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General properties of an Abelian connection in Fedosov deformation
quantization are investigated. The definition and the criterion of being
a finite formal series for an Abelian connection are presented. A proof that
in 2-dimensional (2D) case the Abelian connection is an infinite formal
series is done.
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1. Introduction

Deformation quantization on phase space R
2n was proposed by Moyal [1].

In his paper ideas of Weyl [2], Wigner [3] and Groenewold [4] were devel-
oped. The article contained not only general considerations but also explicit
formulas defining the ∗-product of observables and so called Moyal bracket
being the counterpart of the commutator of operators.

The first successful generalization of Moyal’s results in case of a phase
space different from R

2n was presented 28 years later, when Bayen et al. [5,6]
proposed an axiomatic version of deformation quantization. In these articles
quantum mechanics became a deformed version of classical physics. Unfor-
tunately, in contrast to Moyal, quoted authors did not present universal
“computable” model of their idea. Since that their results were applicable
only in some special cases like a harmonic oscillator.

One of the realizations of quantization programme is so called Fedosov
deformation quantization [7,8]. The Fedosov construction is algebraic and it
can be applied easily to solve some problems like harmonic oscillator [9, 10]
or 2D symplectic space with constant curvature tensor [11].

(3069)



3070 J. Tosiek

In Fedosov quantization we work with formal series. There is no general
method to write these series in a compact form. Hence so important is
to find cases, in which the form of these series may be predicted. Series of
compact form appear for example when they contain finite number of terms.
In that case ∗-product of functions can be calculated exactly.

Fedosov deformation quantization is based on two recurrent equations,
which generate formal series. The first one is the formula defining an Abelian
connection, the second — relation introducing a series representing an ob-
servable. In this paper we deal with the Abelian connection.

Because the answer, when the Abelian connection is a finite series, de-
pends on the dimension of the phase space of a system, we divide our consid-
erations into two papers. In this one we present the necessary and sufficient
condition for the Abelian connection to be a finite series. We prove that in
2D case the Abelian connection cannot be represented by such a series. In
the second part we will deal with more dimensional phase spaces.

Our considerations are devoted only to Abelian connections determined
by the iteration process proposed by Fedosov. Another kind of Abelian
connection on Kähler symmetric manifolds can be found in [12].

In all formulas in which summation limits are obvious we use Einstein
summation convention.

2. Foundations of Fedosov deformation quantization

All facts presented in this section have been published in some books or
papers. Bibliography of symplectic geometry is given below. Foundations
of Fedosov quantization may be seen in [7, 8]. We set this knowledge to
simplify following our considerations. Moreover, we modify notation a bit
in comparison to the original Fedosov article.

The starting point of the deformation quantization according to the Fe-
dosov rules is a symplectic manifold equipped with some connection known
as “symplectic”. Reader interested in details of symplectic geometry is
pleased to look them up in [8, 10, 13, 14].

Let (M, ω) be a 2n-D symplectic manifold and A = {(Uz , φz)}z∈J

an atlas on M. By ω we mean the symplectic 2-form. Since we work only
with symplectic manifolds, in our paper we will denote a manifold (M, ω)
just by M.

Definition 2.1 A symplectic connection Γ on M is a torsion free con-
nection locally satisfying conditions

ωij;k = 0 , 1 ≤ i, j, k ≤ 2n , (2.1)

where a semicolon “ ;” stands for the covariant derivative.
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In any Darboux coordinates the system of equations (2.1) reduces to

ωij;k = −Γ l
ikωlj − Γ l

jkωil = −Γjik + Γijk = 0 , (2.2)

where Γijk
def.
= Γ l

jkωli.

As can be seen from (2.2), the coefficients Γijk are symmetric with respect

to indices {i, j, k}. The number of independent elements Γijk is

(

2n + 2
2n − 1

)

.

A symplectic connection exists on any symplectic manifold.

Definition 2.2 A symplectic manifold M equipped with a symplectic con-
nection Γ is called a Fedosov manifold (M, Γ ).

In Darboux coordinates the symplectic curvature tensor RΓ is defined

(RΓ )ijkl =
∂Γilj

∂qk
−

∂Γijk

∂ql
+ ωmpΓpljΓikm − ωmpΓpjkΓilm .

The tensor ωij and the symplectic form ωjk are related by ωijωjk = δi
k.

The symplectic curvature tensor RΓ is symmetric in two first indices
(RΓ)ijkl =(RΓ)jikl and antisymmetric in two last indices (RΓ)ijkl =− (RΓ)ijlk.
On a 2n-D Fedosov manifold (M, Γ ) a number of independent components
of the tensor RΓ is 1

2n(n + 1)(2n + 1)(2n − 1).

