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The volume and surface symmetry parts of the nuclear symmetry en-
ergy and other coefficients of the liquid droplet model are determined from
the measured atomic masses by the maximum likelihood estimator. The
volume symmetry energy coefficient extracted from finite nuclei provides
a constraint on the nuclear symmetry energy. This approach also yields
the neutron skin of a finite nucleus through its relationship with the vol-
ume and surface symmetry terms and the Coulomb energy coefficient. The
description of nuclear matter from the isoscalar and isovector components
of the density dependent M3Y effective interaction provides a value of the
symmetry energy that is consistent with the empirical value of the symme-
try energy extracted from measured atomic masses and with other modern
theoretical descriptions of nuclear matter.

PACS numbers: 21.65.+f, 21.60.Ev, 21.30.Fe, 21.10.Gv

1. Introduction

The investigation of constraints of nuclear symmetry energy has recently
received new impetus with the plans to construct a new accelerator facil-
ity (FAIR) at GSI Darmstadt. The nuclear symmetry energy (NSE) plays
a central role in determining to a large extent the equation of state (EoS)
of isospin asymmetric nuclear matter, proton fraction in neutron stars and
neutron skin in heavy nuclei and it enters as an input to the heavy ion reac-
tions [1,2]. Various many body calculations using a realistic nucleon–nucleon
(NN) interaction as input (Brueckner–Hartree–Fock [3] or Dirac–Brueckner–
Hartree–Fock [4] and the variational method [5] etc.) lead to rather different
results for the symmetry energy. In view of the large differences present be-
tween various calculations of the symmetry energy even at subsaturation
densities, the question arises naturally whether one can obtain empirical
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constraints from finite nuclei. As the degree of isospin diffusion in heavy-ion
collisions at intermediate energies is affected by the stiffness of the nuclear
symmetry energy, these reactions provide constraints on the behaviour of
the nuclear symmetry energy at subsaturation densities [6]. Traditionally,
the symmetry energy of nuclei at saturation density is extracted by fit-
ting ground state masses with various versions of liquid drop mass formula
(LDM). To this end one needs to decompose the symmetry term of LDM
into the bulk (volume) and surface terms [7] along the lines of the liquid
droplet model and identify the volume symmetry energy coefficient as the
symmetry energy derived from infinite nuclear matter at saturation den-
sity. The coefficients of liquid droplet model are extracted by employing the
maximum likelihood estimator method.

In the present work, the nuclear symmetry energy is calculated theo-
retically using the isoscalar and isovector components of M3Y-Reid–Elliott
effective interaction supplemented by a zero range pseudo-potential along
with the density dependence (DDM3Y) and its value at saturation density
is compared with the volume symmetry energy coefficient extracted from
a fit to the atomic mass excesses from the latest mass table [8]. The M3Y
interaction was derived [9] by fitting its matrix elements in an oscillator
basis to those elements of the G-matrix obtained with the Reid-Elliott soft-
core NN interaction. The ranges of the M3Y forces were chosen to ensure
a long-range tail of the one-pion exchange potential as well as a short range
repulsive part simulating the exchange of heavier mesons [10]. The zero-
range pseudo-potential represented the single-nucleon exchange term while
the density dependence accounted for the higher order exchange effects and
the Pauli blocking effects. The real part of the proton–nucleus interac-
tion potential obtained by folding in the density distribution function of
the interacting nucleus with the DDM3Y effective interaction is found to
provide good descriptions of elastic and inelastic scatterings of high energy
protons [11] and proton radioactivity [12]. In the present work, the results
obtained for the symmetry energy from DDM3Y interaction are consistent
with the results obtained by the fitting of masses to the liquid droplet model.

2. The nuclear symmetry energy

The nuclear EoS can be expanded in terms of isospin asymmetry X as

ε(ρ,X) = ε(ρ, 0) + S(ρ)X2 + S1(ρ)X4 + S2(ρ)X6 + . . . , (1)

which provides the standard definition of the nuclear symmetry energy S(ρ)
where ε(ρ,X) is the energy per nucleon of nuclear matter with isospin asym-

metry X =
ρn−ρp

ρn+ρp
, ρ = ρn +ρp, where ρn, ρp and ρ are the neutron, proton

and nucleonic densities respectively. The DDM3Y effective NN interaction
is given by
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v00(s, ρ, ε) = tM3Y
00 (s, ε)g(ρ), v01(s, ρ, ε) = tM3Y

