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A systematic extension of the Monte Carlo (MC) algorithm, that solves
the DGLAP equation, into the so-called the one-loop CCFM evolution
is presented. Modifications are related to a z-dependent coupling con-
stant; transverse momentum dependence is added to the x-dependence of
the parton distributions. The presented Markovian algorithm for one-loop
CCFM evolution is the first step in extending it to other more sophisticated
schemes beyond DGLAP. In particular, implementing the complete CCFM
will be the next step. The presently implemented one-loop CCFM option
will be a useful tool in testing the forthcoming MC solutions. Numerical
results of the new MC are confronted with other non-MC numerical solu-
tions. The agreement within the MC statistical error of ∼ 0.1% is found.
Also, numerical results for kT-dependent structure functions are presented.

PACS numbers: 12.38.–t, 12.38.Bx, 12.38.Cy

1. Introduction

The evolution equations (EVEQs) play a crucial role in the construction
of any parton shower Monte Carlo program simulating the production of
multiple gluons and quarks, in an approximate way, in perturbative QCD. In
particular, EVEQs are in this context used to model the actual development
of the tree-like cascade of primary emitted partons from the initial hadron.
Such a cascade is then supplemented with an appropriate hard scattering
matrix element and with the hadronization mechanism to form the complete
parton shower MC code.

(3149)
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The basic, and by far the best analyzed, EVEQs in QCD are the DGLAP
equations [1]; originally formulated in the leading order, later extended to the
next-to-leading order [2–5] and recently even to the next-to-next-to-leading
order [6, 7]. These equations perform systematic resummation in terms of
the variable log Q, where Q is a hard scale, for not too small or too large
values of the longitudinal momentum fraction x.

Another important EVEQ is the BFKL equation [8]. Originally for-
mulated in the leading order, it has been recently extended to the next-
to-leading order [9]. Contrary to the DGLAP equations, it resumes large
log x terms, therefore, describing the small x limit better than the DGLAP
equations. In recent years attempts have been made to improve the DGLAP
evolution equations in the small-x region by incorporating some of the BFKL
features [10, 11]. However, these attempts have lead to rather complicated
evolution equations.

The third class of EVEQs in QCD are the CCFM equations [12]. They
are formulated for the so called “unintegrated” parton distributions, which
depend on the transverse momenta of partons kT in addition to x and Q.
The main idea of the CCFM approach is to correctly describe not only
the large-x region, where the summation of log q dominates, but also the
region of small x, where the large logarithms ln(1/x) are important. Thus,
the CCFM equations effectively interpolate between the DGLAP and BFKL
equations. One of the variants of the CCFM equations, called “one-loop” [13],
is of special interest because of its simplicity and ease in extending to non-
leading orders and to non-gluonic evolutions.

The one-loop CCFM equation combines coherence effects (angular order-
ing of gluonic emissions) at large x with the transverse momentum ordering
at small x [14]. In contrast, the “all-loop” CCFM formulation extends the
angular ordering to the small x region. In its original formulation the CCFM
scheme has been formulated only for gluonic cascades. In the “one-loop” ap-
proximation, as defined in Ref. [15], it was extended to include also quarks
into it.

Finally, let us mention yet another class of equations, the IREE ones [16],
which account for both the logarithms of Q and x by means of constructing
and solving the so-called two-dimensional infrared evolution equations.

In a series of recent papers [17–25], a new family of Monte Carlo al-
gorithms that solve the EVEQs in QCD has been developed. The novelty
of these algorithms is in their ability to include an energy constraint on
top of the normal Markovian random walk-type evolution. This is of the
utmost importance in the case of the MC simulations of narrow resonance
production processes initiated by initial state parton cascades. In parallel to
the “constrained” algorithms, we have also developed the standard “uncon-
strained” ones, which are useful for tests and precise studies (for example,
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for fitting deep-inelastic structure function F2). In the very beginning of
the above studies, the DGLAP evolution and some of its variants were the
main object of the interest. However, from the previous discussion it is clear
that it would be useful and interesting to extend them also to other types
EVEQs, like those mentioned, having in mind the construction of the parton
shower Monte Carlo at a later stage.