Let ~ denote some positive parameter and X1
p
, . . . ,X2n

p
components of an

arbitrary vector Xp belonging to the tangent space TpM to the symplectic
manifold M at the point p. The components X1

p
, . . . ,X2n

p
are written in the

natural basis
(

∂
∂qi

)

p

determined by the chart (Uz, φz) such that p ∈ Uz.

In the point p we introduce a formal series

a
def.
=

∞
∑

l=0

~
kak,i1...ilX

i1
p

. . . Xil
p

, 0 ≤ k . (2.3)

For l = 0 we put a = ~
kak. By ak,i1...il we denote components of a covariant

tensor symmetric with respect to indices {i1 . . . , il} taken in the basis dqi1 ⊙
. . . ⊙ dqil .

The part of the series a standing at ~
k and containing l components of

the vector Xp will be denoted by a[k, l] so that a =
∑∞

k=0

∑∞
l=0 ~

ka[k, l].
The degree deg(a[k, l]) of the component a[k, l] is the sum 2k+l. The degree
of the series a is the maximal degree of its nonzero components a[k, l].

Let P ∗
p
M[[~]] be the set of all elements a of the kind (2.3) at the point p.

The set P ∗
p
M[[~]] is a linear space over C.
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Definition 2.3 The product ◦ : P ∗
p
M[[~]] × P ∗

p
M[[~]] → P ∗

p
M[[~]] of two

elements a, b ∈ P ∗
p
M[[~]] is the mapping

a ◦ b
def.
=

∞
∑

t=0

1

t!

(

i~

2

)t

ωi1j1 · · ·ωitjt
∂ta

∂Xi1
p . . . ∂Xit

p

∂tb

∂Xj1
p . . . ∂Xjt

p

. (2.4)

The pair (P ∗
p
M[[~]], ◦) is a noncommutative associative algebra called the

Weyl algebra. The ◦-product does not depend on the chart. Moreover, for
all a, b ∈ (P ∗

p
M[[~]], ◦) the relation holds

deg(a ◦ b) = deg(a) + deg(b) .

Definition 2.4 A Weyl bundle is a triplet (P∗M[[~]], π,M), where

P∗M[[~]]
def.
=

⋃

p∈M

(P ∗
p
M[[~]], ◦)

is a differentiable manifold called the total space, M is the base space and
π : P∗M[[~]] → M the projection.

A Weyl bundle is a vector bundle in which the typical fibre is also an algebra.

Definition 2.5 An m-differential form with value in the Weyl bundle is
a form written locally

a =
∞
∑

l=0

~
kak,i1...il,j1...jm

(q1, . . . , q2n)Xi1 . . . Xildqj1 ∧ · · · ∧ dqjm , (2.5)

where 0 ≤ m ≤ 2n. Now ak,i1...il,j1...jm
(q1, . . . , q2n) are components of smooth

tensor fields on M and C∞(T M) ∋ X
locally

= Xi ∂
∂qi is a smooth vector field

on M.

For simplicity we will omit variables (q1, . . . , q2n).
Let Λm be a smooth field of m-forms on the symplectic manifold M.

Forms of the kind (2.5) are smooth sections of the direct sum P∗M[[~]] ⊗

Λ
def.
= ⊕2n

m=0(P
∗M[[~]] ⊗ Λm).

The projection σ(a) of a ∈ C∞(P∗M[[~]] ⊗ Λ0) means a|X=0.

Definition 2.6 The commutator of forms a ∈ C∞(P∗M[[~]]⊗Λm1) and
b ∈ C∞(P∗M[[~]] ⊗ Λm2) is the form [a, b] ∈ C∞(P∗M[[~]] ⊗ Λm1+m2)
defined by

[a, b]
def.
= a ◦ b − (−1)m1·m2b ◦ a. (2.6)
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A form a ∈ C∞(P∗M[[~]] ⊗ Λ) is called central, if for every b ∈
C∞(P∗M[[~]] ⊗ Λ) the commutator [a, b] vanishes. Only forms not con-
taining Xi’s are central in the Weyl algebra.

Definition 2.7 The antiderivation operator δ:
C∞(P∗M[[~]] ⊗ Λm) → C∞(P∗M[[~]] ⊗ Λm+1) is defined by

δa
def.
= dqk ∧

∂a

∂Xk
. (2.7)

The operator δ lowers the degree deg(a) of the elements of P∗M[[~]]Λ by 1.
Every two forms a ∈ C∞(P∗M[[~]] ⊗ Λm1) and b ∈ C∞(P∗M[[~]] ⊗ Λ)

satisfy
δ(a ◦ b) = (δa) ◦ b + (−1)m1a ◦ (δb) . (2.8)

Definition 2.8 The operator δ−1 : C∞(P∗M[[~]]⊗Λm) → C∞(P∗M[[~]]⊗
Λm−1) is defined by

δ−1a =

{

1
l+m

Xk ∂
∂qk

⌋

a for l + m > 0 ,

0 for l + m = 0 ,
(2.9)

where l is the degree of a in Xi,s i.e. the number of Xi,s.

