from
e.g. gas medium and the criterion cannot be applied directly. Every choice of name
for discontinuity in model considered here can merely reflect some kind of analogy
between the discontinuity we describe and hydrodynamical discontinuity that has
this name. For this reason we shall remain with the name “shock wave” and discard
looking for a better term.
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The evolution equation which corresponds to Lagrangian (1) has the form

(∂2
t − ∂2

x)φ + sign(φ) − λφ = 0 . (3)

Because of sign function equation (3) is clearly nonlinear one. We assume
that sign(0) = 0. There are three qualitatively different cases: λ > 0, λ < 0,
and λ = 0 when we have the canonical model considered in [11,13].

2.2. Positive values of λ

Let us start from the case λ > 0. It is convenient to set λ = ρ2. The
equation of motion for this case takes the form

(
∂2

t − ∂2
x

)
φ + sign(φ) − ρ2φ = 0 . (4)

The potential has one local minimum at φ = 0 and two local maxima at
φ = ± 1

ρ2 , see Fig. 1. It is not differentiable at its minimum (right-hand side

and left-hand side derivatives are not equal at this point). Equation (4) can
be obtained from equation of motion which describes a small perturbation
around the ground state in the model considered in [12]. Physical values of
perturbation are given by |φ|.

Fig. 1. The potential V (φ) (λ > 0) and its limit for λ = 0.

2.3. Negative values of λ

It turns out that the model for λ < 0 has also a physical meaning.
Physical system which is related to this model can be obtained from the
system considered in [11] by adding new springs that link every ball with
the floor, see Fig. 2.

In this system every ball can move only in vertical direction. There is a
rigid floor at φ = 0 and every ball bounces elastically from the floor. After
taking few standard steps (continuous limit, folding transformation) we get
the system whose dynamics is described by the equation

(
∂2

t − ∂2
x

)
φ + sign(φ) + σ2φ = 0 , (5)
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where −∞ < φ < ∞ whereas physical position of the balls are given by |φ|.
As above, we have set λ = −σ2. The potential Fig. 3 has one minimum and
no local maxima.

ϕ

Fig. 2. The system of bouncing balls.

Fig. 3. The potential V (φ) (λ < 0) and its limit for λ = 0.

2.4. On regularised potentials

In our model at φ = 0 first derivative of the potential does not exist at all.
It is possible to replace the sharp potential by a regularised potential where
instead of |φ| we use e.g.

√
φ2 + ε2 or ε ln cosh φ

ε , what gives well defined
first derivative at φ = 0. We are not interested in regularised potential in this
paper because physical systems that we consider here give rather sharp than
regularised potential. Another reason is that for the regularised potential
only solutions such that |φ| � ε can survive the limit ε → 0. Finding any
such solution of the equation (3) with the regularised potential seems to be
a very difficult task.
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3. Symmetric shock waves inside the light cone

3.1. The Ansatz

Equation (3) includes term with derivatives in the form of d’Alembert
operator so it can be reduced to an ordinary differential equation by assump-
tion φ(x, t) = W (z), where z = (x2 − t2)/4.

There are two qualitatively different cases (z < 0 and z > 0) for the
canonical model (λ = 0). When z < 0 the pieces of solution can be combined
together in one solution. In opposite case whole solution can be either posi-
tive or negative and it is not limited respectively from above or from below.
It is physically reasonable to get rid of unstable solutions. It can be simply
done by modification our Ansatz to the following one φ(x, t) = Θ(−z)W (z),
where Θ(−z) is well known Heaviside step function. This modification in-
troduces discontinuities at x = ±t.

In the modified model, especially for λ > 0 there are solutions for z > 0
that are limited both from above and from below so this time we cannot
simply get rid of them. In further part of our work we analyse solutions for
z < 0 and z > 0 separately because the solution inside the light cone is com-
pletely independent of the solution outside it. It is executed by assumptions
φ(x, t) = Θ(−z)W (z) and φ(x, t) = Θ(z)W (z).

