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We adopt Leaver’s [E. Leaver, Proc. R. Soc. Lond. A402, 285 (1985)]
method to determine quasi normal frequencies of the Schwarzschild black
hole in higher (D > 10) dimensions. In D-dimensional Schwarzschild met-
ric, when D increases, more and more singularities, spaced uniformly on
the unit circle |r| = 1, approach the horizon at r = r, = 1. Thus, a solution
satisfying the outgoing wave boundary condition at the horizon must be
continued to some mid point and only then the continued fraction condi-
tion can be applied. This prescription is general and applies to all cases
for which, due to regular singularities on the way from the point of interest
to the irregular singularity, Leaver’s method in its original setting breaks
down. We illustrate the method calculating gravitational vector and tensor
quasinormal frequencies of the Schwarzschild black hole in D = 11 and
D = 10 dimensions. We also give the details for the D = 9 case, considered
in the work of P. Bizon, T. Chmaj, A. Rostworowski, B.G. Schmidt and
Z. Tabor, Phys. Rev. D72, 121502(R) (2005).

PACS numbers: 04.70.—s

1. Introduction and setup

Our motivation to study quasinormal modes of Schwarzschild black holes
in higher dimensions comes mainly from the possibility of studying the dy-
namics of gravitational collapse in vacuum initiated with the work of Bizon,
Chmaj and Schmidt [3]. At the expense of going to higher (D > 5) odd
dimensions, they showed how to evade Birkhoff’s theorem and study grav-
itational collapse in vacuum at radial symmetry. It was shown [2,3| that
for D = 5,9, the D-dimensional Schwarzschild black hole is the attractor
for large initial data and at some intermediate times the solution settling
down to the Schwarzschild black hole, obtained from nonlinear numerical
evolution, is well approximated outside the horizon by the least damped
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quasinormal mode. Therefore, the precise values of fundamental quasinor-
mal frequencies of Schwarzschild black holes in odd dimensions are urgently
needed, as they help to check the validity of the numerical code used in
evolution. The reliable values of quasinormal frequencies of Schwarzschild
black hole are available for D = 5 case [4,5], but for D > 5 only results
from WKB methods are published [6-8] and it is known that they may
be not accurate for small values of angular momentum and/or higher over-
tones. Therefore getting these values with Leaver’s method of continued
fractions [1], giving the most precise values of quasinormal frequencies in
D = 4 and D = 5 dimensions, is worthwhile. We describe below how to
modify Leaver’s method to obtain gravitational vector and tensor quasinor-
mal frequencies of Schwarzschild black hole in D > 10 dimensions.

The line element of the Schwarzschild solution in D-dimensions has the
form

ds* = A(r)dt* — A~ (r)dr® — r* d02}_,, (1)
with D—3
—1_ (MY
A(r) =1 ( ! ) . (2)

In what follows we take r, = 1. In linear approximation the radial compo-
nent of gravitational vector and tensor perturbation of the metric (1) satisfies
the following Schrédinger type differential equation

d? L(L+D-3) (D-2)(D—4) (1-s?)(D-2)?

_Ww"i‘A(T)( ( 7,2 )+( 4)752 )+( 42(D_1 )>¢:k2¢7

(3)
where the tortoise coordinate z is defined by dz/dr = A~'(r) and the
parameter s depends on the type of the perturbation (s = 0 for the gravi-
tational tensor and s = 2 for the gravitational vector perturbation). Eq. (3),
derived independently by Gibbons and Hartnoll [9] and Ishibashi and
Kodama [10], generalizes the well known Regge-Wheeler equation [11] to
D-dimensions. In this setting quasi normal modes are defined as solutions
of (3), satisfying the outgoing wave boundary conditions

P v deo exp(tikx), (4)

with Im(k) < 0. The corresponding values of k& are called quasi normal
frequencies. Eq. (3) has D —2 regular singular points (at r = 0 and at D —3
roots of 7?73 = 1) and the irregular singular point at infinity. Leaver’s
method [1| of determining quasi normal frequencies consists in separating
boundary behavior and then transforming r into p(r) in such a way that the
singularities at 7 = 1 (horizon) and at = oo become the closest singularities
in the p plane. In D = 4 it is accomplished with the substitution

