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1. Introduction

As it is well known, general relativity theory (GR) does not lead to re-
strictions for admissible energy densities in the case of gravitating systems
with positive values of energy density and pressure satisfying energy domi-
nance condition. As a result, the problem of gravitational singularities takes
place in the frame of GR [1]. The appearance of non-physical state with
divergent energy density limiting world lines in the past or in the future is
characteristic feature of Friedmannian cosmological models (problem of cos-
mological singularity — PCS) and also of collapsing systems. From physical
point of view, the problem of gravitational singularities is connected with
the fact that gravitational interaction in the case of gravitating systems
with positive energy densities and pressures in the frame of GR as well as
Newton’s theory of gravitation has the character of attraction but not repul-
sion. Note that the gravitational interaction in GR can have the repulsion
character in the case of gravitating systems with negative pressure (for ex-
ample systems including massive or nonlinear scalar fields). According to
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accepted opinion, it is possible cause of acceleration of cosmological expan-
sion at present epoch. However, such effect does not permit to solve the
PCS in the frame of GR [2]: all Friedmannian cosmological models of flat
and open type, and the most part of closed models are singular.

There were many attempts to solve the problem of gravitational singu-
larities and at first of all the PCS in the frame of GR and other classical
theories of gravitation; a number of particular regular cosmological solu-
tions was obtained (see [3] and references herein). In connection with this
note that the solution of PCS means not only obtaining regular cosmological
solutions, but also excluding singular solutions; as a result regular behav-
ior of cosmological solutions has to be their characteristic feature. The
most existent attempts to solve the PCS do not satisfy indicated conditions.
According to wide known opinion, the solution of PCS and generally of the
problem of gravitational singularities of GR has to be connected with quan-
tum gravitational effects, which must be essential at Planckian conditions,
when energy density is comparable with Planckian one. Previously some
regular bouncing cosmological solutions were obtained in the frame of can-
didates to quantum gravitation theory — string theory/M-theory and loop
quantum gravity (see, for example, [4–6]). From physical point of view,
these solutions have some difficulties [7]. In the case of bouncing cosmo-
logical solutions built in the frame of string theory the condition of energy
density positivity for gravitating matter is violated. In the case of bouncing
solutions obtained in loop quantum gravity, where a bounce takes place for
microscopic model having a volume comparable with Planckian one, there is
the following problem. If one supposes that Universe at compression stage is
macroscopic object, one has to explain the transformation of macro-universe
into micro-universe before a bounce, this means one has to introduce some
model inverse to inflation.

As it was shown in a number of papers (see [7, 16] and references herein),
gauge theories of gravitation (GTG) and at, first of all, the Poincaré GTG
which are natural generalization of GR by applying the gauge approach to
gravitational interaction [8,9], offer an opportunity to solve the PCS. All ho-
mogeneous isotropic cosmological models including inflationary models are
regular in metrics, Hubble parameter, its time derivative, if certain restric-
tion on equation of state for gravitating matter at extreme conditions is
valid. Unlike Friedmannian models of GR non-physical state with divergent
energy density does not appear because of gravitational repulsion effect at
extreme conditions, which takes place in GTG in the case of usual gravitat-
ing systems with positive energy densities and pressures satisfying energy
dominance condition.

The present paper is devoted to analysis of gravitational repulsion ef-
fect at extreme conditions in the frame of GTG in the case of homogeneous
isotropic gravitating systems. In Sec. 2 some important properties of homo-
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geneous isotropic models in the frame of Poincaré GTG are briefly discussed.
In Sec. 3 generalized cosmological Friedmann equations without specific so-
lutions for such models filled with usual matter and scalar fields are intro-
duced. In Sec. 4 extreme conditions leading to gravitational repulsion effect
are analyzed.