Apart from possibility of reduction equation (3) to an ordinary differ-
ential equation, an important question is whether discontinuities in our
model can move with velocity v 6= 1 or not. To answer it, let us con-
sider φ(x, t) = Θ(−z)W (z), where z = pq, p = (x − vt)/2, q = (x + vt)/2
and v 6= 0. Equation (3) takes the form

Θ(−z)
[
A(p, q)W ′′ − 1

2
(v2 + 1)(zW ′′ + W ′) + sign(W ) − λW

]

−2δ(z)A(p, q)W ′(z) − δ′(z)A(p, q)W (z) = 0 ,

where
A(p, q) = 1

4
(v2 − 1)(p2 + q2) ,

and ′ = d
dz . The terms proportional to Θ(−z), δ(z) and δ ′(z) have to vanish

independently. At z = 0 and v 6= 1, W (0) = 0 and W ′(0) = 0 because
A(p, q) 6= 0. It means that φ(x, t) cannot be discontinuous function unless
v = 1. We can see that velocity v = 1 is distinguished by the model and it
is the only admissible velocity with which discontinuities can move.
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3.2. Equations of motion

Let us consider the Ansatz

φ(x, t) = Θ(−z)W (z) , where z =
1

4

(
x2 − t2

)
. (6)

Applying Ansatz (6) to equation (3) we get the following differential equation

zW ′′ + W ′ − sign(W ) + λW = 0 . (7)

Let us introduce a new variable y which is related to z in the following way

z = −
1

4
y2. (8)

Consequently, equation (7) acquires more familiar form

G′′ +
1

y
G′ − ρ2G = −sign(G) , λ > 0 (9)

or

F ′′ +
1

y
F ′ + σ2F = −sign(F ) , λ < 0 . (10)

Eqs. (9) and (10) are Bessel equations with the signum nonlinearity. We have
denoted W (− 1

4
y2) = G(y) for positive values of λ and W (− 1

4
y2) = F (y) for

opposite case.

3.3. Solutions for λ > 0

The term sign(G) is constant (equal ±1) on the intervals where sign of
G(y) is constant. Equation (9) has the solutions:

G+(y) =
1

ρ2
− αI0(ρy) − βK0(ρy) for G(y) > 0 ,

G−(y) = −
1

ρ2
+ α̃I0(ρy) + β̃K0(ρy) for G(y) < 0 ,

where α, β, α̃, β̃ are arbitrary constants. We will find these coefficients
matching pieces of solution so as to obtain a solution that is valid on full
available range of y. Physically, only real solutions are interesting so only
y ≥ 0 is considered. It is convenient to introduce the coefficients αk and βk

and combine all the solutions in one formula

Gk(y) = (−1)k

(
1

ρ2
− αkI0(ρy) − βkK0(ρy)

)
, (11)
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where k = 0, 1, 2, . . . . We assume that G0(y), that is G+ type, starts from
y = 0. It does not cause loosing of generality because physically relevant
quantity is |φ|, thus case where G−(y) plays role of solution that start from
y = 0 does not have to be extra discussed. For G0(y) the coefficient β0 has
to vanish to ensure regularity at y = 0. The coefficient α0 can be expressed
with help of G0(0), and then G0(y) takes the form

G0(y) =
1

ρ2
−

(
1

ρ2
− G0(0)

)
I0(ρy) . (12)

For fixed ρ there are three qualitatively different cases depending on G0(0).
For G0(0) > 1

ρ2 the solution G0(y) → ∞ for y → ∞ (unstable solution).

In this case solution G0(y) cover whole range y ≥ 0. The shape of the shock
wave for ρ = 0.5 and G0(0) = 6.0 at different times is shown in Figs. 4–6.

Fig. 4. The unstable symmetric shock wave at t = 2.

Fig. 5. The unstable symmetric shock wave at t = 5.

Fig. 6. The unstable symmetric shock wave at t = 12.

In the case G0(0) = 1

ρ2 we obtain the shock wave

φ(x, t) =
1

ρ2
Θ

(
t2 − x2

)
.

For this wave, values of the field behind the wave front are constant and
equal 1/ρ2.
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Last case G0(0) < 1

ρ2 is more complicated but it is much more interesting.

The solution G0(y) holds only on the interval 0 ≤ y < b0, where G0(y) > 0.
For fixed G0(0), the first zero of G(y) i.e. b0 is determined by solution of
following equation

I0(ρb0) =
1

1 − G0(0)ρ2
.