δ−1 raises the degree of the forms of P∗M[[~]]Λ in the Weyl algebra by 1.
The linear operators δ and δ−1 do not depend on the choice of local

coordinates and have the following properties:

(i) δ2 = (δ−1)2 = 0 ;

(ii) let us assume that indices i1, . . . , il and j1, . . . , jm are arbitrary but
fixed. For the monomial

Xi1 . . . Xildqj1 ∧ . . . ∧ dqjm we have

(δδ−1 +δ−1δ)Xi1 . . . Xildqj1 ∧ . . .∧dqjm = Xi1 . . . Xildqj1 ∧ . . .∧dqjm .

The straightforward consequence of the linearity and the decomposition
of monomials is the Hodge decomposition of the form a ∈ C∞(P∗M[[~]]⊗Λ)
as shows the next theorem.

Theorem 2.1 [7, 8] For every a ∈ C∞(P∗M[[~]] ⊗ Λ)

a = δδ−1a + δ−1δa + a00 , (2.10)

where a00 is a smooth function on the symplectic manifold M.
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Definition 2.9 The exterior covariant derivative ∂γ of the form a ∈
C∞(P∗M[[~]]⊗Λm) determined by a connection 1-form γ ∈ C∞(P∗M[[~]]⊗
Λ1) is the linear operator ∂γ : C∞(P∗M[[~]]⊗Λm) → C∞(P∗M[[~]]⊗Λm+1)
defined in a Darboux chart by the formula

∂γa
def.
= da +

1

i~
[γ, a] . (2.11)

In case when γ represents the symplectic connection, we use a symbol Γ
instead of γ i.e.

γ
denoted

= Γ =
1

2
ΓijkX

iXjdqk . (2.12)

The curvature form Rγ of a connection 1-form γ in a Darboux chart can
be expressed by the formula

Rγ = dγ +
1

2i~
[γ, γ] = dγ +

1

i~
γ ◦ γ . (2.13)

Hence the second covariant derivative ∂γ(∂γa) = (1/i~)[Rγ , a].
The crucial role in the Fedosov deformation quantization is played by an

Abelian connection Γ̃ . By definition, by an Abelian connection we mean
a connection Γ̃ whose curvature form RΓ̃ is central so that ∂Γ̃ (∂Γ̃ a) = 0 for
every a ∈ C∞(P∗M[[~]] ⊗ Λ).

The Abelian connection proposed by Fedosov is of the form

Γ̃ = ωijX
idqj + Γ + r . (2.14)

Its curvature

RΓ̃ = −
1

2
ωj1j2dqj1 ∧ dqj2 + RΓ − δr + ∂Γ r +

1

i~
r ◦ r . (2.15)

The requirement that the central curvature 2-form RΓ̃ = −1
2ωj1j2dqj1 ∧ dqj2

means that we look for the solution of the equation

δr = RΓ + ∂Γ r +
1

i~
r ◦ r . (2.16)

Fedosov proved (see [7, 8]) the following theorem.

Theorem 2.2 The equation (2.16) has a unique solution

r = δ−1RΓ + δ−1

(

∂Γ r +
1

i~
r ◦ r

)

(2.17)

fulfilling the following conditions

δ−1r = 0 , 3 ≤ deg(r) . (2.18)
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We work only with the Abelian connection of the form (2.14) with the
correction r defined by (2.17) and fulfilling (2.18). The general solution of
(2.16) was published in [15]. The Abelian connection on Kähler symmetric
manifolds proposed by Tamarkin [12] does not fulfill the condition δ−1r = 0.

Definition 2.10 The subalgebra P∗M[[~]]Γ̃ ⊂ C∞(P∗M[[~]]⊗Λ0) consists
of flat sections, i.e. such that ∂Γ̃ a = 0.

Theorem 2.3 [7, 8] For any a0 ∈ C∞(M) there exists a unique section
a ∈ P∗M[[~]]Γ̃ such that σ(a) = a0.

Applying the operator δ−1 it follows from the Hodge decomposition (2.10)
that

a = a0 + δ−1

(

∂Γ a +
1

i~
[r, a]

)

. (2.19)

Using the one-to-one correspondence between P∗M[[~]]Γ̃ and C∞(M)
we introduce an associative star product “∗” of functions a0, b0 ∈ C∞(M)

a0 ∗ b0
def.
= σ(σ−1(a0) ◦ σ−1(b0)). (2.20)

The ∗-product (2.20) fulfills axioms of the star product in deformation quan-
tization and is interpreted as the quantum multiplication of observables.

