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Considerations concerning the possibility to associate some “phenome-
nological” quantities that describe the field of point charges and the “par-
ticle” characteristics of point sources are presented. Relationships between
the potential of the charges and the flux density of particles of the sources
and relations among cross sections and some fundamental constants are
also presented in this paper.

PACS numbers: 02.90+p

1. Introduction

In the paper [1], some relations between the gravitational and the “Seel-
iger’s cosmological constant” were derived on the basis of the diffusion the-
ory. The whole topic still allows completion. With the development of the
knowledge, there is endeavour to explain the phenomena, i.e. to amend
their “phenomenological” description on the basis of further structures and
mechanisms. It is known, that there is “equivalency” between the theory
of the potential and the Brown’s motion and, therefore, also the diffusion
theory, see [2]. Analogously, “the diffusion problem can be mapped onto the
motion of a quantum particle in a random potential”, see for example [3]. In
other words, the diffusion or stochastic approach to quantum theory can be
used to derive probabilistic or stochastic processes, see for example [4, 16].
It is also possible to introduce a relation between the diffusion coefficient
and the Planck’s constant, see e.g. [4]. If the quantum or particle structure
of the gravitational field is anticipated, this approach may also be applied
to gravitational interactions and to equations of gravitation. If we suppose
that the gravitational charge is the source of the gravitational quanta (gravi-
tons) and generally any charge is the source of the corresponding quanta of
some field and that the scattering of the quanta of this field can occur, we
may obtain some new information. The aim of this paper is also to indicate
a connection between the theory of gravitation and the diffusion theory or
transport theory.
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The assumptions in this paper are as follows:

1. The gravitational field has a quantum structure and the gravitational
charge is the source of the gravitational quanta (gravitons).

2. The physical vacuum has a “particle” (quantum) structure.

3. The scattering of these gravitational quanta occurs in this vacuum.

(These assumptions can also be applied to some other fields and other
charges.)

At a certain level the “basic” quantities of the phenomenological descrip-
tion of a physical field are, e.g., the potential, the field intensity and the force
acting on an object in this field. From the point of view of the quantum
structure of the field, among the basic concepts and quantities belong the
space density of particles (quanta) of this field, the flux density of quanta,
the current of particles, the cross sections of corresponding interactions and
another quantities. If we anticipate the quantum structure of the gravi-
tational field, then these quantities can also be used for the gravitational
interactions. At the same time a natural question arises: “What are the re-
lations between the classical phenomenological quantities and the equations
and relations which describe the quantum structure of this field”?

From the mathematical point of view, we can lay the question: What
are the operators which transform these quantities on each other and what
are the relations between the equations with these quantities? For the sake
of simplicity, we consider stationary monoenergetic sources of particles and
a stationary Newton’s field of point gravitational charge. We shall consider
this Newton’s gravitational charge as a source of gravitational quanta, which
form its gravitational field. There exist historically many modifications of
the Newton’s law, see, e.g., [7, 8] and for new versions, see, e.g., [9]. There
are also many formulae and relations for the flux density of the particles
of point sources in dependence on the surrounding environment and on the
kind and spectrum of emitted particles. The sources of particles, elementary
particle physics and quantum field theory are described in many applications
and books, e.g., [10–15, 26–28]. From these applications, we use only some
basic relations and quantities, the validity of which could be expected in
certain approximation for any sources, i.e., also for the sources of gravita-
tional quanta. We will consider a point, static and monoenergetic source
of particles and the corresponding charge, absolute values of the quantities
and some other simplifications. We will treat the derived results as the first
approximation only.
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2. Similarity or “equivalency” of some quantities and equations

A more general form of the Poisson’s equation for the gravitational po-
tential ϕ can be written under certain assumptions in the form, see [20]:

∆ϕ− ΛSϕ+ c2ΛE − 4πρG = 0 ,

ΛS — “Seeliger’s” constant; ΛE — Einstein’s cosmological constant; c — the
velocity of the light; ρ = Mδ(r) — for a point gravitational charge M .
Particular cases of this equation are for ΛS = 0 or ΛE = 0.

