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Following a model recently investigated by Veneziano and Wosiek we
briefly introduce Planar Quantum Mechanics (PQM). Then, we present
high precision numerical results in the sectors with two and three fermions.
We confirm, that the transition point in the ’t Hooft’s coupling constant λ
occurs in these sectors at λc = 1, as was expected in this model.

PACS numbers: 11.15.Pg

The exact numerical spectra of a branch of reduced supersymmetric the-
ories can be calculated in a cut Fock basis by a method proposed recently by
Wosiek [1]. In a series of papers [2,3] he studied some models of Supersym-
metric Yang–Mills Quantum Mechanics (SYMQM). These systems result
from a dimensional reduction of full dimensional (D = d + 1) supersymmet-
ric Yang–Mills quantum field theories to a single point in space (0+1). The
method provided a good understanding of the D = 2 and D = 4, N = 2
spectra [2,3]. The goal of such analysis is to reach, on one hand the system
with D = 4, N = 3 which could shade some light on the real QCD, and on
the other, the D = 10, SU(N → ∞) model, which is conjectured to be in
relation with the M -theory [4]. The latter case needs to incorporate into
the scheme the large N limit [5], which is expected to provide a remarkable
simplification. It should reduce considerably the number of basis vectors to
be taken into account and allow to disregard all non-planar contributions.
The above was investigated by Veneziano and Wosiek in [6–8] with a simple
supersymmetric model belonging to the class of Planar Quantum Mechanics
(PQM).

This paper presents high precision numerical results on the sectors with
two and three fermions in the model from Ref. [6]. We investigate the
transition point in the ’t Hooft’s coupling λ, and show that it takes place at
λc = 1. Therefore, we give a numerical confirmation of the analytical results
obtained by Beccaria in [9].
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The paper is constructed as follows. We start with an introductory part
to PQM, then we present the studied model, and finally we discuss our
results.

1. Supersymmetric Yang–Mills quantum mechanics

Now we will introduce systems called SYMQM in the Hamiltonian for-
mulation. Let us consider a quantum mechanical system with N2 bosonic
and N2 fermionic degrees of freedom. As was already mentioned, it can
be regarded as a remainder after dimensional reduction of supersymmetric
field theory with U(N) gauge symmetry to one point in space. During such
procedure, a local gauge symmetry becomes a global one. Thus, our sys-
tem should be invariant under the global U(N) rotation. Let T a

ij be the

generators of the U(N) group in the fundamental representation, thus, they
are N × N matrices. We introduce bosonic and fermionic matrix-valued
annihilation and creation operators

aij = abT b
ij , a†ij = a†bT b

ij , (1)

fij = f bT b
ij , f †

ij = f †bT b
ij , (2)

where the sum over b = 1, . . . , N2 is assumed, and i, j = 1, . . . , N . The
invariance of the system is assured by taking the Hamiltonian as a trace of
a polynomial of the above operators. The creation and annihilation opera-
tors satisfy the following commutation and anticommutation relations

[aij , a
†
kl] = δilδjk , (3)

{fij , f
†
kl} = δilδjk . (4)

The Fock basis is composed of eigenstates of the occupation number oper-
ators, B = Tr(a†a) and F = Tr(f †f), which are explicitly U(N)-invariant.
The construction of the basis starts from the Fock vacuum denoted by |0〉.
We act on the latter with invariant “bricks” i.e. creation operators contracted
with U(N) invariant tensors. For the U(2) group we have two such tensors,
δij and ǫijk. The basis states are obtained by action of any combination of
powers of these bricks.

2. The cut-off method

As it is impossible to handle infinite matrices on a PC, one needs to cut
them somehow. The most intuitive way to do this is to introduce some in-
teger, Bmax, and to keep only those basis states for which the total bosonic
occupation number does not exceed Bmax. The method of obtaining the
spectrum simply consists of calculation the Hamiltonian matrix in such a cut
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Fock basis, and then of its numerical diagonalization. This should be done
for several different cut-offs and a limit of infinite cut-off should be extrap-
olated in order to obtain Bmax independent, thus physical, results. The
difficulty of such a program is hidden in the number of basis states growing
exponentially with increasing Bmax and N . Up to now, calculations have
been made up to U(4) [10].