01 (s, ε)g(ρ) , (2)

where s is a distance between two interacting nucleons, g(ρ) = C(1−βρ2/3)
is the density dependence and the isoscalar tM3Y

00 and the isovector tM3Y
01

components of M3Y interaction potentials [10, 12] supplemented by zero
range potentials are given by

tM3Y
00 (s, ε) = 7999

exp(−4s)

4s
− 2134

exp(−2.5s)

2.5s
− 276(1 − αε)δ(s) (3)

and

tM3Y
01 (s, ε) = −4886

exp(−4s)

4s
+ 1176

exp(−2.5s)

2.5s
+ 228(1 − αε)δ(s) (4)

respectively, where the energy dependence parameter α = 0.005/MeV. Based
on the Hartree or mean field assumption and using the DDM3Y interaction,
the EoS can be derived as

ε(ρ,X) =

[

3~
2k2

F

10m

]

F (X) +

(

ρJvC

2

)

(

1 − βρ2/3
)

, (5)

where k3
F = 1.5π2ρ, Jv = Jv00 + X2Jv01, Jv00(ε) =

∫ ∫ ∫

tM3Y
00 (s, ε)d3s and

Jv01(ε) =
∫ ∫ ∫

tM3Y
01 (s, ε)d3s represent the volume integrals of the isoscalar

and isovector parts of the M3Y interaction and

F (X) =

[

(1 + X)5/3 + (1 − X)5/3

2

]

, (6)

where m is the nucleonic mass equal to 938.91897 MeV/c2. In nuclear mat-
ter, ε(ρ,X) = ε(ρ, 0)+ε′(ρ,X) so that ε′(ρ,X) = ε(ρ,X)−ε(ρ, 0) ≈ S(ρ)X2

for other terms being small. Therefore, an alternative physical definition
of the nuclear symmetry energy [13] is the energy required per nucleon to
change the symmetric nuclear matter (SNM) to pure neutron matter (PNM)
which is given by

S(ρ)=εPNM − εSNM =
(

22/3
− 1

) 3

5
E0

F

(

ρ

ρ0

)2/3

+
C

2
ρ

(

1 − βρ2/3
)

Jv01 (7)

where εPNM = ε(ρ, 1), εSNM = ε(ρ, 0) are the energy per particle for PNM

and SNM respectively, ρ0 is the saturation nucleonic density, E0
F =

~
2k2

F0

2m is
the Fermi energy for the SNM in the ground state with kF0

as the corre-
sponding Fermi momentum. The constants of density dependence C and β
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of the effective interaction are obtained by reproducing the saturation en-
ergy per nucleon and the saturation density of SNM [14]. In Ref. [14] the
symmetric nuclear matter properties such as its EoS and incompressibility
were calculated whereas in this work we have extended that for asymmetric
nuclear matter in order to calculate the nuclear symmetry energy.

The first term of the right hand side of Eq. (7) is the kinetic energy
contribution whereas the second term is the potential energy contribution
and accounts for the nuclear interaction. If one uses definition of Eq. (1)
for the nuclear symmetry energy, then the second term remains unaltered

while the first term reduces by about five percent to 5
32

[

3
5
E0

F

(

ρ
ρ0

)2/3
]

. The

standard definition of Eq. (1) also provides S1(ρ) = 5
35

[

3
5
E0

F

(

ρ
ρ0

)2/3
]

and

S2(ρ) = 35
38

[

3
5
E0

F

(

ρ
ρ0

)2/3
]

etc. Interestingly, the definition of nuclear sym-

metry energy εsym given in Ref. [15] yields S(ρ) = 0.5εsym = 28 MeV and
S1(ρ) = −S(ρ)λ = −18.76 MeV which are independent of nucleonic density.

3. The liquid droplet model of nuclei and symmetry energy

The volume and surface terms in the standard semi empirical mass for-
mula pertain to the isospin symmetric systems. The volume coefficient pro-
vides the binding energy per nucleon whereas the surface coefficient, up to
a certain extent, provides the surface energy. The symmetry term in the
standard binding energy formula has a volume character only. But when
the surface energy is affected by the isospin asymmetry, the thermodynamic
consistency requires that some of the asymmetry moves to the surface. Min-
imization of the net nuclear energy with respect to the partitioning of asym-
metry produces an expression [7] for the binding energy B(A,Z) of a nucleus
with mass number A and the atomic number Z given by

B(A,Z) = avA − asA
2/3

− ac
Z(Z − 1)