Y(r) = (r = 1) 2 *e 0 (p(r)) (5)
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where

u(p(r»:;aw%ian <T21>na ®)

n=0
and the coefficients a,, are given by the 3-term reccurence relation

’Ya(zl)an+l + ')’r(?)an + Va(zg)an—l =0, (7)

with the initial condition ag = 1, a_; = 0 and %(Lj) given in [1|. Then, the
quantization condition is the convergence of the series (6) on the convergence
radius p = 1. The two linearly independent solutions of the reccurence

behave as
an "~ exp (j:\/—8ikn> , (8)

thus the minimal solution makes the series (6) convergent at p = 1. The
discrete values of k for which the solution given by the initial condition
ao = 1 and a_; = 0 is a minimal one define quasi normal frequencies. For

these values the following equation, involving an infinite continues fraction
holds @) 3 0.6 1) O
ar W M M T2 Y2 s 9)
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To determine the quasi normal frequencies we truncate the infinite con-
tinued fraction in (9) at some denominator and seck for the solutions of (9)
which are stable with respect to the change of depth of this truncation.

Although Leaver’s method is well explored, it has never been used in the
case of Schwarzschild black hole for D > 10 (or analogue cases), where new
technical obstacles due to additional regular singular points of Eq. (3) are
present. The standard change of variables p(r) = (r—1)/r moves the infinity
from r = oo to p = 1, the horizon from r =1 to p = 0, but for D > 10 it
also moves some of the other regular singular points (coming from the laps
function A(r) through the term d?v/dx? = A%d?/dr® +AdA/dr dip/dr) to
the inside of the unit circle centered at p = 0. Thus the continued fraction
condition cannot be applied to the series representation at p = 0. Instead,
this series representation has to be continued analytically to some point for
which irregular singular point at p = 1 is the closest singular point and only
then the continued fraction condition can be applied. This prescription is
general and works for all cases, where due to additional singularities (after
the change of variables) in the unit circle centered at p = 0 “standard”
Leaver’s method breaks down.

In general, for even D > 4 the substitution

o) = <T;1>_ik/w_3) > o () (10)

n=0
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in (3) leads to a (2(D — 3) + 1)-term reccurence relation, while for odd D
the substitution

o\ k(D=3 oo N\
w= () e () (1)

n=0

in (3) leads to a 2(D — 3)-term reccurence relation. These reccurence re-
lations can be reduced to 3-term ones using Gauss elimination as in [12].
However, as pointed out above, when D increases more and more of the
D — 3 singularities, spaced uniformly on the unit circle |r| = 1, approach the
horizon at » = 1 and no simple transformation can move them away from
the circle centered at the horizon and the radius corresponding to r = oo
in the p plane. In the case of Eq. (3), this difficulty arises first at D = 10.
Therefore, for D > 10 the solution starting from the horizon has to be
continued through some mid points 0 < p < 1, laying within the conver-
gence radius of the presently used series representation of the solution, and
Leaver’s continued fraction condition can be applied only if it is the irregular
singularity corresponding to » = 0o, which limits the convergence radius of
the presently used series representation.

2. The D = 11 case

As an example, to illustrate how the above prescription works, we de-
termine quasinormal frequencies of the Schwarzschild black hole in D = 11
dimensions. We choose D = 11 as, due to our motivation given in the in-
troduction, we are interested in odd dimensions and D = 11 is the smallest
odd dimension in which Leaver’s method in its original setting breaks down
for D-dimensional generalization of Regge-Wheeler potential (3). In Eq. (3)
we substitute

.1\ —ik/(D=3) .
v = (23) Fru(pr). =" ()

The singular points of Eq. (3) at r = 1, e*™/4 oo are transformed into

p=0,1—-1/v/2=+i//2, 1, respectively (other singular points are placed at
|p| > 1). The singularities at p = 1 — 1/4/2 £ i//2 limit the convergence
radius of the series representation of the solution u(p) = > 7 anp", to
V2 — /2 = 0.76. We choose py = 1/2 (which is a regular point) as a mid
point. We have

u(p) = Z anp” = Z an(p —po)" (13)
n=0 n=0
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where

o0 o0
ap = Z anpy, a) = Znanpg_l. (14)
n=0 n=1

The coefficients a,, fulfill 2(D — 3) + 1 = 17-term reccurence relation, which
reduced to the 3-term one via Gauss elimination [12], and then inserted into
(9) yields quasinormal frequencies.