2. Homogeneous isotropic gravitating models in Poincaré GTG

In the framework of gauge approach to gravitation the Poincaré GTG is
of the greatest interest [8,7]. The role of gravitational field variables in the
Poincaré GTG plays the tetrad (translational gauge field) and anholonomic
Lorentz connection (Lorentz gauge field), corresponding field strengths are
torsion and curvature tensors, and physical space-time is 4-dimensional
Riemann–Cartan continuum. As sources of gravitational field in the Poincaré
GTG are energy-momentum and spin tensors. Unlike gauge Yang–Mills
fields, for which the Lagrangian is quadratic in the gauge field strengths,
gravitational Lagrangian of the Poincaré GTG can include also linear in
curvature term (scalar curvature), which is necessary to satisfy the cor-
respondence principle with GR. By using sufficiently general expression for
gravitational Lagrangian, homogeneous isotropic gravitating models were in-
vestigated in the frame of Poincaré GTG in a number papers (see for example
[7, 10, 16]). Because of high spatial symmetry gravitational equations depend
weakly on the structure of quadratic part of gravitational Lagrangian, that
permits to obtain conclusions of general character. Below some important
relations describing homogeneous isotropic models in the Poincaré GTG will
be given.

Spatial symmetries of Riemann–Cartan space are defined by a set of lin-
early independent Killing’s vectors, with respect to which the Lie derivatives
of metric and torsion tensors vanish (see [1] Chapter 2, [17]). Homogeneous
isotropic models possess 6 linearly independent Killing’s vectors and metric
tensor in co-moving system of reference has the form of Robertson–Walker
metrics [17]

gµν = diag

(

1,− R2 (t)

1 − kr2
, −R2 (t) r2, −R2 (t) r2 sin2 ϑ

)

,

where R(t) is the scale factor, k = +1, 0,−1 for closed, flat, open models
respectively (the light velocity c = 1), spatial spherical coordinates are used.
Then the torsion tensor Sλ

µν = −Sλ
νµ satisfying symmetry conditions can

have the following non-vanishing components [10]: S1
10 = S2

20 = S3
30 =

S(t), S123 = S231 = S312 = S̃(t)(R3r2/
√

1 − kr2) sin θ, where S(t) and S̃(t)

are functions of time. The functions S and S̃ have different properties with
respect to transformations of spatial inversions, namely, the function S̃(t)
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has pseudoscalar character. By supposing S̃ = 0, we obtain for the curvature
tensor F µν

σρ = −F νµ
σρ = −F µν

ρσ the following non-vanishing components:
F 01

01 = F 02
02 = F 03

03 ≡ A and F 12
12 = F 13

13 = F 23
23 ≡ B with

A =

(

Ṙ − 2RS
)·

R
, B =

k +
(

Ṙ − 2RS
)2

R2
, (1)

and Bianchi identities in this case are reduced to the only relation

Ḃ + 2H (B − A) + 4AS = 0 , (2)

where H = Ṙ/R is the Hubble parameter, and a dot denotes differentiation
with respect to time.

We will use gravitational Lagrangian in the form

LG = f0F + F αβµν (f1Fαβµν + f2Fαµβν + f3Fµναβ) + F µν (f4Fµν + f5Fνµ)

+ f6 F 2 + Sαµν (a1 Sαµν + a2 Sνµα) + a3 Sα
µαSβ

µβ ,

where Fµν = F α
µαν , F = F µ

µ, fi (i = 1, 2, . . . , 6), ak (k = 1, 2, 3) are
indefinite parameters, f0 = (16πG)−1, G is Newton’s gravitational constant.
Gravitational equations for homogeneous isotropic gravitating models (with

S̃ = 0) are reduced to the system of 3 equations [10], which by using (2) can
be written as

6f0B − 12f
(

A2 − B2
)

− 3a (H − S) S = ρ ,

2f0 (2A + B) + 4f
(

A2 − B2
)

− a
(

Ṡ + HS − S2
)

= −p ,

f
(

Ȧ + Ḃ
)

+

[

f0 +
1

8
a + 4f (A + B)

]

S = 0 . (3)

where f = f1 + 1
2
f2 + f3 + f4 + f5 + 3f6, a = 2a1 + a2 + 3a3, ρ is the energy

density, p is the pressure and the average of spin distribution of gravitating
matter is supposed to be equal to zero. The system of equations (3) leads
to cosmological equations without high derivatives if a = 0 [10] (see below).
Then we find from (3) the curvature functions A and B and the torsion S
in the following form