3. Properties of the Abelian connection

In this section we present general features of the Abelian connection
constructed according to Fedosov procedure and consider conditions under
which the correction r is a finite formal series.

3.1. Connections in the Weyl bundle

Let P∗M[[~]] be a Weyl algebra bundle equipped with some connec-
tion determined by 1-form γ. We do not assume that γ is an Abelian or
symplectic.

Proposition 3.1 Every connection γ ∈ C∞(P∗M[[~]]⊗Λ1) such that δγ =
0 satisfies δRγ = 0.

Proof
For every a ∈ C∞(P∗M[[~]] ⊗ Λ)

d(δa) + δ(da) = 0 . (3.1)
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Hence the condition δγ = 0 and the property (3.1) gives

δ(dγ) = 0 . (3.2)

Using formula (2.13) describing the curvature form we obtain

δRγ = δ(dγ +
1

i~
γ ◦ γ)

(2.8)
= δ(dγ) +

1

i~
(δ(γ) ◦ γ − γ ◦ δ(γ)) .

From the assumption δγ=0 and Eq. (3.2) we see that indeed δRγ =0.

A straightforward consequence of Proposition 3.1 and decomposition
(2.10) is the following corollary.

Corollary 3.1 If the connection form γ fulfills the condition δγ = 0 then
its curvature 2- form Rγ = δδ−1Rγ .

Hence, for a connection γ such that δγ = 0 we have Rγ = 0 if and only if
δ−1Rγ = 0.

Let us apply the above corollary to the symplectic connection repre-
sented by the 1-form Γ ( see (2.12)). Since the fact that coefficients Γijk are
symmetric in indices {i, j, k}, we obtain that δΓ = 0.

Applying Corollary 3.1 we conclude that

Proposition 3.2 Two symplectic curvature forms RΓ and RΓ ′ defined by
symplectic connections Γ and Γ ′ respectively, are equal if and only if δ−1RΓ =
δ−1RΓ ′ .

From Proposition 3.2 we see that the geometry of a symplectic space can
be characterized by a tensor (RΓ )ijkl symmetric in indices {i, j} and anti-
symmetric in {k, l} or, equivalently, by a tensor (δ−1RΓ )ijkl symmetric in
indices {i, j, k}.

Let us consider the structure of equation (2.17). Its solution fulfilling
conditions (2.18) can be found by the iteration method [7, 8]

r0
def.
= 0 , rs=δ−1

(

RΓ +∂Γ rs−1+
1

i~
rs−1◦rs−1

)

, s = 1, 2, . . . , (3.3)

The component of r of the lowest degree is δ−1RΓ , deg(δ−1RΓ ) = 3 and it
is the only term of that degree. Hence, the solution of (2.17) can be written
in the form

r = δ−1RΓ +

∞
∑

z=4

[ z
2
]

∑

k=0

~
krm[k, z − 2k]dqm. (3.4)
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By [z2 ] we denote the maximal integral number not bigger than z
2 . The

symbol rm[k, z−2k]dqm means a 1-form containing (z−2k) Xi,s and standing
at ~

k.
From Proposition 3.2 we conclude that if RΓ 6= RΓ ′ then corrections r

determined by connections Γ and Γ ′, respectively, are different. We deduce
that z − 2k ≥ 1, because each component of rs contains one or more Xs.
Moreover, the product rs−1 ◦ rs−1 generates only odd powers of ~, so the
index k in (3.4) is even.

Therefore, formula (3.4) can be written in the following form

r = δ−1RΓ +

∞
∑

z=4

[ z−1
4

]
∑

k=0

~
2k rm[2k, z − 4k]dqm. (3.5)

In the case when deg(r) = d, d ∈ N we say that r is a finite formal

series. For deg(r) = ∞ we deal with an infinite series.
If in an arbitrary chart the term rm[2k, z−4k]dqm for fixed k and z does

not disappear, the same happens in any other chart. This statement follows
from the fact that the 1- form rm[2k, z−4k]dqm is determined by the tensor
components ri1...iz−4k,m, 1 ≤ i1, . . . , iz−4k,m ≤ dimM. Moreover, from the
same reason

Corollary 3.2 At an arbitrary point p ∈ M the fact that the series r is
finite does not depend on the chart.

Corollary 3.3 At an arbitrary point p∈M the inequalities ∂Γ rm[l, u]dqm 6=0,
rm[l, u]dqm ◦ rj [p, k]dqj 6= 0 are true in each chart.