All reccurence relations are obtained analytically in Mathematica com-
puter algebra package. Then all other tasks (finding a;/ag from Eq. (14),
reduction of the (2(D —3) 4 1)-term reccurence relation for a,, to the 3-term
one via Gauss elimination and finding the roots of the continued fraction
relation (9)) are done numerically, by the program in the C programming
language. To determine the roots of the continued fraction relation (9) we
use Newton-Raphson root searching algorithm [13].

The first three quasinormal frequencies for vector and tensor gravita-
tional perturbations of the Schwarzschild black hole, for different values
of L, are given in Table I. Our values of fundamental frequencies for tensor

TABLE I

The first three quasinormal frequencies for vector and tensor perturbation of the
Schwarzschild black hole in D = 11 dimensions.

D =11
vector modes
L n=20 n=1 n=2
2 | 3.6788 — 1.0588: 2.3419 — 2.81901 1.2130 — 3.97314
3 | 4.4533 — 1.03313 3.4147 — 2.9417:¢ 1.9955 — 3.7743i
4 | 5.2343 — 1.01873 4.4049 — 2.9628: | 2.8490 — 4.00607
5| 6.0134 — 1.01207 5.3226 — 2.9745¢ | 3.7955 — 4.3603:
6 | 6.7881 — 1.0097: 6.1936 — 2.98627 | 4.8328 — 4.64301
7 | 7.5579 — 1.0096¢ 7.0340 — 2.9976¢ | 5.8529 — 4.7970:
8 | 8.3232 — 1.0105¢ 7.8533 — 3.0082¢ | 6.8146 — 4.88261
9 | 9.0846 — 1.0120z 8.6576 — 3.0177: | 7.7286 — 4.9366%
10 | 9.8425 — 1.01367 9.4505 — 3.02627 | 8.6084 — 4.9742i
11 | 10.5976 — 1.0152¢ | 10.2348 — 3.03377 | 9.4632 — 5.00213
tensor modes
2 | 4.3920 — 1.0577¢ 3.3356 — 3.0313: 1.9912 — 3.8491:
3 | 5.1231 — 1.05077 4.2669 — 3.07657 | 2.7018 — 4.09461
4 | 5.8540 — 1.0463: 5.1305 — 3.0910¢ | 3.4995 — 4.44241
5 1 6.5849 — 1.0435¢ 5.9561 — 3.0967¢ | 4.4432 — 4.77151
6 | 7.3160 — 1.0415¢ 6.7587 — 3.09947 | 5.4481 — 4.9519i
7 | 8.0471 — 1.0401¢ 7.5459 — 3.1007¢ | 6.4039 — 5.0333:
8 | 8.7783 — 1.0390: 8.3226 — 3.10147 | 7.3091 — 5.07531
9 | 9.5095 — 1.0383: 9.0914 — 3.1019; | 8.1784 — 5.1000%
10 | 10.2408 — 1.03777 | 9.8544 — 3.1021¢ | 9.0222 — 5.1159¢
11 | 10.9721 — 1.0372¢ | 10.6128 — 3.10237 | 9.8473 — 5.1268i
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modes are consistent with [6] (in [6] the values of fundamental frequencies
for scalar field perturbations were given and the scalar field perturbation
obeys exactly the same equation as the tensor gravitational perturbation).
In order to compare the values obtained from our modification of Leaver’s
method with the values given in [8] we also calculate the first three quasi-
normal frequencies for vector and tensor gravitational perturbation of the
Schwarzschild black hole in D = 10 dimensions. They are listed in Table II.
Comparing with [8] we see a perfect agreement for larger values of L. This
makes us feel confident in our results. However, for smaller L values, and
especially for the overtones there are differences exceeding 10%. As Leaver’s
method works well both for smaller and larger values of L, we believe that
the error is on the WKB method side (see the comments in [8]).

TABLE II

The first three quasinormal frequencies for vector and tensor perturbation of the

Schwarzschild black hole in D = 10 dimensions.