The quantity c2ΛE(kπG)−1 can be understood as “preexisting” density
of matter, see [20], or density of the “physical” vacuum, see [5, 6, 22, 24, 25];
k = 4 or 8 on the dependence if we consider effective density of matter
without pressure or density of energy with pressure, see [23, 25].

Let us assume that this matter creates some kind of “physical vacuum”
and we also assume that this vacuum has the quantum (particle) structure
with the mass M1 of these quanta. Then the number of these quanta in a
volume unit is obviously:

N = c2ΛE(kπGM1)
−1 .

If some interaction takes place on this vacuum matter (for example the
scattering of the gravitational quanta) with a cross section σ, then the macro-
scopic cross section for this interaction is

Σ = Nσ = σc2ΛE(kπGM1)
−1 .

The “equivalent” diffusion equation for the flux density of the gravitational
quanta has the form

∆φ−ΣaD
−1φ+B + SD−1 = 0 .

The term B, which is “equivalent” to c2ΛE, means that all scattering points
are also sources or absorbers of the scattered quanta and they create “ho-
mogeneous” background. But practically in “most” cases, the term B or
c2ΛE can be neglected in these equations, however, the factor c2ΛE contents
information about the density of scattering points, which is important for
the value of the macroscopic cross section. D — the diffusion coefficient,
which depends on Σs or Σtr (scattering or transport cross section); usually
D = C/Σs, where C is coefficient of the proportionality; φ — scalar flux
(flux density); Σa — macroscopic absorption cross section; S — emissivity
(strength) of the source; S is the number of emitted particles (quanta) in a
time unit; S = Sδ(r) for a point source.
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We may write:
φ(r) = −k1(r)ϕ(r)

and
S = k2Mδ(r) .

Then it holds:

∆ϕ(k1 − 1)+ϕ
(

ΛS−ΣaD
−1k1

)

−
(

B + c2ΛE

)

−M
(

k2D
−1 − 4πG

)

δ(r)=0 .

If we “normalise” in suitable units φ = −ϕ, then for k = 4

ϕ
(

ΣaD
−1 − ΛS

)

+M
(

k2D
−1 − 4Gπ

)

δ(r) + (c2ΛE +B) = 0 .

From this equation follows, under certain assumptions that

ΛS = ΣaD
−1, 4πGM = SD−1, −c2ΛE = B ,

and also
ΛS = MσaΛEc

2 (SM1)
−1 ,

G = (c/4π) (SσsΛE/MM1C)1/2 .

If we put M = S also in suitable units then

G = (c/4π) (σsΛE/M1C)1/2 = (1/4π) (σsΛS/Cσa)
1/2 = 1/4πD

ΛS = σaΛEc
2/M1 .

If the scattering is isotropic, then it is possible to assume C ∼= 1/3 and

ΣS = (4π/3)G, Σa = ΛS/4πG, σs/σa =
(

16π2/3
) (

G2/ΛS

)

,

and also

G = 3ΣS (4π)−1 = (4πD)−1 , ΛS = 3ΣSΣa = 4πGΣa ,

which are relations derived in [1].
If the scattering is anisotropic then we must transform ΣS → Σtr and

σs → σtr. Σtr and σtr are transport cross sections. The above mentioned re-
lationships link the gravitational constant, cosmological constant and “Seel-
iger’s” constant in this model in a simple way and thus “specify” the relations
in [1]. From the introduced equations we can see that from mathematical
point of view, there is similarity and “equivalency” among some quantities
and equations. We may expect that also “the physical content” of these
concepts and formulae is the same, the differences are only in definitions
of individual quantities, in domains of applications (gravitation, sources of
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particles, diffusion, electromagnetism and so on), in the units in which we
measure and state these quantities and also in the historic evolution (time
and circumstances of their origin). We may ask, what is the mathematical
form of the operators and which mappings transform these quantities each
into the other, i.e., for example, what are the operators A,B,C,D defined
by relations:

φ = Aϕ, φ = BE, G = CΣ, j = DE .