In the presented paper we take a first step in that direction and show how
the Markovian “unconstrained” DGLAP algorithm can be extended to the
one-loop CCFM case. This extension involves two steps: the modification
of the coupling constant which becomes z-dependent and the inclusion of
transverse momenta into the evolution.

In the subsequent papers further extensions of the Markovian algorithms
will be presented, in particular to the all-loop CCFM scheme. All techni-
cal aspect of the implementation of these “constrained” MC algorithms are
discussed at length in Ref. [26]. Summarizing, this work should be treated
as a warm-up exercise for the forthcoming more complete and also more
sophisticated analysis.

The paper is organized as follows. In Section 2 we recall some basic
formulae on the DGLAP equations and describe in detail problems to be
solved. Section 3 is devoted to the changes in the algorithm related to the
modification of the argument of the coupling constant. Section 4 describes
the extension of the algorithm to the kT-dependent evolution. In Section 5
some numerical results are presented, and finally, Section 6 contains sum-
mary and outlook.

2. Framework

In this paper we will heavily rely on the notation and formulas from [23]
where the reader will find more details on the notation and description of
the framework which we use. We start from the DGLAP equations1

∂t xDK(t, x) =
∑

J

1
∫

x

dz

z
zPKJ(t, z)

x

z
DJ

(

t,
x

z

)

, (2.1)

where x the energy fraction of the hadron carried by the parton of type K =
gluon, quark, antiquark. The so-called evolution time is t = ln Q = ln µ,
with Q being large energy scale defined by the hard process probing parton
distribution function (PDF) DK(t, x).

1 This is Eq. (104) in Ref. [23]. We shall provide explicit link to key formulas in this
work in the following.
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The iterative solution of the above equations reads2

xDK(t, x) = e−ΦK(t,t0)xDK(t0, x)

+

∞
∑

n=1

1
∫

0

dx0

∑

K0,...,Kn−1

n
∏

i=1

[

t
∫

t0

dtiΘ(ti − ti−1)

1
∫

0

dzi

]

× e−ΦK(t,tn)
n
∏

i=1

[

ziP
Θ
KiKi−1

(ti, zi)e
−ΦKi−1

(ti,ti−1)

]

×x0DK0
(t0, x0)δ

(

x − x0

n
∏

i=1

zi

)

, (2.2)

where K ≡ Kn. In order to turn the series of Eq. (2.2) into the one-loop
CCFM evolution we add two elements. First, the argument of coupling
constant is made z-dependent: αs(t) → αs(t + log(1 − z)) and second, the
evolution has to include the transverse momenta of emitted partons. As
for the change of argument of αs there are several technical points to be
clarified.

(i) We restrict ourselves to the LL approximation only, so the kernels
PKiKi−1

(ti, zi) have the form3

PKJ(t, z) = 2PKJ(z, αs) , (2.3)

PKJ(z, αs) =
α

(0)
s (t + ln(1 − z))

2π
P

(0)
KJ(z) , (2.4)

where functions P
(0)
KJ(z) are defined in Eqs. [(A.5)]. The factor of 2

in Eq. (2.3) is related to the definition of the evolution time t = ln q.
The coupling constant αs(t) is defined as follows

α(0)
s (t) =

4π

β0(2t − 2 ln Λ0)
. (2.5)

(ii) In the original papers [27–29] the shifted argument of αs has been used
only for the diagonal kernels (Q → Q or G → G). We have, however,
decided to apply the same shift for all kernels, including the Q ↔ G
ones too.

2 See Eq. (105) in Ref. [23].
3 See Eqs. (50) and (A.2) in Ref. [23].
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(iii) In the presence of the (1 − z) factor the argument of the coupling
constant can become arbitrarily small. Therefore, to avoid the Landau
singularity we impose the following infrared (IR) cut-off depending on
the q0 parameter:

qi(1 − zi) ≥ q0 . (2.6)

It can be translated into zi ≤ 1− q0/qi in space of z-variables. The IR
cut-off ε = q0/qi is not necessarily infinitesimal anymore, for qi close
to q0.