Unfortunately, it can be solved only numerically. It is clear that b0 depends
on ρ. For given b0 first piece of solution G(y) takes the form

G0(y) =
1

ρ2

[
1 −

I0(ρy)

I0(ρb0)

]
. (13)

We are interested in a solution for all nonnegative values of y. Having pieces
of solution (11) and matching conditions

Gk(bk−1) = 0 , G′

k(bk−1) = G′

k−1(bk−1) (14)

which are implied by equation (9) we can calculate coefficients αk and βk.
First matching condition allows to eliminate coefficients βk. Solution (11)
takes the form

Gk(y) = (−1)k

[
1

ρ2

(
1 −

K0(ρy)

K0(ρbk−1)

)

−αkI0(ρbk−1)

(
I0(ρy)

I0(ρbk−1)
−

K0(ρy)

K0(ρbk−1)

)]
. (15)

The zeros bk for k = 1, 2, . . . come from the equation Gk(bk) = 0. Like for
k = 0 we can get them numerically. The second condition in (14) gives
coefficients αk:

α1 =
1

ρ2I0(ρb0)

K(b0, b0) − ρ2α0I1(ρb0)

I(b0, b0) + K(b0, b0)
,

αk =
1

ρ2I0(ρbk−1)

[
A − ρ2I0(ρbk−2)B

]
,

where

A ≡
K(bk−1, bk−2) + K(bk−1, bk−1)

I(bk−1, bk−1) + K(bk−1, bk−1)
,

B ≡
I(bk−1, bk−2) + K(bk−1, bk−2)

I(bk−1, bk−1) + K(bk−1, bk−1)
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and k = 2, 3, . . . . We have introduced the special notation

I(x, y) ≡
I1(ρx)

I0(ρy)
, K(x, y) ≡

K1(ρx)

K0(ρy)
.

The zeros of G(y) depend on ρ — they are larger for larger values of ρ, Fig. 7.
For fixed G0(0) and ρ → G0(0)

−1/2 first zero b0 → ∞ and, of course, bk → ∞
(b0 < b1 < b2 < . . . ). All the zeros bk are larger than their counterparts ak in

the canonical model. It means that zeros xk = ±
(
t2 − b2

k

)1/2
in the modified

Fig. 7. The solutions G(y) for fixed G0(0) = 0.5 and different values of ρ. The curve

A correspond to ρ = 0.1, B to ρ = 0.5 and curve C is the solution for ρ = 1.4. For

fixed G0(0) the parameter ρ belongs to the interval 0 < ρ < 1/
√

G0(0).

model run faster than xc
k = ±

(
t2 − a2

k

)1/2
in the canonical model. A pair of

zeros xk appears at t = bk and moves with velocities vk = ±
(
1 − b2

k/t
2
)−1/2

.
In Fig. 8–10 we present three snapshots which show the symmetric shock
wave for G0(0) < 1

ρ2 .

Fig. 8. The symmetric shock wave for ρ = 0.5, G0(0) = 0.5 at t=0.5.

Fig. 9. The symmetric shock wave for ρ = 0.5, G0(0) = 0.5 at t=1.6.
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Fig. 10. The symmetric shock wave for ρ = 0.5, G0(0) = 0.5 at t=4.7.

3.4. Solutions for λ < 0

This section is devoted to presentation of solutions corresponding to
equation (10). Many steps are the same so we sometimes skip the comments.
Let us start from the solution of (10) given in the form

Fk(y) = (−1)k

(
µkJ0(σy) + νkY0(σy) −

1

σ2

)
, (16)

where J0 and Y0 are Bessel functions. They take real values for y ≥ 0. Fk(y)
are positive for k = 0, 2, 4, . . . and negative for k = 1, 3, 5, . . . . We assume
that F0(y) starts from y = 0. This time, for given σ there is no qualitatively
change in behaviour of solution for different F0(0). F0(y) can be expressed
in the form

F0(y) =

(
F0(0) +

1

σ2

)
J0(σy) −

1

σ2
. (17)

The first zero c0 is calculated from the equation F0(c0) = 0. We can rewrite
F0(y) using c0

F0(y) =
1

σ2

[
J0(σy)

J0(σc0)
− 1

]
. (18)

In order to have solution for whole range y ≥ 0 we have to calculate µk and
νk. We use the matching conditions

Fk(ck−1) = 0 , F ′

k(ck−1) = F ′

k−1(ck−1) . (19)

For k = 1, 2, . . .