A = − 1

12f0

ρ + 3p − α (ρ − 3p)2 /2

1 + α (ρ − 3p)
,

B =
1

6f0

ρ + α (ρ − 3p)2 /4

1 + α (ρ − 3p)
,

S(t) = −1

4

d

dt
ln |1 + α(ρ − 3p)| , (4)
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where indefinite parameter α = f/(3f0
2) has inverse dimension of energy

density. Note, that in the case S̃ 6= 0 Bianchi identities for homogeneous
isotropic models are reduced to two relations and system of gravitational
equations of the Poincaré GTG includes 4 equations. However, these grav-
itational equations have the solution (4) together with S̃ = 0 always, if
a = 0 [18].

3. Generalized cosmological Friedmann equations in GTG

By using expressions (1) of curvature functions for homogeneous isotropic
gravitating models and the solution (4) of gravitational equations of the
Poincaré GTG we obtain the following generalized cosmological Friedmann
equations (GCFE)

k

R2
+

{

d

dt
ln
[

R
√

|1 + α (ρ − 3p)|
]

}2

=
8πG

3

ρ + α
4

(ρ − 3p)2

1 + α (ρ − 3p)
, (5)

1

R

d

dt

[

dR

dt
+R

d

dt

(

ln
√

|1+α (ρ−3p)|
)

]

= −4πG

3

ρ + 3p− α
2

(ρ−3p)2

1 + α (ρ−3p)
. (6)

The difference of (5), (6) from Friedmannian cosmological equations of GR is
connected with terms containing the parameter α. These terms arise from
quadratic in the curvature tensor part of gravitational Lagrangian, which
unlike metric theories of gravitation does not lead to high derivatives in
cosmological equations1. The conservation law in GTG has usual form

ρ̇ + 3H (ρ + p) = 0 . (7)

Now by using GCFE (5), (6) we will consider homogeneous isotropic
models filled with non-interacting scalar field φ minimally coupled with
gravitation and gravitating matter with equation of state in general form
pm = pm(ρm), where values of gravitating matter are denoted by means of
index “m”. (The generalization for the case with several scalar fields can be
made directly). Then the energy density ρ and the pressure p take the form

ρ =
1

2
φ̇2 + V + ρm (ρ > 0) , p =

1

2
φ̇2 − V + pm , (8)

where V = V (φ) is a scalar field potential. By using the scalar field equation
in homogeneous isotropic space

φ̈ + 3Hφ̇ = −∂V

∂φ
(9)

1 As it was shown in [11,12] generalized cosmological Friedmann equations (5), (6) can
be deduced also in the frame of the most general GTG-affine-metric GTG [9].
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we obtain from (7)–(9) the conservation law for gravitating matter

ρ̇m + 3H (ρm + pm) = 0 . (10)

By using (8)–(10) the GCFE (5), (6) can be transformed to the following
form

{

H

[

Z + 3α

(

φ̇2 +
1

2
Y

)]

+ 3α
∂V

∂φ
φ̇

}2

+
k

R2
Z2

=
8πG

3

[

ρm +
1

2
φ̇2 + V +

1

4
α
(

4V − φ̇2 + ρm − 3pm

)2
]

Z , (11)

Ḣ

[

Z + 3α

(

φ̇2 +
1

2
Y

)]

Z + H2

{

[

Z − 15αφ̇2 − 3αY

− 9α

2

(

dpm

dρm

Y + 3 (ρm + pm)2
d2pm

dρ2
m

)]

Z − 18α2

(

φ̇2 +
1

2
Y

)2
}

− 12αH
∂V

∂φ
φ̇

[

Z + 3α

(

φ̇2 +
1

2
Y

)]

+3α

[

∂2V

∂φ2
φ̇2 −

(

∂V

∂φ

)2
]

Z − 18α2

(

∂V

∂φ

)2

φ̇2

=
8πG

3

[

V −φ̇2− 1

2
(ρm+3pm) +

1

4
α
(

4V −φ̇2 + ρm−3pm

)2
]

Z , (12)

where Z =1 + α
(

4V −φ̇2 + ρm−3pm

)

and Y =(ρm + pm) (3(dpm/dρm)−1).