A1/3
−

Sv

1 + Sv

Ss
A−1/3

(N − Z)2

A
+ δ , (8)

where δ = apA
−1/2 for even N–even Z, −apA

−1/2 for odd N–odd Z, 0 for
odd A, and neutron number N = A − Z. The above expression is simi-
lar to the droplet model where skin size is a basic parameter and one of
the starting points. Sv and Ss are now the volume and surface symmetry
parameters, respectively, whereas av, as, ac and ap are the usual volume,
surface, coulomb and pairing energy coefficients. Allowing the mass number
A going to infinity, it may be seen that the volume symmetry energy coef-
ficient Sv is equal to the NSE obtained from the (infinite) nuclear matter
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calculation. Therefore extracting Sv from measured atomic mass excess pro-
vides experimental value for the NSE at normal nuclear density. Theoretical
atomic mass excesses ∆MA,Z can be obtained from the theoretical binding
energy B(A,Z) by correcting for the electronic binding energy as

∆MA,Z = Z∆mH + (A − Z)∆mn − aelZ
2.39

− belZ
5.35

− B(A,Z) , (9)

where ∆mH = mp + me − u = 7.28897050 MeV +ael + bel and ∆mn =
mn − u = 8.07131710 MeV, mp, mn, me are the masses of proton, neutron
and electron and u is the atomic mass unit, all expressed in MeV and the
electronic binding energy constants [16] ael = 1.44381 × 10−5 MeV and
bel = 1.55468 × 10−12 MeV. This approach [7] also yields a relationship
among neutron skin, ac, Sv and Ss given by

Rn − Rp

R
=

A

6NZ

N − Z − ac

12Sv
ZA2/3

1 + Ss

Sv
A1/3

. (10)

The difference between equivalent sharp radii for neutrons Rn and protons
Rp is primarily linear in the asymmetry and the symmetry coefficient ratio
Sv/Ss measures the neutron skin of a nucleus.

4. Results and discussion

We extract the nuclear symmetry energy Sv from measured atomic mass
excesses and associated errors using the maximum likelihood method de-
scribed in detail in Ref. [17]. This leads to the generalised equations [17],

n
∑

i=1

[

∆M i
ex −

(

∆M i
th + µth

∗
)]

σi
ex

2 + σth
2∗

∂(∆M i
th)

∂pν
= 0, ν = 1, 2, . . . m , (11)

n
∑

i=1

[

∆M i
ex −

(

∆M i
th + µth

∗
)]2

− (σi
ex

2
+ σth

2∗)

(σi
ex

2 + σth
2∗)2

= 0 , (12)

n
∑

i=1

[

∆M i
ex −

(

∆M i
th + µth

∗
)]

(σi
ex

2 + σth
2∗)

= 0 , (13)

where pν are the unknown m parameters of the model. Here ∆M i
ex is the

measured mass excess for a particular nucleus for proton number Z and
neutron number N , and ∆M i

th is the corresponding calculated quantity and
σi

ex is the associated error in each of n such measurements. σth is the intrinsic
model error which accounts for known and unknown missing terms in the
theoretical model used for fitting the mass excesses. Here we assume that
the true mass excess ui

tr of the nucleus i can be written as ui
tr = ∆M i

th +ei
th,
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where ei
th is the theoretical error term and is distributed normally as ei

th ∈

N(µth, σth) with a mean µth and a standard deviation σth around this mean.
The notations σth

2∗ and µth
∗ mean that by solving Eqs. (12) and (13) we

obtain the estimates σth
2∗ and µth

∗ of the true σth
2and µth. Use of root-

mean-square deviation (σrms) defined as

σrms =

[

1

n

n
∑

i=1

(

∆M i
ex − ∆M i

th

)2

]1/2

(14)

as the error of the theoretical mass model and obtained by minimising its
value by adjusting the model parameters is reasonable when all the errors
σi

ex associated with the measurements are small compared to the model error
σrms. However, for large experimental errors σi

ex this definition is unsatis-
factory, since both the theoretical and the experimental errors contribute
to the rms deviation. We must therefore use an approach that decouples
the theoretical and the experimental errors. In the present case, since it is
a minimally modified formula without the shell corrections or the Wigner
term, the theoretical model error must account for the various other known
and unknown terms in the model. The model error (σth) obtained in this
way (ML estimation) contains no contributions from the experimental un-
certainties σi

ex. Thus, we have two additional equations here compared to
usual least square equations (minimising σ2 or alternatively χ2) that arise
when model parameters are estimated by adjustments to experimental data
under the assumption of a perfect theory with σth = 0 and µth = 0. The
above equations are equivalent to minimizing S with respect to pν , where

