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The Hubble diagram has a purely kinematical monotonicity constraint.
We study its stability under small scalar perturbations in the Robertson–
Walker metric and to small peculiar velocities of emitter and receiver. Our
analysis is independent of any dynamical hypothesis.
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1. Introduction

The Hubble diagram of supernovae is one of the main pillars of modern
cosmology. Indeed, its experimental accuracy has dramatically increased
in recent years and we expect that this accuracy will continue to increase.
Certainly the most surprising lesson from the Hubble diagram is the acceler-
ation of the universe. It forces us to revise our assumptions on the dynamics.
There is also the alternative proposal [1] to explain the acceleration by per-
turbations to the maximal spacelike symmetry.
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Independently of this proposal, with increasing experimental accuracy
deviations from maximal symmetry might become observable in the Hubble
diagram in the not too distant future. The computations of these perturba-
tions to the Hubble diagram [2] started well before they were discovered in
the cosmic microwave background and are well understood, including in the
framework of various assumptions on the dynamics.

On the other hand, the Hubble diagram allows for a purely kinematical
test, i.e. a test that relies only on the kinematics of general relativity and
that does not require any dynamical assumptions, like Einstein’s equation,
the matter content of the Universe, its equation of state or inflation. This
test is crude but non-trivial. It expresses a monotonicity constraint on the
Hubble diagram, whose qualitative origin is easy to understand: the appar-
ent luminosity of a standard candle decreases with increasing distance from
the observer except when the universe is spherical and the candle goes be-
hind the observer’s equator. The present-day supernova data are compatible
with this monotonicity constraint at 95% confidence level [3] and this com-
patibility translates into a lower bound on the present radius of the universe:
a0 > 1.2 × 1026 m or Ωk0 > −1.29. (Adding the dynamical assumptions of
ΛCDM improves the bound derived from SN data considerably, Ωk0 > −1
at 95% C.L.)

Suppose that with increasing accuracy, future SN data do exhibit a sta-
tistically significant non-monotonicity. At least since the meter has been
abolished in 1983 we are unwilling to renounce the relativistic kinematics.
What alternatives would remain? The first two that come to mind are fluc-
tuations in the absolute luminosity of the standard candle and absorption
by dust along the line of sight. We find it hard to believe that these two
effects show a z dependence that will mimic a non-monotonicity in the Hub-
ble diagram. We rather expect that they will produce a band in the redshift
— apparent luminosity plane (single side band for dust). Two other excuses
come to mind next, deviations from maximal symmetry and peculiar ve-
locities of candle and observer. For small perturbations and small peculiar
velocities one expects again that the Hubble diagram will widen from a line
to a band.

The purpose of this work is to compute this widening to first order in
scalar perturbations to the Robertson–Walker metric and to first order in pe-
culiar velocities and without assuming any dynamics. We will also treat the
perturbations and the peculiar velocities separately. Of course, anisotropies
and peculiar velocities are intimately related, but this relation presupposes
a gravitational dynamics. Naturally, the purely kinematical computations of
the linear perturbations to the Hubble diagram are much simpler than the
dynamical ones in the literature [2]. Therefore, and also because we want to
keep the hypotheses minimal we propose a pedestrian approach.
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2. Our hypotheses

We assume the kinematics of general relativity:

• The gravitational field is coded in a time-space metric of signature
+ −−−, we take the velocity of light to be one.

• Massive and massless, pointlike test particles, subject only to gravity,
follow timelike and lightlike geodesics.

• Pointlike clocks, e.g. atomic clocks, are necessarily massive. They move
on timelike curves and indicate proper time τ .

We add the following cosmological hypotheses:

• We assume that the metric is Robertson–Walker with small scalar
perturbations [4],

dτ2 = (1+ 2Ψ)dt2 − a2(1+ 2Φ)
[

dχ2+ s2
dθ2+ s2 sin2 θdϕ2

]

. (1)

The scale factor a(t) is a strictly positive function of time only, the
perturbations Φ and Ψ are arbitrary functions on time-space. The
separation of the perturbations into anisotropies and inhomogeneities
makes no sense for closed universes and by abuse we call the perturba-
tions collectively anisotropies. We define the function of one variable
by s(χ) = sinχ for the sphere, k = 1, where 0 < χ < π describes the
northern hemisphere. We put s(χ) = χ for the Euclidean space, k = 0,
with 0 < χ < ∞ and s(χ) = sinhχ for the pseudo-sphere, k = −1,
with 0 < χ < ∞. We take the coordinates χ, θ, ϕ dimensionless and
call them “co-moving position”, while the scale factor is measured in
meters. We suppose that the anisotropies Φ and Ψ together with
their first dimensionless derivatives a∂Φ/∂t, ∂Φ/∂χ, ... are bounded
in absolute value by ε � 1.