By transformation of GCFE (5), (6) to the form (11), (12) these equa-
tions were multiplied by Z. As a result (11), (12) have specific solutions
when Z = 0 [13,7]. In fact, by using the expression of the Hubble parameter
following from (11)

H± =

−3α
∂V

∂φ
φ̇ ±

√
D

Z + 3α

(

φ̇2 +
1

2
Y

) , (13)

where

D =
8πG

3

[

ρm +
1

2
φ̇2 + V +

1

4
α
(

4V − φ̇2 + ρm − 3pm

)2
]

Z − k

R2
Z2 ,

it is easy to show that (12) is satisfied, if Z = 0. It is because the terms
in (12), which do not include Z as multiplier, vanish by virtue of (13).
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Excluding these terms and dividing obtained equation on Z we will have,
instead of (12), the following equation without specific solutions

Ḣ

[

Z + 3α

(

φ̇2 +
1

2
Y

)]

+ 3H2

[

Z − αφ̇2 + αY

−3α

2

(

dpm

dρm

Y + 3 (ρm + pm)2
d2pm

dρ2
m

)]

+ 3α

[

∂2V

∂φ2
φ̇2 −

(

∂V

∂φ

)2
]

= 8πG

[

V +
1

2
(ρm − pm) +

1

4
α
(

4V −φ̇2 + ρm−3pm

)2
]

− 2k

R2
Z . (14)

The system of equations (11) and (14) is equivalent to GCFE (5), (6) in
considered case of models filled by usual matter and scalar fields. If the
interaction between scalar fields and usual gravitating matter is not neglect-
ing, the GCFE (11), (14) have to be generalized. By taking into account the
interaction by means of scalar field potentials, which in this case depend also
on the energy density of gravitating matter ρm, namely V = V (φ, ρm) [7],
we can obtain the generalization of equations (11), (14) by similar way. The
form of (11) does not change, but the value of Y in this case is defined as

Y =
ρm + pm

1 + ∂V
∂ρm

(

d

dρm

(3pm − 4V ) − 1

)

.

The equation (11) is generalized as

Ḣ

[

Z + 3α

(

φ̇2 +
1

2
Y

)]

+ 3H2

[

Z − αφ̇2 +
5α

2
Y − 3α

2

Y

1 + ∂V
∂ρm

×
(

1 +
dpm

dρm

+
ρm + pm

1 + ∂V
∂ρm

∂2V

∂ρ2
m

)

− 3α

2

(ρm + pm)2

(

1 + ∂V
∂ρm

)2

d2

dρ2
m

(3pm − 4V )

]

− 27

2
αHφ̇

ρm + pm
(

1 + ∂V
∂ρm

)2

∂2V

∂φ∂ρm

[

1 +
1

3

d

dρm

(pm + 2V )

]

+3α

[

∂2V

∂φ2
φ̇2 −

(

∂V

∂φ

)2
]

= 8πG

[

V +
1

2
(ρm−pm) +

1

4
α
(

4V −φ̇2 + ρm−3pm

)2
]

− 2k

R2
Z . (15)

The system of (11), (15) does not have specific solutions (with Z = 0) unlike
(9), (10) of reference [7]. By using obtained equations (11), (14), (15) the
repulsion gravitational effect can be analyzed in the case of homogeneous
isotropic gravitating systems in the frame of GTG.
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4. Gravitational repulsion effect in GTG

As it was noted above, the difference of GCFE from Friedmannian cosmo-
logical equations of GR is connected with terms containing the parameter α.
The value of |α|−1 determines the scale of extremely high energy densities.
Solutions of GCFE (5), (6) coincide practically with corresponding solutions
of GR, if the energy density is small |α(ρ − 3p)| � 1 (p 6= 1

3
ρ). The dif-

ference between GR and GTG can be essential at extremely high energy
densities |α(ρ − 3p)| & 1. Ultra-relativistic matter (p = 1