(iv) As a consequence of a finite IR cut-off on the real emissions, the mo-
mentum sum rule

∫

dz
∑

J

zPJK(t, z) = 0 (2.7)

gets violated (by ∼ Q/q0 corrections). In order to restore the sum rule
we adjust appropriately the virtual parts of the diagonal kernels

PKJ(t, z) = −P
δ
KK(t, q0) δKJ δ(1 − z) + P

Θ
KJ(t, z) ,

P
Θ
KJ(t, z) = PKJ(t, z)Θ(1 − z − q0e

−t) , (2.8)

where

P
δ
KK =

1
∫

0

dz z
∑

J

P
Θ
JK(t, z) . (2.9)

In the following sections we will describe in detail all of the above technical
points.

3. The z-dependent strong coupling

In this sectionwewill describe theMC implementation of the z-dependent
coupling constant. Let us recall the probability distributions of a single step
forward in the Markov process. The Sudakov form factor is defined in the
usual way

ΦK(ti, ti−1; t0)=

ti
∫

ti−1

dt′Pδ
KK(t′, t0)=

ti
∫

ti−1

dt′
∑

J

1−exp(t0−t′)
∫

0

dzzP
Θ
JK(z) (3.1)

and the probability of a step forward in z is4

dω(zi, ti,Ki; ti−1,Ki−1)

dtidzi

=ziP
Θ
KiKi−1

(zi)θ1−et0−ti≥zi
e−ΦKi−1

(ti,ti−1;t0)θti≥ti−1
.

(3.2)

4 Following Eq. (69) of Ref. [23].
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The probability of a step forward in t is given by the integral over dzi of the
above dω

dω(ti; ti−1,Ki−1)

dti
= θti≥ti−1

∂tiΦKi−1
(ti, ti−1; t0)e

−ΦKi−1
(ti,ti−1;xi−1) . (3.3)

In the above formulae we included also the new, finite cut-off (2.6).

3.1. Singular part of the kernel

Let us first calculate the Sudakov form factor only for the singular part
of the kernels. The approximate kernels are now

zP
AΘ
KK(z, t; t0) =

α
(0)
s (t + ln(1 − z))

π

Θ(1 − z − ε(t))

1 − z
A

(0)
KK ,

K = G, q, q̄ , (3.4)

where ε(t) = exp(t0 − t). The virtual components will be discussed shortly.
The kernels of Eq. (3.4) should appear in denominators of the expression for
the compensating weight w̄P . In this particular case we are able to calculate
the form factor analytically in an exact way

ΦA
K(t2, t1; τ0) =

t2
∫

t1

dt′
1
∫

0

dz
α

(0)
s (t′ + ln(1 − z))

π
A

(0)
KK

Θ(1 − z − ε(t′))

1 − z

=
2

β0

t2
∫

t1

dt′
0
∫

t0−t′

d ln x
1

t′ − ln Λ0 + ln x
A

(0)
KK

=
2

β0

t2
∫

t1

dt′ [ln(t′ − ln Λ0) − ln(t0 − ln Λ0)]A
(0)
KK

=
2

β0

t2
∫

t1

dt′ (τ ′ − τ0)A
(0)
KK

=
2

β0
A

(0)
KK

τ2
∫

τ1

dτ ′ eτ ′

(τ ′ − τ0) =
2

β0
A

(0)
KK (τ ′ − τ0 − 1) eτ ′

∣

∣

∣

∣

τ2

τ1

=
2

β0
A

(0)
KK {̺(τ2) − ̺(τ1)} , (3.5)

where

̺(τ) = eτ (τ − τ0 − 1) + eτ0

= (t−ln Λ0){ln((t−ln Λ0)/(t0−lnΛ0))−1}+(t0−lnΛ0) , (3.6)
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̺(τ0) ≡ 0 and we have used as previously t = t(q) = ln q, τ(t) = ln(t−ln Λ0),
while τ0 = τ(t0) = τ(t(q0)) is related to q0 in the IR cut 1− zi < ε(qi, q0) =
q0/qi. The above is the part (dominant one) of the virtual form factor, but
it suggests clearly another change of the evolution variable τ → ̺ at the MC
generation level of primary distributions, before applying the MC weight,

