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We are going to construct the interpolating action for the free super-
string. We start from Nambu–Goto action and construct interpolating La-
grangian. We generate a first class algebra with primary constraint. Then
this leads us to obtain the Lagrangian density in Polyakov form. Also we
calculate interpolating boundary condition.

PACS numbers: 11.25.–w, 11.25.Tq, 11.30.Pb

1. Introduction

For the last few decades string theory has been regarded as the most
promising step toward the fundamental theory uniting all the basic inter-
actions at the Plank scale [1]. The evolution of a string is described either
by Nambu–Goto (NG) or Polyakov action. The Polyakov action is classi-
cally equivalent to another action which does not have square root. This
action was found by Brink, Deser, Divecchia, Howe and Zumino [2,3] but
is usually known as the Polyakov action. The NG formalism is inconve-
nient for path integral quantisation whereas Polyakov action involves more
degrees of freedom. However another formulation is interpolating between
these two versions of string action. The interpolating Lagrangian is good
candidate to description of the string theory. In Ref. [4,5], they derived
a master action for free bosonic strings which is interpolating between the
NG and Polyakov formalism. In Ref. [6] the interpolating action for interact-
ing bosonic string is constructed and also the essential modification in the
Poisson bracket structure of this interpolating theory that generates non-
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commutativity coordinates is obtained. Also they concluded that a gauge
fixing is necessary to give an exact non-commutative solution between the
string coordinates [7,8]. In the present paper we give supersymmetric version
to NG and Polyakov strings [9] and find the interpolating action between
them in the free case. Then we construct the interpolating boundary condi-
tion from the corresponding Lagrangian.

2. Free superstring in the Nambu–Goto formalism

For the construction of interpolating superstring action, we first start
with NG action. So in this section, we analyse the NG formulation of the
free superstring. The Green–Schwarz space-time supersymmetric version of
the Nambu–Goto string can be written as

SNG = −T
∫

dτdσ(
√
−g + LWZ) , (1)

where g is the determinant of the induced two-dimensional metric gab =
δµνZ

µ
aZ

ν
b with Zµ

a = ∂aX
µ − iθ̄Γ µ∂aθ. LWZ is the Wess–Zumino term

LWZ = −i εabZaθ̄Γ ∂bθ , (2)

which is necessary for the presence of the local fermionic symmetry [10].
Obviously if we discard the fermions in action (1) we recover the usual
Nambu–Goto action for the bosonic string.
The canonical momenta can be obtained from action (1)

Pµ = −T (
√
−gg0aZaµ + iθ̄Γµθ̇) ,

Πα = i(P − TZ1) (Γθ)α . (3)

The nontrivial Poisson brackets of the theory are given by
{

Xµ(τ, σ), Pν (τ, σ′)
}

= ηµνδ(σ − σ′) ,
{

Πα(τ, σ), θβ(τ, σ′)
}

= δαβδ(σ − σ′) . (4)

From Eq. (3) one can obtain three primary constraints

φ0 =
1

2

(

Q2 + T 2Z2
1

)

= 0 ,

φ1 = QZ1 = 0 ,

ψα = Πα − i(P − TZ1)(Γθ)α , (5)

where the mechanical momentum is Qµ = Pµ + iT θ̄Γµθ̇. From Eqs. (4) it is
straightforward to generate a first class algebra:
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{

φ0(σ), φ0(σ
′)
}

= 4
[

φ1(σ) + φ1(σ
′)
]

∂σδ(σ − σ′) ,
{

φ0(σ), φ1(σ
′)
}

=
[

φ0(σ) + φ0(σ
′)
]

∂σδ(σ − σ′) ,
{

φ1(σ), φ1(σ
′)
}

=
[

φ1(σ) + φ1(σ
′)
]

∂σδ(σ − σ′) . (6)

The canonical Hamiltonian density corresponding to action (1) is

Hc = P Ẋ + Π̄θ̇ − L , (7)

which identically vanishes. This is a characteristic feature of reparametriza-
tion invariant systems. This can be easily seen by substituting (3) in (7).
The total Hamiltonian density is given by a linear combination of the first
class constraints

HT = λaφa + ξψα , (8)

where λa are two bosonic Lagrange multipliers and ξ is a fermionic one.

3. Interpolating Lagrangian and boundary conditions

for free superstring

Now we will construct interpolating Lagrangian of the free superstring.
The construction of the interpolating action for the free and interacting
bosonic string has been discussed in [4,6]. By using Eq. (8) in the following
Lagrangian

L = P Ẋ + Π̄θ̇ −HT ,

one can obtain

L = P Ẋ + Π̄θ̇ − λaφa − ξψα . (9)

If we substitute (5) in (9) and solve the classical equation of motion and
obtain the Pµ and Π̄α, so we rewrite the Eq. (9) as follows

LI =
1

2λ0

(Z0 − λ1Z1)
2 − 1

2
λ0T

2Z2
1 + TLWZ , (10)

where is interpolating Lagrangian of the free superstring. We note that λ0

and λ1 will be treated as independent fields. In order to obtain theλ0 andλ1

we calculate Pµ and compare to Eq. (3). From Eq. (10) we have

Pµ =
1

λ0

(Z0 − λ1Z1) − i T θ̄Γµθ̇ , (11)

finally one can obtain:
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1

λ0

= −T
√
−gg00 ,

λ1

λ0

= T
√
−gg01 . (12)

Now we are going to represent the Eq. (12) as form of metric and that metric
play the important role in any action

gab = − 1

T
√−g

(

1

λ0
−λ1

λ0

−λ1

λ0

λ2

1
−T 2λ2

0

λ0

)

. (13)

If we use explicit form of gab we can write λ0 and λ1 in terms of Z0 and Z1

λ0 = −
√

(Z0 Z1)2 − Z2
0
Z2

1

Z2
1

,

λ1 = −Z0 Z1

Z2
1

. (14)

Now by using (13) in interpolating Lagrangian (10) we arrive to the Polyakov
Lagrangian density

LP = −T
2

(
√
−ggabZaZb − 2LWZ) , (15)

with a, b = 1, 2. The interpolating Lagrangian (10) leads us to construct the
interpolating boundary condition

Kµ =

[

λ1

λ0

(Z0 − λ1Z1) − λ0T 2Z1 − iT θ̄Γ θ′
]

σ=0,Π

= 0 . (16)

Also, we put λ0 and λ1 from Eq. (12) to (16), so we will arrive at
[

g1aZa +
i√−g θ̄Γ θ

′

]

σ=0,Π

= 0 , (17)

which is the Polyakov form of boundary condition and also obtained by
the action (15). Hence, it is possible to interpret (16) as an interpolating
boundary condition. Now it is turn to discuss the structure of constraint in
interpolating free superstring. Note, that the fields in Eq. (10) Xµ, λ0 and
λ1 correspond to momenta Pµ, πλ0

πλ1
respectively and is given by

Pµ =
1

λ0

(Z0 − λ1Z1) − iT θ̄Γ θ̇ ,

πλ0
= 0 ,

πλ1
= 0 . (18)



Interpolating Lagrangian and Boundary Condition for . . . 3147

In addition to the Poisson brackets in Eq. (6) we have,

{

λ0(τ, σ), πλ0
(τ, σ′)

}

= δ(σ − σ′) ,
{

λ1(τ, σ), πλ1
(τ, σ′)

}

= δ(σ − σ′) . (19)

Generally, we can say that the Eqs. (6) and (19) describe the full Poisson
brackets of interpolating free superstring action.
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