3
ρ) and gravitating

vacuum (p = −ρ) with constant energy density are two exceptional systems,
because GCFE (5), (6) are identical to Friedmannian cosmological equa-
tions of GR in these cases independently on values of energy density, and
non-einsteinian space-time characteristics vanish. Properties of solutions of
equations (5), (6) at extreme conditions depend on the sign of parameter α
and certain restriction on equation of state of gravitating matter. The study
of inflationary models including scalar fields shows, that GCFE (5), (6) lead
to acceptable restriction for scalar field variables at extreme conditions if
α > 0 [7,16]. In the case α > 0 all cosmological solutions have regular
bouncing character, if at extreme conditions p > 1

3
ρ. There are physical

reasons to assume, that the restriction p > 1
3
ρ is valid for gravitating matter

at extreme conditions [14]. Really in the case of perfect gas of fermions at
zeroth absolute temperature, the pressure tends to the value ρ/3 from below,
if density of gas increases. Then we have for nuclear matter at extreme con-
ditions p > 1

3
ρ because of strong nucleon interaction [14]. We will suppose

below, that the condition p > 1

3
ρ is valid for gravitating matter at extreme

conditions and, in particular, at the beginning of cosmological expansion2.
Note, that this condition is valid for so-called stiff equation of state p = ρ
used in the theory of the early Universe (Ya.B. Zeldovich and others).

The GCFE lead to restrictions on admissible values of energy density.
In fact, if energy density ρ is positive and α > 0, from equation (5) in the
case k = +1, 0 follows the relation:

Z ≡ 1 + α (ρ − 3p) ≥ 0 . (16)

The condition (16) is valid not only for closed and flat models, but also
for cosmological models of open type (k = −1) [7]. In the case of models
filled with usual gravitating matter without scalar fields the equation Z = 0
determines limiting (maximum) energy density, and regular transition from
compression to expansion (bounce) takes place for all cosmological solutions

2 In the case α < 0 GCFE, (5), (6) lead to regular bouncing solutions, if at extreme
conditions p < 1

3
ρ [10, 3]. However, in this case GCFE have also singular solutions

for some hypothetical superdense systems [15, 3].
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by reaching limiting energy density. Near limiting energy density the grav-
itational interaction has the repulsion character. In the case of systems
including also scalar fields a bounce takes place in points of so-called “ounce
surfaces” in space of variables (φ, φ̇, ρm) [7]. Near bounce surfaces as well as
bounds Z = 0 gravitational interaction has the character of repulsion, but
not attraction. By using GCFE in the form (11), (14) we will find below,
by what conditions gravitational repulsion effect takes place.

(a) At first, we will consider gravitating systems filled with gravitating

matter without scalar fields. Then the acceleration a = R̈/R = Ḣ + H2

from (13), (14) takes the following form

a =

(

Z+
3

2
αY

)−3
{

[

4πG
(

ρm−pm+
α

2
(ρm−3pm)2

)

− 2k

R2
Z

](

Z+
3

2
αY

)2

− 2D

[

Z +
3

4
αY − 9α

4

(

dpm

dρm

Y + 3(pm + ρm)2
d2pm

dρ2
m

)]

}

. (17)

Obviously the repulsion (a > 0) will take place, if the expression in figured
parentheses in (17) is positive. The domain of admissible energy densities,
by which the repulsion effect takes place, depends on equation of state of
gravitating matter at extreme conditions and on the value of parameter α.
In particular, in the case of flat models (k = 0) with linear equation of state
pm = wρm (w = const > 1

3
) we obtain from (17) the following condition for

energy densities corresponding to repulsion effect

y(x) ≡ 1

8
(9w2 − 1)x3 +

3(3w2 − 1)

3w + 1
x2 +

3(9w + 5)

2(3w + 1)
x − 1 > 0 , (18)

0.4 0.5 0.6 0.7 0.8 0.9 1
w0.15

0.16

0.17

0.18

0.19

0.2

x0

Fig. 1. The root x0 as function of parameter w.
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where x = αρm(3w−1) > 0. Moreover, from condition Z = 1−x ≥ 0 fol-
lows, that x ≤ 1. By this restriction the cubic equation y(x) = 0 has the
only real root x0 and inequality (18) is fulfilled at x>x0. Numerical solu-
tion of equation y(x)=0 gives the dependence of value x0 on parameter w
(see Fig. 1). The gravitational repulsion effect in considered case takes place
at energy densities defined by the following condition x0 < x ≤ 1, and the
value x = 1 corresponds to limiting energy density.