• The test particles are (superclusters of) galaxies and photons. The
former are at rest (t = τ, χ, θ, ϕ = constant) plus a small “peculiar”
velocity. Note that in absence of anisotropies and peculiar velocities,
the proper time is universal for all these timelike geodesics and is
taken as time coordinate. Under the same conditions, χ measures
the dimensionless, co-moving, geodesic distance of a position from the
origin at χ = 0.
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3. Christoffels

We list the non-vanishing Christoffel symbols in linear approximation in
Φ and Ψ where the underlined terms refer to the symmetric case. We denote
by ∂t ordinary and partial derivative with respect to t and similarly for the
other coordinates.

Γ t
tt = ∂tΨ ,

Γ t
χχ = a∂ta + 2a∂ta(Φ − Ψ) + a2∂tΦ, Γ t

tχ = ∂χΨ ,

Γ t
θθ = s2

[

a∂ta + 2a∂ta(Φ − Ψ) + a2∂tΦ
]

, Γ t
tθ = ∂θΨ ,

Γ t
ϕϕ = sin2 θ s2

[

a∂ta + 2a∂ta(Φ −Ψ) + a2∂tΦ
]

, Γ t
tϕ = ∂ϕΨ ,

Γχ
tt = a−2∂χΨ , Γχ

tχ = ∂ta/a + ∂tΦ,

Γχ
χχ = ∂χΦ,

Γχ
θθ = −s∂χs − s2∂χΦ, Γχ

χθ = ∂θΦ,

Γχ
ϕϕ = sin2 θ

[

−s∂χs − s2∂χΦ

]

, Γχ
χϕ = ∂ϕΦ,

Γ θ
tt = a−2s−2∂θΨ , Γ θ

tθ = ∂ta/a + ∂tΦ,

Γ θ
χχ = −s−2∂θΦ, Γ θ

χθ = ∂χs/s + ∂χΦ,

Γ θ
θθ = ∂θΦ,

Γ θ
ϕϕ = − sin θ cos θ − sin2 θ ∂θΦ, Γ θ

θϕ = ∂ϕΦ,

Γϕ
tt = a−2s−2 sin−2 θ ∂ϕΨ , Γϕ

tϕ = ∂ta/a + ∂tΦ,

Γϕ
χχ = −s−2 sin−2 θ ∂ϕΦ, Γϕ

χϕ = ∂χs/s + ∂χΦ,

Γϕ
θθ = − sin−2 θ ∂ϕΦ, Γϕ

θϕ = cot θ + ∂θΦ,

Γϕ
ϕϕ = ∂ϕΦ.

4. Anisotropies in the Hubble diagram

The Hubble diagram is a two-dimensional parametric plot. The param-
eter is the time of flight of the photon between the emitting galaxy and
receiving one, us today. The two observables are the apparent luminosity `
and the spectral deformation z. According to our model they are functions
of the unobserved time of flight, which is therefore treated as parameter and
eliminated [5]. These calculations are feasible to first order in the perturba-
tions of the Robertson–Walker metric.
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4.1. Trajectories of emitter and receiver

Our first task is to compute how the trajectories of galaxies are per-
turbed by the anisotropies Φ and Ψ . In the symmetric case and without
peculiar velocities these geodesics are at rest with respect to the co-moving
coordinates and of course we take the affine parameter p to be proper time τ ,
t = p = τ , χ = χe, θ = θe, ϕ = ϕe. We denote by an overdot the ordinary
derivative of the trajectory with respect to its affine parameter. To first
order, we have

ṫ =: 1 + ηt , χ̇ =: ηχ , θ̇ =: ηθ , ϕ̇ =: ηϕ . (2)

With the Hubble rate H := ∂ta/a, the deviations η· satisfy

η̇t + ∂tΨ = 0 , (3)

η̇χ + 2Hηχ + (a)−2∂χΨ = 0 , (4)

η̇θ + 2Hηθ + (sa)−2∂θΨ = 0 , (5)

η̇ϕ + 2Hηϕ + (sin θsa)−2∂ϕΨ = 0 . (6)

To first order, the first equation decouples and we get

dt

dτ
= 1 − Ψ (τ, χe, θe, ϕe) . (7)

The other three equations produce peculiar velocities,

dχ

dτ
= −







exp



−
τ

∫

te

2H (t(τ̃)) d τ̃











×







τ
∫

te

a(τ̂)−2∂χ

◦
Ψ (τ̂ ) exp





τ̂
∫

te

2H (t(τ̃)) d τ̃



 d τ̂







, (8)

and similarly for the perpendicular components. In this section we will
ignore peculiar velocities, the emitter is held at rest, only its proper time is
affected by the perturbations.