3.2. Finite Abelian connection

Now we consider in which cases an Abelian connection is a finite formal
series. This situation is eligible because then, Fedosov method may lead to
compact elements of the Weyl algebra representing observables. By r[z] we

will denote the component r[z]
def.
=
∑[ z−1

4
]

k=0 ~
2krm[2k, z − 4k]dqm, 3 ≤ z of r

of the degree z.
As it was proved [16, 17]

r[3] = δ−1RΓ ,

r[z] = δ−1

(

∂Γ r[z − 1] +
1

i~

z−2
∑

j=3

r[j] ◦ r[z + 1 − j]

)

, 4 ≤ z . (3.6)

From Proposition 3.2 we see that for curvature RΓ 6= 0 it must hold that
δ−1RΓ 6= 0. So on any nonflat Fedosov manifold (M, Γ ) the term r[3] is
different from 0.
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Assume that r is a finite formal series of the degree m− 1, 4 ≤ m. It means
that r[m − 1] is the last nonzero term of the r series. Hence, from (3.6)

δ−1

(

∂Γ r[m − 1] +
1

i~

m−2
∑

j=3

r[j] ◦ r[m + 1 − j]

)

= 0 ,

δ−1

(

1

i~

m−1
∑

j=3

r[j] ◦ r[m + 2 − j]

)

= 0 ,

...

δ−1

(

1

i~
(r[m − 2] ◦ r[m − 1] + r[m − 1] ◦ r[m − 2])

)

= 0 ,

δ−1

(

1

i~
r[m − 1] ◦ r[m − 1]

)

= 0 . (3.7)

According to Theorem 2.2 the series r is the only one solution of equation
(2.16). Therefore, relations δr[z] = 0, m ≤ z imply

∂Γ r[m − 1] +
1

i~

m−2
∑

j=3

r[j] ◦ r[m + 1 − j] = 0 , (3.8a)

m−1
∑

j=3

r[j] ◦ r[m + 2 − j] = 0 , (3.8b)

...

r[m − 2] ◦ r[m − 1] + r[m − 1] ◦ r[m − 2] = 0 , (3.8c)

r[m − 1] ◦ r[m − 1] = 0 . (3.8d)

Conversely, let components r[z], 3 ≤ z ≤ m− 1, where 4 ≤ m of the Abelian
correction r fulfill the system of equations (3.8a)–(3.8d). Then, applying
formula (3.6) to (3.8a) we see that r[m] = 0. Substituting this result and
relation (3.8b) to (3.6) we obtain r[m+1] = 0. Repeating this procedure we
find that r[z] = 0 for any m ≤ z. Hence deg(r) ≤ m − 1 so r is the finite
formal series.
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To conclude,

Theorem 3.1 An Abelian connection Γ̃ = ωijX
idqj+Γ+r of the symplectic

connection Γ with the curvature 2-form RΓ 6= 0 is a finite formal series if
there exists a natural number 4 ≤ m such that the components r[z], 3 ≤
z ≤ m − 1, of r fulfill the system of equations (3.8a)–(3.8d).

That theorem yields the following statements:

Corollary 3.4 A sufficient condition for series r to be infinite is that for
every 3 ≤ z the product r[z] ◦ r[z] 6= 0.

This fact is the straightforward consequence of equation (3.8d).

Corollary 3.5 A sufficient condition for series r to be infinite is that for
every 3 ≤ z the commutator [r[z], r[z + 1]] 6= 0.

The latter conclusion comes from (3.8c).

Corollary 3.6 Let 4 ≤ d be the minimal value of parameter m for which
the system of equations (3.8a)–(3.8d) holds. Then deg(r) = d − 1.

To illustrate how Theorem 3.1 works, we consider an example of a finite
Abelian connection on some symplectic manifold M, 4 ≤ dimM. Detailed
analysis of this case will be presented in the next paper.

Example

Assume that in some Darboux chart (U , φ) on M nonzero symplectic
connection coefficients Γl1 l2 l3(q

l4 , . . . , qls), 1 ≤ l1, . . . , ls ≤ dimM are these
for which Poisson brackets {qli , qlj}P = 0, 1 ≤ i, j ≤ s. Such a connection
can be curved only if 4 ≤ dimM. In the considered case all the products
r[z] ◦ r[k], disappear. Applying (3.6) we see that

r[z] = (δ−1∂Γ )z−3δ−1RΓ .

From Theorem 3.1 for RΓ 6= 0 a sufficient and necessary condition for r to
be a finite series is that there exists a natural number 4 ≤ z satisfying

(∂Γ δ−1)z−3RΓ = 0 . (3.9)

The minimal number z for which (3.9) holds, is the degree of r.
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4. An Abelian connection on a 2D phase space

In this section we prove that every Abelian connection on a curved 2D
Fedosov space (M, Γ ) is an infinite formal series.

Proposition 4.1 Let (M, Γ ) be a 2D Fedosov manifold and F ∈
C∞(P∗M[[~]] ⊗ Λ2) be a 2-form defined on (M, Γ ) fulfilling conditions:

1. F contains only terms of the same degree so ∃0≤z F = F [z],

2. F contains only even powers ~
2k , 0 ≤ k of the deformation parameter ~.

Then δ−1F ◦ δ−1F = 0 iff F = 0.