(b) In the case of systems including non-interacting gravitating matter
and scalar field the condition of gravitational repulsion obtained from (11)
and (14) is

{

8πG

[

V +
1

2
(ρm − pm) +

α

4
(4V − φ̇2 + ρm − 3pm)2

]

− 3α

[

∂2V

∂φ2
φ̇2 −

(

∂V

∂φ

)2
]

− 2k

R2
Z

}

[

Z + 3α

(

φ̇2 +
1

2
Y

)]2

+

(

−3α
∂V

∂φ
φ̇ ±

√
D

)2 [

−2Z + 6αφ̇2 − 3

2
αY

+
9α

2

(

dpm

dρm

Y + 3(pm + ρm)2
d2pm

dρ2
m

)]

> 0 . (19)

Inequality (19) together with condition Z ≥ 0 determine the domain of

variables φ, φ̇ and ρm at extreme conditions near bounds (Z = 0) and
bounce surfaces in space of these variables, where gravitational repulsion
effect appears. This domain is different for H+- and H−-solutions of (11)
and (14) corresponding to two values of the Hubble parameter (13) [7]. Note
that (19) describes also repulsion effect at small energy densities like to GR,
when the pressure is negative because of contribution of scalar field. In the
case of systems filled with interacting gravitating matter and scalar field
the generalization of condition (19) can be obtained from (11) and (15).
Note that in the case of closed and open models conditions for gravitational
repulsion effect include the term with scale factor R depending on 3-space
curvature also, this means that the repulsion effect for homogeneous isotropic
systems depends on global structure of gravitating model.

5. Conclusion

The analysis of gravitational repulsion effect at extreme conditions in
GTG presented above shows that this effect takes place near limiting energy
density, near a bounce, and it depends on content and properties of gravitat-
ing matter at extreme conditions (equation of state for gravitating matter,
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the form of scalar field potentials etc.) and also on the scale of extremely
high energy densities defined by the parameter α. If the value of limiting
energy density is essentially less than the Planckian one, gravitational repul-
sion effect appears at classical conditions, when the quantum gravitational
corrections according to widely known opinion are not essential3. In the
case of systems including scalar fields the value of limiting energy density
is different for different solutions and can be essentially greater than α−1,
but the appearance of gravitational repulsion effect does not depend on this
fact [16]. If limiting energy density is comparable with the Planckian one,
quantum gravitational corrections have to be taken into account, although
classical GTG ensures satisfactory non-singular behavior of gravitating sys-
tems. Because GCFE in the case of gravitating systems with small energy
densities lead to consequences similar to that of GR, gravitational repulsion
effect at such conditions can appear in the case of gravitating models with
negative pressure (dark energy) like to GR. In particular, if GCFE (5), (6)
include cosmological constant, the value of which corresponds to dark en-
ergy density at present epoch, regular cosmological solutions of (5), (6) will
contain the stage of accelerating cosmological expansion by dominating of
vacuum energy (cosmological constant).

The study of gravitating systems in the frame of GTG shows, that im-
portant features of gravitational interaction at extreme conditions depend
essentially on properties of gravitating matter, which are determined by
other fundamental physical interactions. To describe the evolution of gravi-
tating models we have to know, how corresponding properties of gravitating
matter (at first of all its equation of state) change by model evolution. This
conclusion obtained by investigation of homogeneous isotropic models has
sufficiently general character, because the form of used GCFE (5), (6) does
not depend on detailed structure of quadratic in the curvature part of gravi-
tational Lagrangian. At the same time the dynamics of gravitating systems
depends on the structure of quadratic part of gravitational Lagrangian of
GTG, if the homogeneity and isotropy are broken. In connection with this,
the search of GTG leading to the most satisfactory consequences in general
case of inhomogeneous anisotropic models is of direct physical interest.

The author is very grateful to Dr. A.S. Garkun and Dr. A.A. Minkevich
for the help in preparing this paper.

3 Probably, in the frame of considered GTG the quantum properties of gravity can be
important near the bound Z = 0, where values of the torsion function S are extremely
large.
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