S =
n

∑

i=1

[∆M i
ex − (∆M i

th + µth
∗)]2

σi
ex

2 + σth
2∗

, (15)

and solving

σth
2∗ =

1
∑n

i=1 wkσ

i

n
∑

i=1

wkσ

i

[

(

∆M i
ex − ∆M i

th − µth
∗
)2

− σi
ex

2
]

, (16)

µth
∗ =

1
∑n

i=1 w
kµ

i

n
∑

i=1

w
kµ

i

[

(∆M i
ex − ∆M i

th)
]

, (17)

where

wk
i =

1

(σi
ex

2 + σth
2∗)k

, (18)

kσ = 2 , (19)

kµ = 1 . (20)



Isospin Asymmetry in Nuclei and Nuclear Symmetry Energy 3231

The unknowns µth
∗ and σth

2∗ are then determined from Eqs. (16) and (17)
by an iterative procedure whose convergence is found to be quite good. This
way the experimental error is subtracted from the difference between the
experimental and the calculated mass excesses. As the model considered here
does not contain any term like a0A

0, that is strictly a constant parameter,
the most complete characterisation of the theoretical error requires both its
mean µth and its standard deviation σth around this mean. Hence we need
to solve the full m + 2 set of equations. If µth

∗ is found to be significantly
different from zero the theory will need modification.

In Ref. [14] both the chi-square and the sum of deviation squares were
minimized. The results of those two minimization did differ slightly. How-
ever, the data are not expected to approach the theory when measurement
errors tend to zero. In the present work the theoretical errors are assumed
to accompany the experimental errors. In fitting experimental data, the
theoretical errors are estimated simultaneously with the optimal parameter
values. This procedure effectively produces a minimization which is inter-
mediate between the minimization of the sum of deviation squares and that
of the chi-square. This procedure gives the possibility for a realistic estima-
tion of the uncertainties in the fitted parameters. As one may compare with
Ref. [14] to find that the volume symmetry energy coefficient obtained in the
present work is substantially different. This is due to the fact that Bethe–
Weizsäcker mass formula is minimally modified along the lines of the liquid
droplet model by partitioning the symmetry term into volume and surface
terms. Other energy coefficients do not differ much beyond the limits of the
earlier work [14].

The coefficients of the liquid droplet model (Eq. (8)) are evaluated by fit-
ting the recent measured and extrapolated atomic mass excesses from Audi–
Wapstra–Thibault atomic mass table [8] by minimizing S of Eq. (15) and
are shown in Table I. The σth and µth simultaneously solved from Eqs. (16)
and (17) are also tabulated. The values of σth and µth for 2228 experi-
mentally measured atomic mass excesses are 2.880 and 0.029, respectively.
Exclusion of the measured atomic mass excesses of lighter nuclei having mass
number A < 16 results in σth = 2.782 and µth = 0.037. When the additional
951 extrapolated data are included for the same analysis, that is for total
3179 measured+extrapolated data, the values obtained are σth = 2.960 and
µth = 0.040. These values are acceptable as the values of µth do not differ
significantly from zero. Fig. 1 and Fig. 2 show the plots of fitting errors of
atomic mass excesses versus mass numbers for the droplet model (Eqs. (8)
and (9)) mass formula.
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TABLE I

Coefficients of the liquid droplet model mass formula extracted from atomic mass
excesses.

av as ac Sv Ss ap

MeV MeV MeV MeV MeV MeV

a15.563 17.652 0.695 29.687 17.680 11.813

±0.00043 ±0.00107 ±0.00004 ±0.0097 ±0.0216 ±0.0044
b15.500 17.480 0.689 30.048 16.674 10.246

±0.00012 ±0.00025 ±0.00002 ±0.0042 ±0.0071 ±0.00048
c15.465 17.394 0.686 30.130 16.317 10.273

±0.00012 ±0.00025 ±0.00002 ±0.0043 ±0.0067 ±0.00049

aUsing experimentally measured 2168 atomic mass excesses for A ≥ 16,
µth = 0.037 and σth = 2.782 .
bUsing all the experimentally measured 2228 atomic mass excesses,
µth = 0.029 and σth = 2.880 .
cUsing measured 2228 + extrapolated 951 atomic mass excesses,
µth = 0.040 and σth = 2.960 .

Fig. 1. The plot of differences between 2168 (A ≥ 16) measured and theoretical

atomic mass excesses calculated by the liquid droplet model (Eq. (8)) mass formula

versus mass number A.
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Fig. 2. The plot of differences between measured 2228 and theoretical atomic mass

excesses calculated by the liquid droplet model (Eq. (8)) mass formula versus mass

number A.