The perturbed proper time of the receiver is given by a similar formula.

4.2. Trajectories of photons

We solve (in first order) the geodesic equation of a photon emitted from
a galaxy at time te and position χe, θe, ϕe and received at time t0, today,
at our position, which of course we take in the center of the universe, χ = 0.
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Fortunately, the singularity of the metric tensor, equation (1), in the center
is only a coordinate singularity. We need the link between the time of flight
t0 − te and the geodesic distance χ. To zeroth order in the anisotropies
Φ and Ψ , the trajectory of the photon is given by ṫ = ae/a, χ̇ = −ae/a

2,

θ̇ = ϕ̇ = 0 with ae := a(te). To first order we write

ṫ =: ae/a + εt , χ̇ =: −ae/a
2 + εχ , θ̇ =: εθ , ϕ̇ =: εϕ . (9)

The geodesic equation becomes:

ε̇t −
ae

a
Hεt − 2aeHεχ +

(ae

a

)2

∂t(Φ + Ψ) − 2
a2

e

a3
∂χΨ

+2
(ae

a

)2

H(Φ − Ψ) = 0 , (10)

ε̇χ + 2
ae

a
Hεχ − 2

a2
e

a3
∂tΦ +

a2
e

a4
∂χ(Φ + Ψ) = 0 , (11)

ε̇θ + 2
ae

a

[

H − ∂χs

as

]

εθ − s−2 a2
e

a4
∂θ(Φ − Ψ) = 0 , (12)

ε̇ϕ + 2
ae

a

[

H − ∂χs

as

]

εϕ − sin−2 θs−2a2
e

a4
∂ϕ(Φ − Ψ) = 0 . (13)

To first order, the first two equations decouple and we get the solution

εt + aεχ =
ae

a
(
◦
Φ −

◦
Ψ) , (14)

where
◦
Φ is the function Φ evaluated along the zeroth order geodesic:

◦
Φ (p) := Φ(

◦
t (p),

◦
χ (p), θe, ϕe) . (15)

The desired link between the time of flight of the photon and its geodesic
distance covered is given to first order by:

dχ

dt
= −1

a
+

◦
Φ −

◦
Ψ

a
=: − 1

α
. (16)

Let us rewrite this equation in terms of the emission time te

dχ

dte
= −1 − (Φ − Ψ)(te,

◦
χ (te), θe, ϕe)

a(te)
,

◦
χ (te) :=

t0
∫

te

dt

a(t)
(17)



On the Stability of a Monotonicity Constraint for the Hubble Diagram 241

and integrate

χ(te) =
◦
χ (te) −

t0
∫

te

(Φ − Ψ)(t,
◦
χ (t), θe, ϕe)

a(t)
dt . (18)

To first order and for a fixed direction (θe, ϕe) we still have a one-to-one
correspondence between emission time and geodesic distance. This corre-
spondence is, of course, direction dependent.

4.3. Spectral deformation

Now we are ready to compute the spectral deformation of the photon
emitted at (te, χe, θe, ϕe) with period Te measured by the proper time of the
emitter τe and received at (t0, 0, ·, ·). Let us denote by T0 the Doppler-shifted
period as measured by the proper time of the receiver τ0. As the period of
the photon is infinitesimal with respect to its time of flight we have

χe =

t0
∫

te

dt

α(t)
=

t0+T0 dt/dτ0
∫

te+Te dt/dτe

dt

α(t)
. (19)

Taylor expanding we obtain

Tedt/dτe

αe
=

T0dt/dτ0

α0

(20)

and the spectral deformation,

z :=
T0 − Te

Te
=

a0

ae
[1 + Φ0 − Φe] − 1 , Φ0 := Φ(t0, 0, ·, ·) . (21)

Note that to first order the spectral deformation is independent of the per-
turbation Ψ . Note also that the spectral deformation now depends on the
direction via Φe := Φ(te, χe, θe, ϕe).