3. Large N limit and Planar Quantum Mechanics

The difficulties described in the preceding paragraph largely disappear
in the ’t Hooft limit, N → ∞, g2N = const, where g is a coupling constant
present in the system. The zeroth order approximation in the 1/N expansion
consists in retaining only those contributions which correspond to planar
graphs. It appears that this can be done already on the level of the Fock
basis [6]. The main contribution will be given by basis states obtained by
action of a single trace brick. Therefore, in the purely bosonic sector, F = 0,
one needs to consider only the basis states of the form

|0, n〉 =
1

N0,n
Tr

[

(a†)n
]

|0〉 , (5)

which are labeled by one integer, n. We can calculate an explicit expression
for the normalization constant N0,n [6]. The sector F = 1 contains one
fermion and the basis states are given by

|1, n〉 =
1

N1,n
Tr

[

(a†)nf †
]

|0〉. (6)

With increasing fermionic occupation number F , things get complicated,
because one has to use several integers to label basis states. For example,
if F = 2 we need two integers, n1 and n2. The basis state is therefore,
obtained by the action of a trace [7]

|2, n1, n2〉 =
1

N2,n1,n2

Tr
[

(a†)n1f †(a†)n2f †
]

|0〉. (7)

Due to the cyclicity of the trace, we only need to deal with states with
n1 ≤ n2. Moreover, if n1 = n2 = m, the anticommutation of fermionic
creation operators and the cyclicity of the trace imply that |2,m,m〉 = 0.
So, the basis is composed of states for which n1 < n2. Thus, for a given
cut-off Bmax, we will have 1

2
Bmax(Bmax − 1) states.

In the case of three fermions, we need three integers to label a basis
state [7]

|3, n1, n2, n3〉 =
1

N2,n1,n2,n3

Tr
[

f †(a†)n1f †(a†)n2f †(a†)n3

]

|0〉 . (8)

Again, we can arrange them so that n1 < n2, n3.
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The large N limit of SYMQM systems in the zeroth order approximation
is called Planar Quantum Mechanics.

4. Veneziano–Wosiek model

The model considered in Ref. [6–8] is given by the supersymmetry gen-
erators

Q = Tr
[

fa†(1 + ga†)
]

, Q† = Tr
[

f †(1 + ga)a
]

, (9)

where g is the coupling constant. We can define the ’t Hooft’s coupling
constant as λ = g2N , where N parameterizes the gauge group U(N). The
Hamiltonian reads

H = {Q,Q†} = HB + HF ,

HB = Tr
[

a†a + g(a†2a + a†a2) + g2a†2a2
]

, (10)

HF = Tr
[

f †f + g(f †f
(

a† + a) + f †(a† + a)f
)

+ g2
(

f †afa† + f †aa†f + f †fa†a + f †a†fa
) ]

. (11)

It conserves the fermionic occupation number F = Tr[f †f ], so we can analyze
our model separately for each fixed F . The cases F = 0 and F = 1 were
described in Ref. [6], whereas the sectors F = 2 and F = 3 in Ref. [7]. We
will concentrate here exclusively on these higher-fermion-number sectors.

Following the rules of planar calculus, described in detail in Ref. [6], one
can calculate the matrix elements of the Hamiltonian in the sectors with two
and three fermions. We just recall here the explicit results [7].

Two fermion sector

We use the notation for the matrix element:

Hn1,n2;m1,m2
≡ 〈2, n1, n2|H|2,m1,m2〉 .

Then

Hn1,n2;n1,n2
= (n1+n2 + 2)(1+λ)−λ(2−δn1 ,0+2δn2,n1+1) , (12)

Hn1+1,n2;n1,n2
= Hn1,n2;n1+1,n2

=
√

λ(n1 + 2) , (13)

Hn1,n2+1;n1,n2
= Hn1,n2;n1,n2+1 =

√
λ(n2 + 2) ,

Hn1+1,n2−1;n1,n2
= Hn1,n2;n1+1,n2−1 = 2λ(1 − δn2,n1+1) . (14)

Three fermion sector

Similarly, we denote the matrix element by

Hn1,n2,n3;m1,m2,m3
≡ 〈3, n1, n2, n3|H|3,m1,m2,m3〉 .
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We have