The quantities G,ΛE, ΛS expressed by means of cross sections can gen-
erally be considered as a function of space and time variables, eventually
of other parameters. Under certain assumptions some quantities can be
constant functions. There is an open question, which quantities join each
other. We can associate these quantities in “a natural” way and introduce
relations which follow from this. We see, that for identity of the potential
and flux density, the mass M has the negative sign in comparing with usual
sources that is, gravitational charge is negative source and rather absorber
than emitter.

3. Some special cases

A. The source in “ideal” vacuum without shielding, absorption and scat-
tering of emitted quanta and the “pure” Newton’s field of the point
charge, i.e. ΛS = 0, ΛE = 0, ΣS = 0.

Then φ = S
(

4πr2
)

−1
is the flux density of emitted particles; |j| =

φ is the current of particles in direction of the radius and n = φc−1 =

S
(

4πcr2
)

−1
is the space density of monoenergetic quanta with the velocity

c.
For the Newton’s field is:

∆ϕ = 4πGMδ(r) ,

ϕ = −GMr−1, E = −gradϕ, E = −GMr−2

F = −GMmr−2 ,

where R — distance; m — “testing” mass in this field; G — Newton’s
gravitational constant; ϕ — potential; E — intensity, E = |E|; F — force
acting on the mass m, F = |F |; M — point gravitational charge. In this

case is flux density φ = K1E, where K1 = φE−1 = −S (4πGM)−1. If

we demand “normalisation” φ = −E then S = 4πGM or G = S (4πM)−1.

In units in which M = S we have G = (4π)−1. If we make the same
consideration for the space density n then from n = −E follows formula
S = 4πcGM and for M = S is G = (4πc)−1. These relations may be “more
natural” and “more suitable” than the relation between φ and E.
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B. Shielded point source without diffusion in an infinite homogeneous
environment with absorption and “Seeliger’s” or “Yukawa’s” field:

The flux density:

φ = S
(

4πr2
)

−1
exp(−Σar), Σa = Nσa ,

N — number of “absorbing” points in a volume unit; σa — microscopic cross
section for absorption.

The current of the quanta in radial direction is |j| = φ and the space
density of monoenergetic quanta with the velocity c is

n = φc−1 = S
(

4πcr2
)

−1
exp(−Σar) .

Then relation between the flux density and intensity is φ = K2E, where
operator

K2 = φE−1 = −S (4πGM)−1 exp
[(

Λ
1/2
S −Σa

)

r
]

.

We use the Seeliger’s form for E

E = −GMr−2exp
(

−Λ
1/2
S r

)

.

The case where ϕ = −GMr−1exp
(

−Λ
1/2
S r

)

will be introduced later. If

we “normalise” φ = −E then G = S (4πM)−1 and ΛS = Σ2
a . Analogous

formulae are also given for the particle density n.

C. We suppose diffusion and “small” absorption i.e. the source is in an en-
vironment in which the elastic and inelastic scattering and absorption
occur.

The flux density is

φ = S (4πrD)−1 exp(−κr) ,

D — diffusion coefficient in this environment

κ2 = ΣaD
−1, Σa = Nσa .

Under certain assumptions we get D = CΣ−1
S or CΣ−1

tr and for isotropic

or weak anisotropic scattering D = (3ΣS)
−1 or D = (3Σtr)

−1. In this case
corresponding diffusion equation has the form

∆φ−ΣaD
−1φ+ SD−1 = 0 .
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Fick’s law

|j| = | −D gradφ| = S(1 + κr)
(

4πr2
)

−1
exp(−κr) ,

j — the current of quanta. Then φ = K3ϕ (ϕ is potential), where operator

K3 = φϕ−1 = −S (4πMG)−1 exp
[(

Λ
1/2
S − κ

)

r
]

.