4.4. Apparent luminosity

We suppose known the absolute luminosity L of the standard candle in
Joule per second. Our hypothesis about photons flying on geodesics implies
that the number of photons is constant. The energy E of each photon
changes as its frequency 1/T . A unit time interval T̃e during which a certain
number of photons are emitted is measured by the proper time τe. The
apparent luminosity ` is measured in Joule per second and per square meter.
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Now the unit time interval T̃0 during which we count the received photons
is measured by the proper time τ0. The relation between the unit time
intervals is computed by a formula similar to equation (19):

T̃0

T̃e

=
a0

ae
[1 + Φ0 − Φe] . (22)

We also need the (orthogonal) detector area determined by a given (infinites-
imal) solid angle dΩ in the direction θe, ϕe at time t0 and at (co-moving)
geodesic distance χe. This area is measured by the velocity of light times
the proper time τ0 all squared and is given by

dA = a2
0 s2(χe)[1 + 2Φ0]dΩ . (23)

Note that to first order in Φ and Ψ we may still speak about photons
propagating in a given solid angle. Finally the apparent luminosity is:

` =
L

4π

dΩ

dA

E0

Ee

T̃e

T̃0

=
L

4πa2
0s

2(χe)

(

ae

a0

)2

[1 − 4Φ0 + 2Φe] . (24)

Note that as for the spectral deformation, the apparent luminosity to first
order does not depend on the perturbation Ψ but does depend on the direc-
tion.

4.5. Eliminating the time of flight

Our last task is the elimination of the unobserved parameter, the time
of flight. To this end we differentiate the relation between time of flight and
spectral deformation, equation (21),

z(te) + 1 =
a0

ae

[

1 + Φ0 − Φ(te,
◦
χ (te), θe, ϕe)

]

, (25)

with respect to te:

dz

dte
= − a0

a(te)2
ȧ(te)

[

1 + Φ0 − Φ(te,
◦
χ (te), θe, ϕe)

]

+
a0

a(te)

×
[

−∂tΦ(te,
◦
χ (te), θe, ϕe)+ ∂χΦ(te,

◦
χ (te), θe, ϕe)/a(te)

]

. (26)

From this and equation (17) we get

dχ

dz
=

dχ

dte
/

dz

dte
=

1

a0H(z)

[

1 − Φ0 + Ψ(te(z),
◦
χ (z), θe, ϕe)

−H(z)−1(∂t − a(z)−1∂χ)Φ(te(z),
◦
χ (z), θe, ϕe)

]

, (27)
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with

◦
χ (z) =

1

a0

z
∫

0

d z̃

H(z̃)
, (28)

and integrating

χ(z) =
◦
χ (z) + δ , (29)

δ(z) := − Φ0

◦
χ (z) +

z
∫

0

Ψ(te(z̃),
◦
χ (z̃), θe, ϕe)

a0H(z̃)
d z̃

−
z

∫

0

(∂t − a(z̃)−1∂χ)Φ(te(z̃),
◦
χ (z̃), θe, ϕe)

a0H(z̃)2
d z̃ . (30)

4.6. Hubble diagram

Finally the Hubble diagram is to first order in the scalar perturbations
Φ and Ψ :

`(z) =
L

4πa2
0(z + 1)2s2(

◦
χ (z))

[

1 − 2Φ0 − 2
s′

s
(
◦
χ (z))δ(z)

]

. (31)

Our unit of time is chosen today and here on earth. Therefore we set Ψ0 = 0.
Likewise our unit of length or more precisely the numerical value of the
speed of light is chosen here and now and we set Φ0 = 0. This shows
that the apparently strongest z-dependence of the linear correction to the

Hubble diagram stemming from the term −Φ0

◦
χ is a coordinate artifact. The

remaining terms are weighted averages of Ψ and a derivative of Φ along the
zeroth order path of the photon between the standard candle and us today.
We have the following bound, which is far from optimal:

|δ(z)| ≤ ε





z
∫

0

d z̃

a0H(z̃)
+ 2

z
∫

0

d z̃

a0a(z̃)H(z̃)2



 . (32)

A recent fit to the Hubble diagram [6] up to z=1.8 gives H(z)=H0(z+1)0.69,
k = 0, yielding |δ| ≤ ε[1.21/(a0H0) + 2.88/(a0H0)

2].
We conclude that the scalar perturbations produce a Hubble diagram

which is a band in the z` plane with more or less constant relative verti-
cal width. This relative width is of the same order of magnitude as the
perturbations, ε.
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5. Peculiar velocities in the Hubble diagram

In this section our metric is Robertson–Walker without perturbations,
Φ = Ψ = 0. However we admit peculiar velocities of emitter and receiver
with respect to the co-moving coordinates χ, θ, ϕ, or, put more physically,
with respect to the cosmic microwave background. We compute the changes
in the Hubble diagram to first order in the peculiar velocities divided by the
speed of light, which we have set to one.