̺(τ(q)) = ̺(q; q0, Λ0)

= eτ(q) [τ(q) − τ(q0) − 1] + eτ(q0) , (3.7)

which could increase the MC efficiency due to

d̺ = dτ eτ (τ − τ0) = dt

1
∫

0

dz
α

(0)
s ((1 − z)q)

α
(0)
s (tA)

Θ(1 − z − q0/q)

1 − z
. (3.8)

The function ̺(t) cannot be inverted analytically. However, we have
implemented in the MC a simple and fast subprogram for the numerical
inversion t(ρ) = ̺−1(t). Thus, the ̺-function can be used to generate the
variable t for every MC event. The efficiency of the MC is improved even
more by performing importance sampling for the variable z as well. To this
end we calculate analytically the integral:

φ(t, t0) =

1
∫

0

dz
α

(0)
s (t + ln(1 − z))

π

Θ(1 − z − ε(t))

1 − z

=
2

β0

0
∫

t0−t

d ln x
1

t − ln Λ0 + ln x
=

2

β0
ln(ln x + t − ln Λ0)

∣

∣

∣

∣

lnx=0

lnx=t0−t

=
2

β0
ln

t − lnΛ0

t0 − ln Λ0
=

2

β0

[

ζ(z = 0) − ζ
(

z = 1 − et0−t
)]

, (3.9)

where
ζ(z) = ln ( ln(1 − z) + t − ln Λ0) . (3.10)

The function ζ(z) can be inverted analytically, giving rise to

z(ζ) = ζ−1(z) = 1 − exp( eζ − t + ln Λ0) . (3.11)

Therefore, the variable ζ can be used to generate z according to the primary
MC distribution.
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In order to check how this works in practice, we started from pure gluon-
strahlung in the LL approximation. From the gluon–gluon momentum kernel
we retained only the part of zP singular in (1 − z), which we denote as
zPAΘ

GG(z, t; t0), where

P
AΘ
GG(z, t; t0)=

α
(0)
s (t+ln(1−z))

π
A

(0)
GG

[

1

1−z
+

1

z

]

Θ(1−z−ε(t)) . (3.12)

Note, that Eq. (3.12) is given for P, so also the 1/z singularity is present5.
Let us remark that the gluon momentum sum rule

1
∫

0

dz zP
A
GG(z, t; t0) = 0 (3.13)

is fulfilled by the form factor of Eq. (3.5). As a result, the MC weight from
this part of the algorithm is exactly equal to 1. In fact, the total event weight
may slightly differ from 1, if generation of x0 and K0 according the initial
distribution DK0

(q0, x0) is done using FOAM [31] in the mode of weighted MC
events.

3.2. Non-singular terms in the gluon kernel

In the previous subsection we have considered a simplified case of gluon-
strahlung, retaining only the singular terms of the gluon kernel. Now we
are going to extend this analysis by including also the non-singular terms.
It will be demonstrated on the example of the GG kernel. The case of the
QQ kernel can be treated in the same way. The full LL gluon–gluon kernel
corresponding to the real-gluon emission with z-dependent αs reads

P
Θ
GG(z, t; t0)=

αs(t, z)

π
2CA

[

1

1−z
+

1

z
−2+z(1−z)

]

Θ(1−z−ε(t)) . (3.14)

For the kernel corresponding to the gluon momentum distribution we get

zP
Θ
GG(z, t; t0) =

αs(t+ln(1−z))