Fk(y) = (−1)k+1

[
1

σ2

(
1 −

Y0(σy)

Y0(σck−1)

)

−µkJ0(σck−1)

(
J0(σy)

J0(σck−1)
−

Y0(σy)

Y0(σck−1)

)]
. (20)
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The coefficients νk have been eliminated by using first condition in (19).
The zeros ck fulfil the equation Fk(ck) = 0. Second condition in (19) gives
coefficients µk

µ1 = −
1

σ2J0(σc0)

Y(c0, c0) + µ2µ0J1(ρc0)

J (c0, c0) −Y(c0, c0)
,

µk = −
1

σ2J0(σck−1)

[
Ã + σ2J0(σck−2)B̃

]
,

where k = 2, 3, . . . and

Ã ≡
Y(ck−1, ck−2) + Y(ck−1, ck−1)

J (ck−1, ck−1) − Y(ck−1, ck−1)
,

B̃ ≡
J (ck−1, ck−2) − Y(ck−1, ck−2)

J (ck−1, ck−1) − Y(ck−1, ck−1)
.

By analogy, the functions J and Y are defined by formulas

J (x, y) ≡
J1(σx)

J0(σy)
, Y(x, y) ≡

Y1(σx)

Y0(σy)
.

Having µk we can find consecutive zero ck as the solution of the equation
Fk(ck) = 0. Fig. 11 presents solutions F (y) for F0(0) that is set and different
values of σ. The zeros ck are smaller than in the canonical model so zeros
xk = ±(1−c2

k/t
2)1/2 move slower than zeros xc

k. They are getting smaller for
σ being increased. The shape of |φ| qualitatively resembles that presented
in Figs. 8–10.

Fig. 11. The solutions F (y) for fixed F0(0) = 0.5 and different values of σ. The

curve A correspond to σ = 0.1, B to σ = 0.5 and curve C to σ = 2.0.

3.5. Divergence of sequences bk and ck

An interesting problem is if the sequence of bk (or ck) is divergent or not.
Unfortunately, we cannot show a proof of divergence these sequences (only
a numerical evidence) because explicit expressions for bk (ck) are not known
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— we have got them only as a result of numerical computations. To see it,
we introduce

bn = b0x1x2 · · · xn , where xk =
bk

bk−1

.

Let us say that for n → ∞ the sequence of bn is divergent bn → ∞. It also
means that the sequence of ln bn is divergent and sum of these logarithms

Sn =

n∑

i=1

lnxi

as well. We apply Kummer criterion so as to check if the series is divergent
[16]. In our computation the comparative sequence qn = n lnn has been
used. It has been checked up to n = 700 that

Kn = qn
bn

bn+1

− qn+1

are negative and monotonically decrease, see Fig. 12. Kummer criterion says

Fig. 12. Behaviour of Kn for sequence bn.

that series is divergent if for all n > N , values of Kn ≤ 0, where N is a fixed
number. It suggests that solution G(y) covers whole y ≥ 0. It has been
checked that also the sequence of cn is probably divergent.

3.6. The correspondence between the modified and the canonical model

The potential V (φ) = |φ| is the limit case of the modified one for λ → 0.
We are interested in limit λ → 0 for the solutions in the modified model. It
is not a priori clear that these limit solutions have to be solutions that are
known from the canonical model. We are able to do an analytical computa-
tion for the first two pieces of solution i.e. G0 and G1 (or F0 and F1). Let
us remind that two first pieces of solution W c(z) for the canonical model
have the form

W c
−1(z) = z + a0 , W c

0 (z) = −

(
z + a0 + 2a0 ln

|z|

a0

)
, (21)
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where −a0 is the first zero (for variable z). For more detail see [6]. Let us
denote W +