Hn1,n2,n3;n1,n2,n3
= (n1+n2+n3)(1+λ)−λ(3−δn1,0−δn2,0−δn3,0) , (15)

Hn1+1,n2,n3;n1,n2,n3
= Hn1,n2,n3;n1+1,n2,n3

=
√

λ(n1 + 2)∆ ,

Hn1,n2+1,n3;n1,n2,n3
= Hn1,n2,n3;n1,n2+1,n3

=
√

λ(n2 + 2)∆ ,

Hn1,n2,n3+1;n1,n2,n3
= Hn1,n2,n3;n1,n2,n3+1 =

√
λ(n3 + 2)∆ , (16)

Hn1+1,n2−1,n3;n1,n2,n3
= Hn1,n2,n3;n1+1,n2−1,n3

= λ∆ ,

Hn1,n2+1,n3−1;n1,n2,n3
= Hn1,n2,n3;n1,n2+1,n3−1 = λ∆ ,

Hn1−1,n2,n3+1;n1,n2,n3
= Hn1,n2,n3;n1−1,n2,n3+1 = λ∆ , (17)

where ∆ is defined by

∆ =











1√
3

if for the right state n1 = n2 = n3 ,
√

3 if for the left state n1 = n2 = n3 ,

1 otherwise .

(18)

Previous investigations show the existence of a transition point in the
’t Hooft’s coupling constant λ at λc = 1. On one hand, it appears as a critical
slow down of the convergence of eigenenergies as a function of Bmax, and on
the other, the spectrum becomes continuous, whereas it was discrete away
from λc. It was possible to derive the existence of this transition point
analytically in the sectors with none or one fermion. Numerical results
strongly suggest that the transition also occurs at λc = 1 in the higher-
fermion-number sectors. The aim of the present paper is to confirm this by
new high precision results from larger cut-offs calculations.

5. High cut-off results and the transition point

Our main goal here is to study in detail the location of the transi-
tion point λc in the sectors with two or three fermions. Since the bases
in these sectors are much bigger than the ones in lower-fermion-number
sectors, one needs another tool for more quantitative analysis. We used
ARPACK, a Fortran77 library for spare matrices, to diagonalize our Hamil-
tonian matrix. In this way we were able to reach cut-offs Bmax =500 (110),
respectively for F = 2 (3), corresponding to the sizes of basis up to 100 000
vectors, compared to Bmax = 40 (30) attained in Ref. [7].

Two fermion sector

We will find the transition point by examining the dependence of the en-
ergy of the ground state on the coupling constant λ. Fig. 1 shows this
energy, which in the following will be called EBmax

(λ), for a given cut-off
Bmax and in some interval around λ = 1. Suggestions from previous work
are confirmed. Namely, for λ > λc the ground energy vanishes, and thus
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Fig. 1. The dependence of the ground state of the sector with two fermions on the

coupling constant λ for different cut-offs Bmax. The highest dashed curve represents

the results for the smallest Bmax = 100, whereas the lowest one corresponds to the

highest Bmax = 400.

constitutes one of two SUSY ground states, which are present in this sector.
For λ < λc, EBmax

(λ) is non-null and has a nontrivial dependence on λ. The
determination of the transition point is carried out by fitting to EBmax

(λ)
a polynomial in λ for several fixed Bmax. This polynomial is chosen to be
positive for λ < λ0 and equal to zero at λ = λ0

w(λ) = w1(λ − λ0) + w3(λ − λ0)
3 + w5(λ − λ0)

5.

The fitted curves, together with the polynomial roots λ0(Bmax), are shown
in Fig. 2. In order to obtain the value of the physical transition point λc,
we extrapolate λ0(Bmax) to the limit Bmax → ∞. We do this by fitting two
types of decreasing functions
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Fig. 2. Polynomials fitted to the dependence of the energy of the ground state in

sector with two fermions on the coupling λ for different Bmax as well as their zero

points. The highest dashed curve represents the results for the smallest Bmax =

100, whereas the lowest one corresponds to the highest Bmax = 400.
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λ0(Bmax) = λc + b(Bmax)
c,

λ0(Bmax) = λc + b exp(cBmax) .