π
2CA

[

1

1−z
+ F̃GG(z)

]

Θ(1−z−ε(t)) ,

F̃GG(z) = z[−2 + z(1 − z)] . (3.15)

5 This splitting function is just the kernel of the one-loop CCFM equation as formulated
in Ref. [13]. The only difference is that in Ref. [13] the terms 1/(1 − z) and 1/z are
multiplied by the running QCD coupling αs with different arguments, while in the
above equation we use the same argument of αs for both terms. Such a choice is
suggested by the NLL corrections within BFKL scheme, see e.g. [30].
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Enforcing the validity of the gluon momentum sum rule of Eq. (3.13), the
following Sudakov form-factor is obtained

ΦF
G(t2, t1; t0) =

t2
∫

t1

dt

1
∫

0

dz zP
Θ
GG(z, t; t0) . (3.16)

For the non-singular part of the gluon kernel, however, the integral over
z cannot be calculated analytically. After integrating over t, for the non-
singular part of the Sudakov form-factor exponent ΦG, labeled as ΦF

G, we
obtain easily

ΦF
G(t2, t1; t0) =

2

β0
2CA

{ 1−exp(t0−t1)
∫

0

dz ln

(

t2 − ln Λ0+ln(1 − z)

t1−ln Λ0+ln(1 − z)

)

F̃GG(z)

+

1−exp(t0−t2)
∫

1−exp(t0−t1)

dz ln

(

t2 − ln Λ0 + ln(1 − z)

t0 − ln Λ0

)

F̃GG(z)

}

=
2

β0
2CA

{ t1−t0
∫

0

du e−u ln

(

t2 − ln Λ0 − u

t1 − ln Λ0 − u

)

F̃GG(1 − e−u)

+

t2−t0
∫

t1−t0

du e−u ln

(

t2 − ln Λ0 − u

t0 − ln Λ0

)

F̃GG(1 − e−u)

}

, (3.17)

where u = − ln(1 − z). Numerical evaluation of the above one-dimensional
integral can be done quite precisely (∼ 0.01%) and rather quickly, as com-
pared to the time of generating a single MC event, particularly in its latter
form. The singular part, ΦA

G, of the Sudakov form-factor exponent is given
by Eq. (3.5). The total Sudakov form-factor exponent is now

ΦG = ΦA
G + ΦF

G . (3.18)

The non-singular gluon kernel terms can be easily implemented in the
forward Markovian algorithm of the previous subsection through appropriate
MC weights. For the real-gluon radiation the corresponding weight is

Wz = 1 − z(1 − z)[ 2 − z(1 − z)] , (3.19)

This weight is very well-behaved: (7/16) ≤ Wz ≤ 1. The virtual-gluon
contribution has to be compensated with the weight

W∆ = exp(∆̄G) , ∆̄G = ΦA
G − ΦG = −ΦF

G . (3.20)
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3.3. Quark–gluon transitions

Although the original CCFM equation was formulated for gluons only,
we may try to extend it to quarks and allow for quark–gluon transitions.
The treatment of the quark kernels is identical to the case of gluon kernels
described in the previous subsections. As for the case of QG transitions, we
intend to apply the same importance sampling for generation of the t and z
variables as described in Subsection 3.1, using at the primary MC generation
level the following approximate kernels

zP̄
Θ
IK(z, t; t0) =

α
(0)
s (t+ln(1−z))

π

Θ(1−z−ε(t))

1−z

[

δIKA
(0)
KK+F̄

(0)
IK

]

, (3.21)

where F̄
(0)
IK ≡ maxz F

(0)
IK (z) are given in Appendix C of Ref. [23]. This means

that at the low MC level we artificially include singular factors 1/(1 − z)
for non-diagonal transitions that are not present in the corresponding exact
kernels. The above approximation is then compensated by the MC weight
being the ratio of the exact to approximate kernels

wP
IK =

PΘ
IK(z, t; t0)

P̄Θ
IK(z, t; t0)

≤ 1 . (3.22)

The loss of efficiency due to this artificial modification is rather small,
whereas the gain in simplicity of the algorithm is significant.