D =10
vector modes
L n=20 n=1 n=2
2 | 3.2334 — 0.9603: 2.0119 — 2.72754 0.9784 — 3.51361
3 | 3.9946 — 0.9337: 3.1233 — 2.73911 1.5680 — 3.5028i
4 | 4.7607 — 0.92114 4.0833 — 2.72431 2.4839 — 3.90231
5 | 5.5225 — 0.9165¢ 4.9654 — 2.72481 3.6165 — 4.28951
6 | 6.2781 — 0.9158i 5.8018 — 2.73164 4.7032 — 4.4370i
7 | 7.0278 —0.9168: 6.6097 — 2.74001 5.6773 — 4.50274
8 | 7.7725 — 0.9185: 7.3984 — 2.74844 6.5828 — 4.54121
9 | 8.5128 — 0.92044 8.1735 — 2.75611 7.4452 — 4.56754
10 | 9.2495 — 0.92221 8.9385 — 2.76311 8.2785 — 4.58691
11 | 9.9832 — 0.9240: 9.6957 — 2.769214 9.0911 — 4.60214
12 | 10.7144 — 0.92567 | 10.4469 — 2.77451 | 9.8882 — 4.61431
13 | 11.4434 — 0.9270¢ | 11.1932 — 2.7792¢ | 10.6733 — 4.6243:
14 | 12.1707 — 0.9282¢ | 11.9354 — 2.7833¢ | 11.4490 — 4.6327¢
15 | 12.8963 — 0.9293¢ | 12.6743 — 2.7869¢ | 12.2170 — 4.6399¢
tensor modes
2 | 3.9209 — 0.96214 3.0410 — 2.85144 1.5315 — 3.5723i
3 | 4.6311 — 0.9555¢ 3.9309 — 2.85071 2.2219 — 3.97574
4 | 5.3414 — 0.9515¢ 4.7545 — 2.84561 3.1902 — 4.47374
5 | 6.0519 — 0.9489: 5.5446 — 2.84111 4.3063 — 4.64521
6 | 6.7627 — 0.9472: 6.3149 — 2.83771 5.2808 — 4.68484
7 | 7.4735 — 0.9460¢ 7.0722 — 2.83501 6.1763 — 4.69851%
8 | 8.1845 — 0.94514 7.8206 — 2.83301 7.0262 — 4.70421
9 | 8.8955 — 0.9444i 8.5624 — 2.83151 7.8469 — 4.70677
10 | 9.6066 — 0.9439: 9.2994 — 2.83031 8.6472 — 4.7079¢
11 | 10.3178 — 0.9435¢ | 10.0327 — 2.8293¢ | 9.4327 — 4.70844
12 | 11.0290 — 0.94327 | 10.7629 — 2.8285: | 10.2070 — 4.70857%
13 | 11.7402 — 0.94297 | 11.4908 — 2.8279: | 10.9725 — 4.70854%
14 | 12.4514 — 0.94277 | 12.2166 — 2.82737 | 11.7310 — 4.70841
15 | 13.1627 — 0.9425¢ | 12.9409 — 2.8269¢ | 12.4839 — 4.7082¢
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3. The D = 9 case

Here we give the details for the D = 9 case, skipped in [2]. The substi-
tution (11) leads to 2(D — 3) = 12-term reccurence relation

YWani1 + v Pan + ... + 7 Pan_19 =0, (15)
with

A0 = 216(1 4 n)(ik — 3(1 4 n)),

72 = —9(24(5 4 12n)ik + 40k? — 252
+147s% — 12L(L + 6) — 36n(9 + 13n)),

7B = 6(12(—37 + 134n)ik + 284k> — 1323
+1764s* — 36 L(L + 6) + 36n(41 — 62n)),

B = —9(8(—289 + 292n)ik + 452k* — 4773
+4312s% — 28L(L + 6) 4+ 12n(515 — 253n)),

A5 = 4(6(—2186 + 1279n)ik + 1508k> — 34290
421609s% — 36L(L + 6) + 18n(1870 — 547n)),

76 = —(24(—3219 + 1324n)ik + 6052k> — 265050
+13009552 — 36 L(L + 6) + 36n(5579 — 1161n)),

AN = 2(12(—3109 + 986n)ik + 2080k* — 167877
46923752 + 144n(712 — 115n)),

A8 = —(48(—1007 4 260n)ik + 1888k> — 289215
+105399s% 4 36n,(4097 — 541n)),

79 = 8(3(—849 + 185n)ik + 64k% — 21168
4705652 + 9n(1029 — 115n)),

A0 = —2(48(—53 + 10n)ik + 32k> — 32463
+10143s? 4 18n(691 — 67n)),

A = 6(16(—6 + n)ik — 2463
+73552 + 24n(35 — 3n))

12 = 9(13 — 2n 4 7s)(13 — 2n — 7s).