−1
(z) ≡ G0(y(z)) and W +

0
(z) ≡ G1(y(z)) (by analogy W−

−1
(z) ≡

F0(y(z)) and W−

0
(z) ≡ F1(y(z))). We also rename ρ+ ≡ ρ and ρ− ≡ σ. We

are interested in comparison of the canonical and the modified solution for
ρ± → 0. In this limit the condition W c

−1(0) = W±

−1
(0) can be replaced by

a0 = a±
0
, where a+

0
= b2

0/4 and a−
0

= c2
0/4. The solution W±

−1
and W±

0
can

be expanded in the Taylor series what gives

W±

−1
(z) = z + a0 ∓ Cρ2

± + O(ρ4
±) , (22)

W±

0
(z) = −

(
z + a0 + 2a0 ln

|z|

a0

)
∓ Dρ2

± + O(ρ4
±) , (23)

where

C ≡
z2

4
+ a0z +

3

4
a2

0 ,

D ≡ (a2
0 − 2a0z) ln

|z|

a0

−
z2

4
+ 3a0z +

13

4
a2

0 .

The leading terms in (22) and (23) do not depend on ρ± so they are limits
of these solutions for ρ± → 0. The most important thing is that these limits
are exactly equal to the first two solutions W c

−1 and W c
0 in the canonical

model. The correspondence between the other solutions W ±

k can be checked
numerically. We can see that the smaller values of k we take the better
correspondence is.

4. Symmetric shock waves outside the light cone

4.1. Equations of motion

The solutions outside the light cone can be obtained with help of the
Ansatz

φ(x, t) = Θ(z)W (z) , where z =
1

4

(
x2 − t2

)
. (24)

If we now introduce z = 1

4
y2 we get

g′′ +
1

y
g′ + ρ2g = sign(g) , (25)

f ′′ +
1

y
f ′ − σ2f = sign(f) , (26)

where g(y) = W (z(y)) for λ > 0 and f(y) = W (z(y)) for λ < 0.
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4.2. Case λ > 0

It is convenient, for our further analysis of solutions, to associate the
potential U(g) with equation (25). We can easily see that U(g) = 1

2
ρ2g2−|g|,

see Fig. 13.

Fig. 13. The potential U(g).

The solution of (25) takes the form

gk(y) = (−1)k

(
1

ρ2
− µkJ0(ρy) − νkY0(ρy)

)
, (27)

where gk > 0 for k = 0, 2, 4, . . . and gk < 0 otherwise. As above, we have to
set ν0 = 0 so as to have g0(y) regular at y = 0. If g0(0) is given then

g0(y) =
1

ρ2
−

(
1

ρ2
− g0(0)

)
J0(ρy) . (28)

In Fig. 14 we present a few curves (28) for different values of g0(0). There
are several qualitatively different cases.

Fig. 14. The curves g0(y) for different g0(0) and ρ = 0.5. They are the solution for

full range y ≥ 0, except those that start from g0(0) = 14 and g0(0) = 16.

Case g0(0) = 0 corresponds to solution that starts from the point where
U(g) has its local maximum. We have chosen positive solution but for
g0(0) = 0 a negative solution is possible as well. We can get these solutions
by replacing (−1)k in (27) with (−1)k+1 and assuming that g0(y) starts from
y = 0. We will not discuss this situation separately because |φ| is physical
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quantity. It is worth mentioning that this solution is not exactly shock type
because there is not sharp front wave.

For 0 < g0(0) < gcrit
0 , where

gcrit
0 =

1

ρ2

(
1 −

1

J0(j
1
1
)

)

the solutions g0(y) are valid for all y ≥ 0. j1
1 is the first zero of J1, (j0

1 = 0).
Approximately, ρ2gcrit

0 = 3.482872. This case contains the constant solution
g0(y) = 1

ρ2 .

For critical value of g0(0) = gcrit
0 the first zero of g(y) appears. The

solution can take either of forms: the solution

g0(y) =
1

ρ2

(
1 −

J0(ρy)

J0(j1
1
)

)
(29)

for all y ≥ 0 or g0(y) given by (29) for 0 ≤ y ≤ j1
1/ρ and g1(y) = −g0(y) for

y ≥ j1
1/ρ.