For the exponent of the Sudakov form-factor we get

ΦK(t2, t1; t0) =
2

β0

{

A
(0)
KK [̺(t2) − ̺(t1)]

+

t1−t0
∫

0

due−u ln

(

t2−lnΛ0−u

t1−lnΛ0−u

)

∑

J

F
(0)
JK(1−e−u)

+

t2−t0
∫

t1−t0

due−u ln

(

t2−lnΛ0−u

t0−ln Λ0

)

∑

J

F
(0)
JK(1−e−u)

}

, (3.23)

where the functions F
(0)
JK(z) are given Appendix C of Ref. [23]. Again, the

non-singular terms in the above form factor have to be integrated numeri-
cally.

3.4. Numerical tests

We have performed comparisons of the MC solution of the above evo-
lution equations, implemented the program EvolFMC [32], with the solu-
tion provided by the non-MC program APCheb40 [33] in which the same
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z-dependent strong coupling has also been implemented. In both cases we
have evolved the singlet PDFs for gluons and three doublets of massless
quarks from Q0 = 1GeV to Q = 10, 100, 1000GeV. We have used the fol-
lowing parameterization of the starting parton distributions in the proton
at Q0 = 1GeV:

xDG(x) = 1.9083594473 × x−0.2(1 − x)5.0 ,

xDq(x) = 0.5 × xDsea(x) + xD2u(x) ,

xDq̄(x) = 0.5 × xDsea(x) + xDd(x) ,

xDsea(x) = 0.6733449216 × x−0.2(1 − x)7.0 ,

xD2u(x) = 2.1875000000 × x0.5(1 − x)3.0 ,

xDd(x) = 1.2304687500 × x0.5(1 − x)4.0 . (3.24)

In Fig. 1 we show the resulting quark distributions obtained from the
two programs (the upper plot) as well as their ratios (the lower plot). As
one can see, these two calculations agree at the level of 0.2%, except for
the x-region very close to 1, where the MC statistics is low. The similar
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Fig. 1. The upper plot shows the singlet quark distribution xDq(x, Q) evolved

from Q0 = 1 GeV (black) to Q = 10 GeV (red), 100 GeV (green) and 1000 GeV

(blue), obtained from EvolFMC (solid lines) and APCheb40 (dashed lines, hardly

distinguishable), while the lower plot shows their ratio.
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agreement has been found for the resulting gluon distributions, shown in
Fig. 2. The precision of the presented results is limited by the statistical
errors of the MC calculations.
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Fig. 2. The upper plot shows the gluon distribution xDg(x, Q) evolved from Q0 =

1 GeV (black) to Q = 10 GeV (red), 100 GeV (green) and 1000 GeV (blue), obtained

from EvolFMC (solid lines) and APCheb40 (dashed lines, hardly distinguishable),

while the lower plot shows their ratio.

4. One-loop CCFM equations of Kwieciński

The CCFM equations [12] describe the evolution of an unintegrated
parton distributions dK(x, kT, Q) which depend on the parton transverse
momentum kT in addition to the longitudinal momentum fraction x and
the scale Q. They are related to the integrated parton distribution of the
DGLAP equations DK(x,Q) through the following relation

xDK(x,Q) =

∫

d2kT x d(x, kT, Q) . (4.1)

Originally, the CCFM equations were derived for the unintegrated gluon
distribution. In the all-loop approximation, they also take into account
angular ordering (coherence) in the initial state gluon cascade for both large
and small values of x. This leads to a new non-Sudakov form factor that
sums virtual corrections for small x.
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In the one-loop approximation, the angular ordering at small x and the
corresponding virtual corrections are subleading. Thus, the resulting equa-
tions contain only coherence in the real parton emissions for large x, includ-
ing only the Sudakov form factor which resumes virtual corrections. At small
x the standard DGLAP transverse momentum ordering appears. The one-
loop CCFM equations for both quark and gluon unintegrated distributions,
written for the first time in [15], take the following form

xdK(x, kT, Q) = xd0
K(x, kT) +

∫

d2~q

2πq2
θ(q − q0)θ(Q − q)