Proof
Computations presented below were also tested in the Mathematica 5.2 by
Wolfram Research.
‘⇐’
It is obvious, that if F = 0 then δ−1F = 0 and δ−1F ◦ δ−1F = 0 .
‘⇒’
We perform our computations locally in a Darboux chart (U, φ) and de-
note canonically conjugated coordinates by q and p. Their Poisson bracket
{q, p}P = 1.

In the chart (U, φ) the most general form F of the degree (z − 1) and
fulfilling conditions from Proposition 4.1 is

F =

[ z−1
4 ]
∑

k=0

z−1−4k
∑

l=0

~
2ka2k,l z−1−4k−l(q, p)(X1)l(X2)z−1−4k−ldq ∧ dp , 1 ≤ z .

By a2k,l z−1−4k−l(q, p) we denote some smooth functions. To shorten our
notation we omit variables q and p.

Hence,

δ−1F =

[ z−1
4 ]
∑

k=0

z−1−4k
∑

l=0

~
2k

z − 4k + 1

×
(

a2k,lz−1−4k−l(X
1)l+1(X2)z−1−4k−ldp−a2k,lz−1−4k−l(X

1)l(X2)z−4k−ldq
)

.

(4.1)

Let us define

b2k,l
def.
=

1

z − 4k + 1
a2k,lz−1−4k−l .
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Therefore

δ−1F =

[ z−1
4 ]
∑

k=0

z−1−4k
∑

l=0

~
2kb2k,l(X

1)l+1(X2)z−1−4k−ldp

−

[ z−1
4 ]
∑

k=0

z−1−4k
∑

l=0

~
2kb2k,l(X

1)l(X2)z−4k−ldq . (4.2)

To find the square of (4.2) we need first to compute the product:

(X1)r(X2)j ◦ (X1)s(X2)k =

min[r,k]+min[j,s]
∑

t=0

1

t!

(

i~

2

)t t
∑

a=0

(−1)a
(

t
a

)

×
r! j! s! k!

(r−t + a)! (j − a)! (s − a)! (k−t + a)!
(X1)r+s−t(X2)k+j−t . (4.3)

In fact the sum (4.3) over a different from 0 can be only elements from
a = max[t − r, t − k, 0] until a = min[j, s, t]. Simplifying (4.3) we see that

(X1)r(X2)j ◦ (X1)s(X2)k = r! j! s! k!

min[r,k]+min[j,s]
∑

t=0

(

i~

2

)t

(X1)r+s−t(X2)k+j−t

×

min[j,s,t]
∑

a=max[t−r,t−k,0]

(−1)a 1

a! (t − a)! (r − t + a)! (j − a)! (s − a)! (k − t + a)!
(4.4)

=

min[r,k]+min[j,s]
∑

t=0

(i~)t(X1)r+s−t(X2)k+j−tf(r, j, s, k, t) , (4.5)

where

f(r, j, s, k, t)
def.
=

(−1)mx

2t

r! j! s! k!

(j−mx)!(s−mx)!(t−mx)!(mx−t + r)!(mx−t + k)!mx!

× 4F3

(

{1, mx−j, mx−s, mx− t}; {1− t+r+mx, 1− t+k+mx, 1+mx}; 1
)

. (4.6)

In the upper formula

mx
def.
= max[t − r, t − k, 0] .

By 4F3({a1, a2, a3, a4}; {b1, b2, b3};x) is denoted the generalized hypergeo-
metric function.
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Therefore

δ−1F ◦δ−1F =

[ z−1

4 ]
∑

k=0

[ z−1

4 ]
∑

w=0

z−1−4k
∑

l=0

z−1−4w
∑

r=0

min[l+1,z−4w−r]+min[z−1−4k−l,r]
∑

u=0

iu~
2k+2w+u

× b2k,l b2w,r(X
1)l+r+1−u(X2)2z−4k−4w−l−r−u−1

×
{

f(l+1, z−1−4k−l, r, z−4w−r, u)−f(r, z−4w−r, l+1, z−1−4k−l, u)
}

dq∧dp.

(4.7)

Remember that in f(l + 1, z − 1− 4k − l, r, z − 4w− r, u) we put (see (4.6))
mx = max[u−l−1, u−z+4w+r, 0] and in f(r, z−4w−r, l+1, z−1−4k−l, u)
by mx we mean max[u − r, u − z + 1 + 4k + l, 0].

From Definition (4.6) of f(r, j, s, k, t) we see that in the sum (4.7) only
terms with odd u are different from 0. Indeed,

f(l+1, z−1−4k−l, r, z−4w−r, u) = (−1)uf(r, z−4w−r, l+1, z−1−4k−l, u).