If g0(y) is a little bit bigger than gcrit
0 the solution is made up of g0(y)

and g1(y) but this time j1
1 in (29) is replaced with ρc0 and g1(y) contains also

function Y0(ρy), see Fig. 15. This picture is valid until g0(0) reach consecu-
tive critical value gcrit2

0 (unfortunately, we are not able to give appropriate
analytical formula — only numerical value of gcrit2 is available).

Therefore, for g0(0) = gcrit2
0 situation resembles that for g0(0) = gcrit

0 but
this time two zeros c0 and c1 already exist.

For values of g0(0) a little bit more than gcrit2
0 solution looks like it was

shown in Fig. 16. For greater values of g0(0) more zeros ck appear, see
Fig. 17. An important issue is that for finite g0(0), maximal value of k is
always a finite number. For these solutions, asymptotic values of g(y) for
y → ∞ i.e. ±1/ρ2 correspond to the minima of the potential U(g). We have
not discussed yet the formulas for coefficients µk and νk in (27). Fortunately,
they have the same form as analogical coefficients in equation (16) — only
σ has to be replaced with ρ.

Fig. 15. The solution g(y) that has only one zero.
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Fig. 16. The solution g(y) with two zeros.

Fig. 17. The solution g(y) with six zeros.

4.3. Case λ < 0

The potential U(f) for equation (26) takes the form U(f) = − 1

2
σ2f2−|f |

what suggests unstable behaviour of f(y). The solutions of (26) can be
written down in the form

f+(y) = αI0(ρy) + βK0(ρy) −
1

σ2
for f(y) > 0 ,

f−(y) = −α̃I0(ρy) − β̃K0(ρy) +
1

σ2
for f(y) < 0 .

Let us consider f(y) > 0. By analogy to our previous analysis we will denote
it as f0(y). For given f0(0) it takes the form

f0(y) =

(
1

σ2
+ f0(0)

)
I0(σy) −

1

σ2
, (30)

where β = 0. There are five such solutions in Fig. 18. The solution f0(y)
covers whole range y ≥ 0. We have an analogical situation for a negative
solution. The border solution (f0(0) = 0) is, of course, non-shock type.
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Fig. 18. The solutions f0(y) for different (positive) values of f0(0).

5. Summary

We have presented the shock wave solutions in the model with the po-
tential V (φ) = |φ|− 1

2
λφ2, where λ is a real constant. The square term plays

the role of perturbation of the potential V (φ) = |φ|. The potential |φ| plays
a special role because the corresponding equation of motion has the scaling
symmetry. The square term is the simplest one that breaks this symmetry.
It has been shown that both cases with nonzero values of λ (λ > 0 and
λ < 0) have physical applications — appropriate potentials appear in the
system of coupled bouncing pendulums or bouncing balls.

Two kinds of waves have been found. The first one is exactly zero outside
the light cone and has two wavefronts (the field is non-continuous at them)
exactly at the surface of the light cone. Depending on G0(0) the solution
inside the light cone is unstable, constant, or has isolated zeros. We have
found that these zeros run faster (λ > 0) or slower (λ < 0) than their
counterpart in the canonical model (λ = 0). It has been also argued (by
showing the numerical evidence) that zeros of solution, that depends on
variable y, form probably divergent sequence. Moreover, we have shown
(analytically in the case of first two pieces of solution) that shock waves
inside the light cone for the modified model in the limit λ → 0 reduce to
solutions known from the canonical model.

The second type of solution has also wavefronts at x = ±t. This solution
takes zero values inside the light cone. There is family of solutions that
asymptotically (y → ∞) reach values ±1/ρ2. At the points g = ±1/ρ2 the
potential U(g) (Fig. 13) has the local minima (or V (φ) has its local maxima,
Fig. 1). Among solutions that belong to this family, there are solutions that
have no zeros, have only one zero, exactly two zeros etc. In contrast to
the shock waves inside the light cone that have infinite number of zeros,
solutions considered here have always finite number of zeros. There is also
non-shock type solution — it has only one zero at the surface of light cone.
It can be regarded as the border case of solutions belonging to this family.
We have also found another family of solutions that have no zeros and grows
to infinity for y → 0.
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