A mean field calculations with DDM3Y effective interaction is performed
using the usual values of energy dependence parameter α=0.005 MeV−1 [10],
the saturation density ρ0 = 0.1533 fm−3 [18] and the saturation energy per
nucleon ε0 = −15.26 ± 0.52 MeV. This saturation energy per nucleon is
the volume energy coefficient and this value used in the present calculations
more or less covers the entire range of values of av obtained here (Table I)
or fitting the original Bethe–Weizsäcker mass formula [14] or other droplet
models [17,19–22]. The value obtained for the NSE at the saturation density,
S(ρ0), is found to be 31.18 ± 0.29 MeV using definition of Eq. (1) and
31.86 ± 0.29 MeV using definition of Eq. (7).

The value of Sv = 30.048±0.004 MeV extracted from experimental mass
excesses is reasonably close to the theoretical estimate of the value of NSE
at the saturation density S(ρ0) described above. For A ≥ 16 little change
is observed to the value of Sv which becomes 29.687± 0.010 whereas the Ss

changes to a larger extent to 17.680 ± 0.022. This behaviour suggests the
fact that the surface energy depends upon symmetry. The value obtained for
Sv in Ref. [7] is between 29.10 MeV to 32.67 MeV and that obtained by the
liquid droplet model calculation of Ref. [19] is 27.3 MeV whereas in Ref. [23]
it is 28.0 MeV. It should be mentioned that the value of the volume symmetry
energy coefficient Sv in some advanced mass description [24] is close to the
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present value which with their −κvol · bvol = Sv equals 29.3 MeV. In a very
recent similar work [25] the volume symmetry energy co-efficient comes out
to be about 29 MeV when with other terms, pairing energy, Wigner term and
shell corrections are also included. The ratio Sv/Ss which is a measure of the
neutron skin thickness is found to be about 1.8 in the present calculations.
The value of this ratio obtained in Ref. [7] is about 2.0 to 2.8 whereas in
liquid droplet model calculations of Ref. [19] the value obtained is 1.68 and
in Ref. [23] it is calculated to be 1.3.

The value of NSE at nuclear saturation density ≈ 30 MeV, therefore,
seems well established empirically. However, theoretically different sets of
parametrizations of the relativistic mean-field (RMF) models, which fit the
observables for isospin symmetric nuclei well, lead to a relatively wide range
of predictions 24–40 MeV for S(ρ0). In Table II results for the S(ρ0) us-
ing DDM3Y interaction are compared with the results from the variational
calculations using the Argonne and Urbana NN potentials, in combination
with Urbana models for the three-nucleon interaction (TNI). The last col-
umn includes a relativistic boost correction and the adjusted UIX∗ (TNI).
The present result of the mean field calculation is close to the result of
Av18 + δv + UIX ∗ variational calculation [5].

TABLE II

Result for the S(ρ0) of the present mean field calculation is compared with the
results from the variational calculations of Refs. [5, 26] using the Argonne and
Urbana NN potentials, in combination with Urbana models for the (TNI). The last
column includes a relativistic boost correction δv and the adjusted UIX∗ (TNI).

Present calc. Av14 Av14+UVIII Uv14

MeV MeV MeV MeV

a31.18 ± 0.29 24.90 27.49 26.39
b31.86± 0.29

Uv14+UVIII Av18 Av18+UIX Av18+δv+UIX∗

MeV MeV MeV MeV

28.76 26.92 29.23 30.1

aUsing definition of Eq. (1) for the nuclear symmetry energy.
bUsing definition of Eq. (7) for the nuclear symmetry energy.

5. Summary and conclusion

In summary, we show that theoretical description of nuclear matter based
on mean field calculation using density dependent M3Y effective NN inter-
action gives a value of the symmetry energy that is consistent with the
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empirical value extracted by fitting the droplet model to the measured and
extrapolated atomic mass excesses using the maximum likelihood estimator
method. The value of volume symmetry energy coefficient changes little
compared to the surface symmetry energy coefficient when measured atomic
mass excesses of nuclei lighter than 16 are excluded. This observation high-
lights the fact that the symmetry energy depends on the surface tension
and vice versa. The volume and surface symmetry energy coefficients are
related to the neutron skin of finite nucleus. Such mean field calculations of
nuclear symmetry energy thus satisfy the constraints from finite nuclei and
also agree with recent theoretical descriptions of nuclear matter.
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