“The Seeliger’s” form was used for ϕ. For “normalisation” φ = −ϕ is

G = S (4πDM)−1 and Λ
1/2
S = κ, which are again relations derived in the

paper [1]. Analogous considerations may be done also for the space density
n that differs by the factor c.
Let us consider, as an example, a simple model where there is an elastic
scattering of the gravitons in “physical” vacuum with the space density of
target scattering points

N = cΛE (kπGM1)
−1 (k = 4) ,

and with the cross section σs (i.e. Σs = Nσs).
Gravitational potential ϕ:

∆ϕ− ΛSϕ = 4πGMδ(r) .

We admit a small absorption with Σa = Nσa then for the “normalisation”
ϕ = −φ and for M = S in suitable units, we obtain the same relationships
as in Section 2.

The other relations that differ by the factor c, can be obtained when
we set higher priority on the space density n and if we make the same
considerations as were given above.

D. The Coulomb’s field.

Absolute values of the potential and intensity are:

∆ϕ+Qδ(r)ε−1 = 0, E = −gradϕ,

ϕ = Q (4επr)−1 , E = Q
(

4πεr2
)

−1
.

The flux density of an “equivalent” source is φ = S
(

4πr2
)

−1
. After “nor-

malisation” φ = E we get S = Qε−1 (ideal vacuum without diffusion and
absorption).

If we suppose a modification from the Proca’s equation, which leads to
an electrostatic potential of Yukawa’s form (physical vacuum with diffusion
and small absorption)

ϕ = Q (4πεr)−1 exp(−br) ,
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then also

φ = S (4πrD)−1 exp(−κr)

(for the scattering and a small absorption of corresponding quanta) and
operator

A = ϕφ−1 = QD (Sε)−1 exp[(κ− b)r] .

If we demand (at suitable normalisation) A = 1 then Q = SεD−1 =
C−1SεNσel

s and

b = κ =
(

Σel
a D

−1
)1/2

= N
(

C−1σel
a σ

el
s

)1/2
.

If also Q = S in suitable units then ε = D = C
(

Nσel
s

)

−1
, where C ∼= 1/3

for isotropic scattering and Σel
s = (3ε)−1.

If we suppose that, in this case, the same “vacuum” plays role as for the
gravitation, i.e. Ng = Nel = N , then

ε =
(

4/3c2
)

(

πGM1/ΛEσ
el
s

)

.

It is a relation associating some electromagnetic and gravitation quantities
and cross sections.

E. Some further relations.

In literature [10] we sometimes find the form

φ(r) = Sβ (4πDr)−1 exp(−κr) + S
(

4πr2
)

−1
exp(−Σ′r)

as a good approximation for both small and large r. D,κ,Σ′ and β are again
quantities which depend on Σ,Σa and on anisotropy of the scattering. It is
also possible to write the basic equation for φ in the form:

φ = S (kra)−1 exp(−br) .

Some modifications of Newton’s law are for example:

E=−GMr−2 (1+εCr
−m) A.C. Clairaut

E=−GMr−2exp(−hr) H. Seeliger (also Laplace, Neumann, Yukawa)

E=−GMr−(2+αH) A.H. Hall

and many other modifications. The quantities εC, h, αH are certain param-
eters.
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“New and present” modifications of Newton’s law are expressed by means
of potentials of the type Fujii, Scherk, Long, Fishbach, see e.g. [9, 17–19],
i.e., for example, in the form:

ϕ = −GMmr−1
[

1 + αexp
(

−rλ−1
)]

.

Let us consider ϕ = −GMr−1exp
(

−Λ
1/2
S r

)

, then

E = −|gradϕ| = −GMr−1exp
(

−Λ
1/2
S r

)(

Λ
1/2
S + r−1

)

.

Expression for E corresponds to the relation derived in case (C) for Fick’s
laws j = −D gradφ. The quantity for intensity E, can be compared in this
case, with quantity for flux density

φ(r) = Sβ (4πDr)−1 exp(−κr) + S
(

4πr2
)

−1
exp −Σ′r) .

(large r) (small r)

In more general cases, it is necessary to include also the so-called built-
up factor and a change of energy spectrum (slow-down moderation) in these
relations or to solve transport Boltzmann equation.