Hence

δ−1F ◦ δ−1F =

[ z−1
4 ]
∑

k=0

[ z−1
4 ]
∑

w=0

z−1−4k
∑

l=0

z−1−4w
∑

r=0

×

h

min[l+1,z−4w−r]+min[z−1−4k−l,r]
2

− 1
2

i

∑

u=0

2i(−1)u~
2k+2w+2u+1

× b2k,l b2w,r (X1)l+r−2u(X2)2z−4k−4w−l−r−2u−2

× f(l+1, z−1−4k−l, r, z−4w−r, 2u+1) dq ∧ dp . (4.8)

The degree of the product δ−1F ◦ δ−1F is 2z and each term of (4.8) is
determined by powers of ~

2A+1 and (X1)B only. It is obvious that 4A+B +
2 ≤ 2z.

Formula (4.8) can be written as

δ−1F ◦ δ−1F = ~
2A+1(X1)B(X2)2z−4A−B−2g2A+1,B , (4.9)

where g2A+1,B are some coefficients computed below.
Comparing (4.8) and (4.9) we obtain the system of equations

2k + 2w + 2u + 1 = 2A + 1 , l + r − 2u = B . (4.10)

Its solutions are

u = A − k − w , r = 2A + B − 2k − 2w − l . (4.11)



Abelian Connection in Fedosov Deformation Quantization . . . 3083

So

g2A+1,B ∼

[ z−1
4 ]
∑

k=0

[ z−1
4 ]
∑

w=0

z−1−4k
∑

l=0

2i(−1)A−k−wb2k,lb2w,2A+B−2k−2w−l

×f(l+1, z−1−4k−l, 2A+B−2k−2w−l, z−2A−B+2k−2w+l, 2A−2k−2w+1) .

We did not write the equality symbol because not for all A,B this formula
works. The reason is that parameters u and r fulfill conditions

0 ≤ 2u ≤ min[l + 1, z − 2A − B + 2k − 2w + l]

+ min[z − 1 − 4k − l, 2A + B − 2k − 2w − l] − 1 ,

0 ≤ r ≤ z − 1 − 4w (4.12)

which were not taken into account in sums appearing in the definition of
gAB . From inequalities (4.12) we obtain that

k + w ≤ A , |k − w| ≤

[

z − 1

2

]

− A (4.13)

and
2A + B − z + 1 − 2k + 2w ≤ l ≤ 2A + B − 2k − 2w . (4.14)

Finally

g2A+1,B =

min[A,[ z−1
4 ]]

∑

k=0

min[[ z−1
4 ],A−k,k−A+[z−1

2 ]]
∑

w=max[0,A+k−[z−1
2 ]]

min[z−1−4k,2A+B−2k−2w]
∑

l=max[0,2A+B−z−2k+2w+1]

× 2i(−1)A−k−w b2k,lb2w,2A+B−2k−2w−l

× f(l + 1, z − 1 − 4k − l, 2A + B − 2k − 2w − l,

z − 2A − B + 2k − 2w + l, 2A − 2k − 2w + 1) . (4.15)

We look for solutions δ−1F of the equation δ−1F ◦ δ−1F = 0. This
equation is equivalent to the system of equations

g2A+1,B = 0 , 4A + B + 2 ≤ 2z . (4.16)

for functions b2k,r.
We start solving (4.16) from the equation parametrized by A = B = 0.

Since the only one possibility is k = w = l = 0, from (4.15) we immediately
obtain

2i b2
0,0 f(1, z − 1, 0, z, 1) = 0 .
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As f(1, z − 1, 0, z, 1) = z
2 6= 0 we deduce that b0,0 = 0.

The next equation we choose to solve is for A = 0, B = 1. It contains
only a product b0,0b0,1 with some factor so, due to the fact that b0,0 = 0, it
is fulfilled automatically. The next equation determined by A = 0, B = 2
with the condition b0,0 = 0 reduces to

g1,2 = 2i b2
0,1 f(2, z − 2, 1, z − 1, 1) = 0 .

Because f(2, z − 2, 1, z − 1, 1) = z
2 6= 0 we conclude that b0,1 = 0.

Repeating that procedure for A = 0, B ≤ 2z − 2 we see that all

b0,l = 0 , 0 ≤ l ≤ z − 1 . (4.17)

Putting A = 1 we do not obtain any further conditions for coefficients. But
for A = 2, B = 0 (that implies z ≥ 5) we see that if relations (4.17) hold
then

g5,0 = 2i b2
2,0 f(2, z − 5, 0, z − 4, 1) = 0 .

As f(2, z−5, 0, z−4, 1) = z−4 6= 0, we see that b2,0 = 0. Following this way
we solve the system of equations (4.16) completely obtaining all of b2k,r = 0.

Thus we showed that if δ−1F ◦ δ−1F = 0 then F = 0.