×

1
∫

x

dz

z
zPKJ(q, z)

x

z
dJ

(x

z
, lT , q

)

,

~l T = ~k T + (1 − z)~q . (4.2)

This equation is slightly more general than the original equation fromRef. [15]
since it allows for the coupling constant (hidden in the splitting functions
PKJ(q, z)) which depends both on z and q. The iterative solution to Eq. (4.2)
reads

xdK(x, kT, Q) = xd0
K(x, kT) +

∑

n=1

1
∫

0

dz0

∫

d2~kT
0

×
∑

K0,...,Kn−1

[

n
∏

i=1

Q
∫

q0

d2~qi

2πq2
i

θ(qi−qi−1)

1
∫

0

dzi ziPKiKi−1
(qi, zi)

]

xd0
K0

(

z0, k
T
0

)

× δ
(

x −
n
∏

i=0

zi

)

δ2
(

~kT − ~kT
0 +

n
∑

i=1

(1 − zi)~qi

)

, (4.3)

where K ≡ Kn. As compared to the basic iterative solution of the DGLAP-
type equation, Eq. (2.2), the above series differs only by the presence of
the independent angular integrals in d2qi and by the presence of the delta

function δ2(~kT − . . . ), which in the Markovian-type algorithm plays only
a “spectator” role. In addition, in Eq. (4.3) the Sudakov form factor has not
been explicitly worked out, as in Eq. (2.2), and the initial condition xd0

K

is now kT-dependent. Having that in mind, we reorganize Eq. (4.3) in the
form similar to the DGLAP solution, Eq. (2.2)
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xdK(x, kT, t) = e−ΦK(t,t0)xd0
K(x, kT, t0) +

∞
∑

n=1

1
∫

0

dx0

∫

d2~kT
0

×
∑

K0,...,Kn−1

n
∏

i=1





t
∫

t0

dti Θ(ti − ti−1)

∫

dφi

2π

1
∫

0

dzi



 e−ΦK(t,tn)

×
n
∏

i=1

[

ziP
Θ
KiKi−1

(ti, zi)e
−ΦKi−1

(ti,ti−1)

]

xd0
K0

(

z0, k
T
0 , t0

)

× δ

(

x − x0

n
∏

i=1

zi

)

δ2

(

~kT − ~kT
0 +

n
∑

i=1

(1 − zi)~qi

)

, (4.4)

where as before qi = exp(ti) and φi is the azimuthal angle of ~qi. Notice that
t = ln Q plays now the role of the evolution variable.

It is now transparent that as described in Ref. [23] the forward Markovian
algorithm EvolFMC can easily be extended to embed the generation of parton
transverse momentum kT. After n steps of the forward Markovian evolution
the transverse momentum of the off-shell parton entering the hard process
becomes

~kT
n = ~kT

0 −
n
∑

i=1

(1 − zi)~qi , (4.5)

where ~kT
0 is an intrinsic parton transverse momentum and ~qi a 2-dimensional

evolution variable. The physical transverse momenta of emitted particles are

(1 − zi)~qi . (4.6)

In the MC evolution ~q is constructed as follows:

~qi = eti (cos φi, sin φi) , (4.7)

where ti is an evolution variable and φi is an azimuthal angle generated at
each evolution step from a flat distribution in the range [0, 2π].

In our numerical tests, which will be reported in the next section, the
intrinsic parton transverse momentum kT

0 is generated at the initial evolution
scale t0 from the following x-independent distribution

1

k2
0

exp

{

−(kT
0 )2

k2
0

}

, (4.8)

where k0 is some adjustable parameter, set to 1GeV in our tests.
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5. Numerical results for k
T-distributions

In the following we present results for the unintegrated parton distribu-
tions as functions of the transverse momentum kT, generated by the forward
Markovian MC program EvolFMC [32] according to the one-loop CCFM equa-
tion described in the previous section. The starting point of the evolution is
Q0 = 1GeV and the initial conditions are specified in Eqs. (3.24) and (4.8).