Gauss elimination [12], and insertion into (9) yields again quasinormal
frequencies. The first three quasinormal frequencies for vector and tensor
gravitational perturbation of the Schwarzschild black hole, for different val-
ues of L, are given in Table III.
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TABLE III

The first three quasinormal frequencies for vector and tensor gravitational perturbation
of the Schwarzschild black hole in D = 9 dimensions.

D=9
vector modes
L n=>0 n=1 n=2
2 | 2.7928 — 0.85421 1.7792 — 2.59651 0.5699 — 3.01211
3 | 3.5389 — 0.8278: 2.8438 — 2.4808i 1.1129 — 3.28061
4 | 4.2863 — 0.81801 3.7573 — 2.44941 2.3546 — 3.915514
5 | 5.0260 — 0.81614 4.5953 — 2.44691 3.5813 — 4.04501
6 | 5.7578 — 0.81714¢ 5.3913 — 2.45244 4.5724 — 4.0828:
7 | 6.4826 — 0.81911¢ 6.1617 — 2.45974 5.4646 — 4.10457
8 | 7.2018 — 0.82144 6.9152 — 2.46691i 6.3037 — 4.1198i
9 | 7.9165 — 0.82361 7.6569 — 2.47351 7.1097 — 4.1317:
10 | 8.6275 — 0.8255i 8.3899 — 2.47931 7.8933 — 4.1413i
11 | 9.3354 — 0.8273i 9.1161 — 2.48441 8.6607 — 4.14921
12 | 10.0409 — 0.8288i | 9.8370 — 2.4887: 9.4161 — 4.1558i
13 | 10.7442 — 0.8301¢ | 10.5537 — 2.4925¢ | 10.1620 — 4.1614¢
14 | 11.4458 — 0.8313¢ | 11.2670 — 2.4957¢ | 10.9004 — 4.1662:¢
15 | 12.1460 — 0.8323¢ | 11.9774 — 2.4986¢ | 11.6328 — 4.1703:
tensor modes
2 | 3.4488 — 0.86017 2.7548 — 2.61161 0.9903 — 3.33731
3 | 4.1342 — 0.85414 3.5853 — 2.58251 1.5262 — 4.28501
4 | 4.8200 — 0.85067 4.3624 — 2.56611 3.2201 — 4.33331
5 | 5.5061 — 0.84831 5.1123 — 2.55591 4.2023 — 4.30077
6 | 6.1926 — 0.8469: 5.8463 — 2.54911 5.0773 — 4.27961
7| 6.8792 — 0.8458¢ 6.5699 — 2.54431 5.8994 — 4.26511
8 | 7.5660 — 0.84514 7.2863 — 2.54091 6.6898 — 4.25474i
9 | 8.2529 — 0.8445i 7.9975 — 2.53831 7.4592 — 4.24703
10 | 8.9399 — 0.84414 8.7048 — 2.53631 8.2136 — 4.24114
11 | 9.6269 — 0.8438i 9.4091 — 2.5348i 8.9571 — 4.23651
12 | 10.3140 — 0.84357 | 10.1111 — 2.53367 | 9.6922 — 4.23283
13 | 11.0011 — 0.84337 | 10.8112 — 2.53257 | 10.4207 — 4.22983
14 | 11.6883 — 0.84317 | 11.5098 — 2.53177 | 11.1439 — 4.22743
15 | 12.3755 — 0.8430¢ | 12.2070 — 2.5310¢ | 11.8628 — 4.22541

4. Summary

We have shown how to use Leaver’s [1] method of continued fraction in
the case of a number of regular singular points, which set lower bounds on
the convergence radius of the series representation of a solution than irreg-
ular singular point. This prescription is general and together with Leaver’s
method makes a powerful tool in determination of quasinormal frequencies
for wave equations and resonances in quantum mechanics.
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