4. Conclusion

From all these relations we can see that there is a connection between
“classical” quantities and quantities which describe the particle structures
of these fields and sources. It seems that it is suitable to consider equiv-
alency |ϕ| ⇔ |φ| (respectively |n| ⇔ |ϕ|) and |j|⇔|E| but it requires to
somewhat change the “classical” definitions of quantities ϕ (potential) and
E (intensity), which have arisen historically before, and on the basis of
“phenomenological” associations. Relation j = γE is analogy of the Ohm
law applied for gravitation for current of gravitons, which can be expressed
as j = ρv = j(ψ). ψ, ρ,v are wave function, density and velocity of the
gravitons and jE is power of gravitational forces.

There is an open question which quantity is to be associated with the
force respectively with the fluency and with further quantities. The force in
the Newton’s (or Coulomb’s) field is given by relation

F = mE = GMmr−2 =
(

G1/2Mr−1
) (

G1/2mr−1
)

= G−1ϕ1ϕ2

(for absolute values).
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For the identity |ϕ| = |φ| and S = M , it corresponds to quantity

G−1φ1φ2 =4πDφ1φ2
∼=4πCΣ−1

S φ1φ2
∼=(4/3)(π/ΣS)φ1φ2 (for C=1/3) ,

which we may interpret as a certain kind of “probability” that there are
simultaneously the flux φ2 in point 1 and the flux φ1 in point 2. It is
also possible to choose another approach. Let j = E and m = S; then
F = mE = Sj or more generally F = K(Sj), where K is an operator.
In this case the quantity F expresses “interaction of the source S with the
current j”. It is possible to say that a similar relation will hold for any source
or charge which is in the current j of the quanta of another source, see also
consideration in [1]. (It is certain analogy of current-current interactions,
current-field and field-field interactions in elementary particle physics, see
for example [26]).

In the case of the fluency F =
∫

φdt and equivalency |φ| = |ϕ|, is F =
GM T / r. By my opinion it will be needed, in the future, determine abso-
lutely and independently the values Σa, ΣS, N, σa, σs and also S, and so on
and then state the “normalisation” relationships on “classical” phenomeno-
logical quantities M,ϕ,E,G,ΛS, ΛE and other ones. This approach will also
allow compute reaction rates

Ri =

∫

ϕ(E)σi(E)dE

of various gravitational interactions. Here ϕ(E) is the spectrum of gravita-
tional quanta and σi(E) is the cross section for given interaction. The sym-
bolic form of many equations of mathematical physics, see for example [21],
is the same. Consequently we could compare some quantities derived from
these equations for phenomena in which we may expect certain “similarity”
and then we can obtain further new relations. Some another relations will
be presented in [29–31] which are prepared.

Appendix

Some basic relations for a field of particles are

Density of particles in phase space [r, v, t] : n = n(r, v, t)

Space density of particles: ρ(r, t) =
R

nd3v

Flux density of particles: φ(r, t)=
R

n(E)v(E)dE=
R

ϕ(E)dE

Energy spectrum of particles: ϕ(E,r, t) =
R

nvdΩ

Current of particles: j(r, t) =
R

nvd3v

Energy of particles: E
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Solid angle: Ω

Fluency of particles: F =
R

φ(r, t)dt

The reaction rate of given interaction: Ri =
R

ϕ(E)σi(E)dE

Microscopic cross section for given interaction: σi

Total cross section: σt =
P

σi

Macroscopic cross section: Σi = Nσi

Space density of target scattering points (i.e.
the number of target points in a volume unit): N

Decay constant: λ = ln2/T1/2

Half-life of decay
(we assume that it is sufficiently large): T1/2

Fick’s law: j = −Dgradφ

We can suppose that these basic relations will also play some role in
the theory of gravitational interactions. Under certain assumptions these
quantities may be also expressed by means of the wave function which is the
solution of corresponding equations of quantum mechanics (nonrelativistic
Schroedinger equation and relativistic equations Klein–Gordon, Dirac, Proca
and equations for higher spins).
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