As it has been said in Subsection 3.2, on a 2D Fedosov manifold (M, Γ )
the relation RΓ 6= 0 yields r[3] 6= 0. Hence r[3] = δ−1RΓ . From Proposition
4.1 we obtain that r[3] ◦ r[3] 6= 0. Using Theorem 3.1 we conclude that there
exists at least one nonzero component r[z] of the correction r of degree 3 < z.
Remembering that (see (3.6)) r[z] = δ−1(F [z − 1]), where

F [z − 1]
def.
= ∂Γ r[z − 1] +

1

i~

z−2
∑

j=3

r[j] ◦ r[z + 1 − j] ,

and applying Proposition 4.1 to r[z] we see that r[z] ◦ r[z] 6= 0. Hence, from
Theorem 3.1 there exists r[z1] 6= 0 such that z1 > z. The Definition (3.6)
of r[z1] plus Proposition 4.1 guarantee that r[z1] ◦ r[z1] 6= 0. Theorem 3.1
implies z1 < deg(r). Following this pattern we arrive at the following

Theorem 4.1 On 2D phase space with nonvanishing symplectic curvature
2-form RΓ any Abelian connection is an infinite series.

We stress that Theorem 4.1 holds for 2D real symplectic manifolds with
the correction r determined by formula (2.17) fulfilling (2.18). On Kähler
locally symmetric manifolds of complex dimension 1 there exists a finite
Abelian connection (see [12]) but for it δ−1r 6= 0.



Abelian Connection in Fedosov Deformation Quantization . . . 3085

5. Conclusions

The Fedosov quantization method is based on recurrent formulas (2.17)
and (2.19). The first one defines the correction r to the Abelian connec-
tion, the second defines a flat section σ−1(a0) ∈ P∗M[[~]]Γ̃ representing
a quantum observable a0.

The general form of the series σ−1(a0) and the formula expressing the
product of observables a0 ∗ b0 are not known. Hence we search cases, in
which these objects can be written in a compact form. Such a situation
happens for example when both iterations (2.17) and (2.19) generate finite
formal series. To know a complete general form of σ−1(G) for G belonging
to some class of functions is extremely useful for example when we look for
a solution of an eigenvalue equation for an observable a0,

a0 ∗ W = A · W .

By W we mean a Wigner eigenfunction corresponding to an eigenvalue A.
We assume only that W is some smooth real function defined on the sym-
plectic manifold M so the general formula for σ−1(W ) representing a Wigner
function W is required.

Another advantage of working with finite series σ−1(a0) is connected with
computer calculations. After the finite number of steps we obtain complete
results.

As we have mentioned, in the Fedosov quantization method there are two
iterative formulas. In current paper we have considered the question, when
the Abelian connection on a Fedosov manifold (M, Γ ) described in Theo-
rem 2.2 is a finite formal series. We find a system of equations determining
the sufficient and necessary condition for r to be finite.

Then we apply the result quoted above to the case of 2D phase space
with nonvanishing curvature. We have shown that the series r on such spaces
is always infinite. By the way we have found an explicit formula describing
the ◦-product in 2D case.

REFERENCES

[1] J.E. Moyal, Proc. Camb. Phil. Soc. 45, 99 (1949).

[2] H. Weyl, The Theory of Groups and Quantum Mechanics, New York Dover
1931.

[3] E.P. Wigner, Phys. Rev. 40, 749 (1932).

[4] H.J. Groenewold, Physica 12, 405 (1946).

[5] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer, Lett.
Math. Phys. 1, 521 (1977).



3086 J. Tosiek

[6] F. Bayen, M.Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer, Ann. Phys.
111, 61 (1978); Ann. Phys. 111, 111 (1978).

[7] B. Fedosov, J. Diff. Geom. 40, 213 (1994).

[8] B. Fedosov, Deformation Quantization and Index Theory, Akademie Verlag,
Berlin 1996.

[9] J. Tosiek, Publ. RSME 3, 195 (2001).

[10] M. Gadella, M.A. del Olmo, J. Tosiek, J. Geom. Phys. 55, 316 (2005).

[11] M. Gadella, M.A. del Olmo, J. Tosiek, Ann. Phys. 307, 272 (2003).

[12] D. Tamarkin, J. Diff. Geom. 50, 387 (1998).

[13] I. Vaisman, Monathefte fuer Mathematik 100, 299 (1985).

[14] I. Gelfand, V. Retakh, M. Shubin, Fedosov Manifolds, presented at Symplec-
tic Geometry Workshop, Toronto, June 1997.

[15] M. Przanowski, J. Tosiek, Acta Phys. Pol. B 30, 179 (1999).

[16] O. Kravchenko, math.SG/0008157.

[17] I. Vaisman, J. Math. Phys. 43, 283 (2002).