5.1. Trajectories

We take the line of sight in the direction θ = π/2, ϕ = 0, and decom-
pose the peculiar velocities into parallel and perpendicular components with
respect to this direction: ~ve = ~ve‖ + ~ve⊥, ~v0 = ~v0‖ + ~v0⊥. Then we get the
initial conditions of the emitter at t = te

ṫ =
dt

dτe
=

√

1 + v2
e , χ̇ =

ve‖

ae
, θ̇ = 0 , ϕ̇ =

ve⊥

aese
, (33)

the initial conditions of the receiver at t = t0

ṫ =
dt

dτ0

=
√

1 + v2
0 , χ̇ =

v0‖

a0

, θ̇ = 0, ϕ̇ =
v0⊥

a0s0

, (34)

and the initial conditions of the go-between at t = te

ṫ =
dt

dp
= 1 , χ̇ = − 1

ae
, θ̇ = 0 , ϕ̇ = 0 . (35)

The connection between geodesic distance covered by the photon and its
time of flight is

χe =

t0
∫

te

dt

a(t)
. (36)

5.2. Spectral deformation

To compute the spectral deformation we have a second photon emitted
a period Te later with respect to the proper time τe of the emitter. There-
fore this photon will be emitted at t = te +

√

1 + v2
eTe and at position

χ = χe + ve‖Te/ae. It will be received at t = t0 +
√

1 + v2
0T0 and at position

χ = v0‖T0/a0. We therefore have

χe +
ve‖Te

ae
−

v0‖T0

a0

=

t0+
√

1+v2

0
T0

∫

te+
√

1+v2
e
Te

dt

a(t)
. (37)
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Taylor expanding as before yields

Te

T0

=
ae

a0

√

1 + v2
0 + v0‖

√

1 + v2
e + ve‖

. (38)

To first order, the spectral deformation,

z =
a0

ae

(

1 −
(

v0‖ − ve‖

))

− 1 , (39)

depends only on the difference of the parallel components of the peculiar
velocities.

5.3. Apparent luminosity

We suppose that our candle emits its absolute luminosity L isotropicly
in its rest frame. When moving with velocity ~ve − ~v0, its emission profile
with respect to the receiver is

dN

dΩ
=

L

4π

1 − |~ve − ~v0|2
(1 − |~ve − ~v0| cos ϕ)2

∼ L

4π

1
(

1 −
(

v0‖ − ve‖

))2
, (40)

where ϕ is the angle between the line of sight and ~ve−~v0. Our convention of
orientation is such that ϕ = 0 and v0‖ − ve‖ := |~ve − ~v0| cos ϕ positive when
the emitter moves towards the receiver in which case the forward emission
is enhanced. The deformed emission profile, the first of equations (40), is a
special relativistic formula and contains a difference of velocities at different
points. Its first order approximation, the second part of (40), only contains
projections of velocities onto a geodesics and makes sense also in general
relativity.

Neglecting Lorentz contractions, which are quadratic in velocity, the de-
tector area seen by the first photon is dA = a2

0s
2(χe)dΩ , while the second

photon sees

dA = a2
0 s2

(

χe +
ve‖Te

ae
−

v0‖T0

a0

)

dΩ

∼ a2
0s

2(χe)

[

1 − 2
(

v0‖ − ve‖

) T0s
′(χe)

a0s(χe)

]

dΩ . (41)

The term T0/(a0se) is an atomic period divided by the time of flight and
can safely be dropped. Note also that we do not have to worry about the
angle between the detection area and the line of sight which for a moving
observer optimizing her efficiency deviates from 90◦ by an amount quadratic
in her velocity. Therefore to first order the apparent luminosity is:

` =
dN

dΩ

dΩ

dA

E0

Ee

T̃e

T̃0

=
L

4πa2
0 s2(χe)

(

ae

a0

)2
[

1 + 4
(

v0‖ − ve‖

)]

. (42)
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5.4. Hubble diagram

We eliminate the time of flight as in the preceding section and get the
Hubble diagram with its linear perturbations coming from the peculiar ve-
locities of emitter and receiver:

`(z) =
L

4πa2
0(z + 1)2s2(

◦
χ (z))

[

1 + 2σ(
◦
χ (z))

(

v0‖ − ve‖

)

]

. (43)

The function σ(χ) := 1−χs′(χ)/s(χ) vanishes identically for flat universes,
k = 0. For curved universes, k = ±1, σ(χ) is small,

σ(χ) =
k

3
χ2 +

1

45
χ4 +

2k

945
χ6 ± . . . (44)

We conclude that peculiar velocities do not perturb the Hubble diagram
to first order if the universe is flat. For curved universes the linear pertur-
bation is small for small redshift and grows with z.

6. Conclusions

After the above calculations, we find it hard to believe, that anisotropies
and peculiar velocities can account for violations of the monotonicity con-
straint in the Hubble diagram.
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