The resulting fits are shown in Fig. 3, whereas Table I contains the values
of fitted parameters. We can read off the infinite-cut-off limit λc equal to

λc = 1.0061 ± 0.0005 ,

where the uncertainty is given by the difference between the two values
of λc coming from the fits of the two functions. Finally, we also check
the convergence of the ground energy EBmax

(λ) at the suspected value of
transition point λ = λc = 1.0. To this end, we calculate the extrapolation
of the values EBmax

(λ = 1.0), obtained for some specific cut-offs, by fitting
a function

EBmax
(λ = 1.0) = Ec + b(Bmax)

c .

1

1.01

1.02

1.03

1.04

1.05

100 200 300 400 500 600 700

λ
0
(B

m
a
x
)

Bmax

λc + bBc
max

λc + b exp(c ∗ Bmax)

Fig. 3. The fitted dependencies of λ0(Bmax) on Bmax.

TABLE I

Numerical values of fitted parameters for the λ0(Bmax) dependence.

Fitted function obtained parameters

λ0(Bmax) = λc + b(Bmax)
c λc = 1.0059

b = 471.1

c = −2.40

λ0(Bmax) = λc + b exp(cBmax) λc = 1.0064

b = 0.060

c = −0.022
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Results for the fitted parameters are shown in Table II, and the curve is
plotted in Fig. 4. We can conclude, that

Ec = −1.08 10−6 ± 4.5 10−7,

where the error is given by the difference between the two results with highest
cut-off.

TABLE II

Numerical values of fitted parameters for the EBmax
(λ = 1.0) dependence.

Fitted function obtained parameters

EBmax
(λ = 1.0) = Ec + b(Bmax)

c Ec = −1.08 × 10−6

b = 62

c = −2.73
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Fig. 4. The fitted dependence of EBmax
(λ = 1.0) on Bmax.

To summarize this paragraph we have shown, that in the sector with two
fermions, the transition point occurs for λc =1.0 and that the energy of the
ground state at the conjectured transition point λ=1.0 converges to zero.

Three fermion sector

The analysis of the transition point in this sector follows the lines of
the preceding paragraph. Similarly, we will examine the dependence of the
energy of the ground state, called EBmax

(λ), on the coupling λ. Fig. 5 demon-
strates the numerical curves for different cut-offs. The highest, dashed, curve
represents calculations for Bmax = 45, and the lowest one for Bmax = 90.
We see that the convergence is very good for λ away from λc i.e. λ < 0.90
and λ > 1.05. The transition takes place for λ between these values, and can
be seen on this plot as a slow down of the numerical method. Let us denote,
for each Bmax, the minimal energy of the ground state by Emin(Bmax) and
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Fig. 5. The dependence of the ground state of the sector with three fermions on the

coupling constant λ for different cut-offs Bmax. The highest dashed curve represents

the results for the smallest Bmax = 45, whereas the lowest one corresponds to the

highest Bmax = 90.

its position by λmin(Bmax). The physical results, i.e. cut-off independent,
are thus the limiting quantities Ec and λc such that Emin(Bmax) → Ec and
λmin(Bmax) → λc as Bmax → ∞. The results from sectors F = 0, 1 sug-
gest that the energy of all states collapses to zero and we get a continuous
spectrum at the speculated transition point λc = 1.

We determine λmin(Bmax) and Emin(Bmax) by two methods. First of
them consists in fitting a fourth order polynomial,

w(λ) = w0 + w1λ + w2λ
2 + w4λ

4,

to EBmax
(λ) for each Bmax. Then, λmin(Bmax) and Emin(Bmax) are calcu-

lated analytically given the fitted parameters. The fitted curves are shown in
Fig. 6, together with the calculated minima. The second method uses the cu-
bic spline to transform EBmax

(λ) into a continuous curve. The approximated
values of the minima are then found numerically by bracketing. Differences
between the results coming from these two methods will be later used as
an estimate of the uncertainty of the calculated quantities. To get Ec we
extrapolate Emin(Bmax) to Bmax → ∞, and to this end, we fit a polynomial
function

Emin(Bmax) = Ec + b(Bmax)
c .