In Figs. 3 and 4 we show the gluon distribution obtained from the CCFM
equation with gluons only, as given by Marchesini and Webber in Ref. [13].
The distribution was additionally integrated over x. For rising values of the
scale Q such a gluon distribution moves towards large values of kT, becoming

 [GeV])T(k10log
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

-610

-510

-410

-310

-210

-110

1

10

,Q) T(x,kG dx xD

1

0
∫

Fig. 3. Gluon kT distributions integrated over x for the one-loop CCFM equation

of Marchesini–Webber, obtained from EvolFMC for Q = 1 (black), 10 (red), 100

(green) and 1000 (blue) GeV.
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0
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Fig. 4. Gluon kT distributions multiplied by (kT)2 integrated over x for the one-

loop CCFM equation of Marchesini–Webber, obtained from EvolFMC for Q = 1

(black), 10 (red), 100 (green) and 1000 (blue) GeV.
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at the same time less sensitive to the low kT region. This observation is
summarized in Fig. 5 where we present the average gluon (kT)2 as a function
of x for Q = 1, 10, 100 and 1000GeV.

 [GeV]Tk
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0.2

0.25 ,Q) T(x,kG xD2
T dx  k

1

0
∫

Fig. 5. The average (kT)2 of gluon as a function of x for the one-loop CCFM

equation of Marchesini–Webber, obtained from EvolFMC for Q = 1 (black), 10

(red), 100 (green) and 1000 (blue) GeV.

In Figs. 6 and 7, we show the results of the same studies for the full one-
loop CCFM equation for the singlet quark and gluon distributions, given by
Kwieciński et al. in Ref. [15]. The change of the distributions (integrated
over x) with the hard scale Q is the same as in the previous case. Both the
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Fig. 6. Gluons and quarks kT distributions integrated over x for the one-loop

CCFM equation of Kwieciński, obtained from EvolFMC for Q = 1 (black), 10 (red),

100 (green) and 1000 (blue) GeV.
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quark and gluon distributions become less sensitive to the “soft” kT values
moving towards the region of large kT’s. This is also visible in Fig. 8 for
the average transverse momentum for gluons and quarks. As expected, the
average kT rises when x → 0 [15].
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Fig. 7. Gluons and quarks kT distributions multiplied by (kT)2 integrated over x

for the one-loop CCFM equation of Kwieciński, obtained from EvolFMC for Q = 1

(black), 10 (red), 100 (green) and 1000 (blue) GeV.
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Fig. 8. The average (kT)2 of gluons and quarks as a function of x for the one-loop

CCFM equation of Kwieciński, obtained from EvolFMC for Q = 1 (black), 10 (red),

100 (green) and 1000 (blue) GeV.
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6. Summary and outlook

In this work we have presented a systematic extension of the Monte Carlo
algorithm that solves the DGLAP equation into the algorithm solving the
one-loop CCFM equation. To this end two technical problems have been
solved: the coupling constant has become z-dependent and the evolution
in transverse momenta has been added, in addition to the evolution in the
longitudinal momentum fractions x in the parton distributions. The modi-
fication of the coupling constant has lead to the need of solving numerically
the transcendental equation. First numerical results have been presented,
confirming the known observations on CCFM unintegrated PDFs.

The presented algorithm for the one-loop CCFM evolution we consider
as the first step in extending the other types of the QCD evolution equa-
tions available in our MC programs beyond that of the DGLAP type. In
particular, implementing the complete CCFM evolution, both in the Marko-
vian and non-Markovian (constrained) algorithms, see Ref. [26], is now in
an advanced stage. The presently implemented one-loop CCFM option will
be used in the forthcoming studies of various aspects of the QCD evolution
equations according to several different schemes.
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