The obtained fit is shown in Fig. 7, whereas the values of parameters are
presented in Table III. We thus have

Ec = −0.00094 ± 0.00021 .
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Fig. 6. Polynomials fitted to the dependence of the energy of the ground state in

sector with three fermions on the coupling λ for different Bmax. The highest dashed

curve corresponds to Bmax = 45 and the lowest one to Bmax = 90. The calculated

minima are shown as well.
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Fig. 7. The fitted dependence of Emin(Bmax) on Bmax.

TABLE III

Numerical values of fitted parameters for the Emin(Bmax) dependence.

Fitted function obtained parameters

Emin(Bmax) = Ec = −0.00094± 0.00021

Ec + b(Bmax)
c b = 33.2 ± 2.4

c = −1.694± 0.019
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In order to extrapolate λmin(Bmax) we fit three slowly growing functions:

• λmin(Bmax) ∼ (Bmax)
c,

• λmin(Bmax) ∼ (Bmax)
−1/2

• λmin(Bmax) ∼ ln(Bmax)
−1.

Table IV contains the obtained values of the fitted parameters, and the fitted
curves are shown in Fig. 8. Eventually, we can assume that the value of the
constant coefficient λc is equal to the mean of the values obtained from the
three fits, and its error is the standard deviation. Therefore,

λc = 1.034 ± 0.016 .

TABLE IV

Numerical values of fitted parameters for the λmin(Bmax) dependencies.

Fitted functions obtained parameters

λmin(Bmax) = λc + b(Bmax)
c λc = 1.0155± 0.0053

b = −0.474± 0.045

c = −0.480± 0.043

λmin(Bmax) = λc + b(Bmax)
−1/2 λc = 1.01304± 0.00038

b = −0.4964± 0.0033

λmin(Bmax) = λc + b ln(c ∗ Bmax)
−1 λc = 1.073 ± 0.010

b = −0.478± 0.084

c = 0.80 ± 0.28
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Fig. 8. The fitted dependencies of λmin(Bmax) on Bmax.
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One also notes, that the general fit of a power function gave approximately
the same results as the fit of the inverse of the square root.

As a conclusion of this section we recapitulate our results for the sector
with three fermions. Namely, we showed that the transition point occurs
at λc = 1.0 and that at this value of coupling constant the ground energy
converges to zero.

6. Discussion and conclusions

In this paper we used high precision numerical results in order to check
the transition point in the ’t Hooft’s coupling constant λ in the Veneziano–
Wosiek model. We investigated the sectors with two and three fermions.
By fitting some specific functions we extrapolated from the numerical data
the physical, i.e. cut-off independent, values of the transition point and
ground energy at λ = 1.0. We confirmed that in both sectors this transition
point occurs nearly at λ = λc = 1.0, and that the ground energy at this
value of coupling constant converges almost to zero. The uncertainty given
with these results is not a true statistic error since it was not calculated from
any statistical ensemble. It should be only interpreted as an indication of
the real uncertainty.
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(2004–2007) of the Polish Ministry of Education and Science.

REFERENCES

[1] J. Wosiek, Nucl. Phys. B644, 85 (2002) [hep-th/0203116].

[2] M. Campostrini, J. Wosiek, Phys. Lett B550, 121 (2002) [hep-th/0209140].

[3] M. Campostrini, J. Wosiek, Nucl. Phys. B703, 454 (2004) [hep-th/0407021].

[4] T. Banks, W. Fischler, S. H. Shenker, L. Susskind, Phys. Rev. D55, 5112
(1997) [hep-th/9610043].

[5] G. ’t Hooft, Nucl. Phys. B72, 461 (1974).

[6] G. Veneziano, J. Wosiek, J. High Energy Phys. 0601, 156 (2006)
[hep-th/0512301].

[7] G. Veneziano, J. Wosiek, J. High Energy Phys. 0610, 033 (2006)
[hep-th/0607198].

[8] G. Veneziano, J. Wosiek, J. High Energy Phys. 0611, 030 (2006)
[hep-th/0609210].

[9] M. Beccaria, J. High Energy Phys. 03, 117 (2007) [hep-th/0701228].

[10] M. Campostrini, private communication.


