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Shell model features are investigated for the Deuterium and 4He with
a semirealistic potential, using the Hybrid Multideterminant method ap-
plied to the bare Hamiltonian. For a sufficiently large single-particle space
we found that few Slater determinants account for most of the binding
energy of 4He. Using only one Slater determinant with all symmetries re-
stored with the appropriate projectors to good quantum numbers, we can
account for about 84% of the binding energy of 4He.

PACS numbers: 21.60.Cs, 21.30.Fe, 21.60.–n, 24.10.Cn

1. Introduction

The Shell model is the fundamental tool used to study the structure of
nuclei. The basic idea is that the nucleons move in an average potential
generated by the other nucleons. The single-particle wave functions of the
nucleons in such an average potential can be used to construct antisym-
metrized product wave functions that in turn are used to diagonalize the
many-body Hamiltonian. A major obstacle in this description is that the
nucleon–nucleon potential is strongly repulsive at small distance between the
particles. Nowadays there are several methods that are used to lessen the
problem. In several descriptions, the bare Hamiltonian is replaced with an
effective Hamiltonian which preserves the low-energy part of the spectrum
and no longer has the repulsive core. The Lee–Suzuki method (Ref. [1,2]),
the G-matrix method (see for example Ref. [3]), the unitary correlation op-
erator method (Ref. [4]), are methods that belong to this class. In other
approaches, the many-body wave function is assumed to be a product of
correlation functions (or, more generally, correlation operators) which sup-
press the probability of having nucleons close together and thus account for
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the effects of the repulsive core, and a Slater determinant (see for example
Ref. [5]). It is common notion that shell effects are properties of these effec-
tive Hamiltonians or of the residual Slater determinant, in the second class
of approach. Also, it is widely acknowledged that the use of single-particle
states as a basis, requires an extremely large number of Slater determinants
to reach a reasonable description of the system, if bare Hamiltonians are
used. This however induces to some considerations.

Let us consider for example the Lee–Suzuki approach. In this approach
the many-body Hilbert space is divided into two parts, the so-called
P -space or shell model space, and the remaining Q-space, the excluded
space. The main goal of the approach is to find a similarity transforma-
tion X such that the Hamiltonian H becomes H = X−1HX. The require-
ment on the operator X is that the transformed Hamiltonian H should not
have matrix elements between the P -space and the Q-space, hence only the
P -space can be used to obtain the low-energy part of the spectrum of the
Hamiltonian H. The P -space submatrix of the transformed Hamiltonian is
the effective Hamiltonian. The P -space and the Q-space are obtained with
the projectors P and Q respectively acting on the full Hilbert space. As
a consequence, if φ is a wave function with components in the P -space only,

Hφ = (P +Q)H(P +Q)φ = PHPφ+QHPφ .

Therefore, if QHP = 0 (the decoupling condition), then Hφ = PHPφ
and thus the effective Hamiltonian does not connect states in the P -space
with the Q-space, that is, it does not scatter P -space components into the
Q-space. If φ is an eigenstate of PHP then Xφ is an eigenstate of the bare
Hamiltonian H with the same eigenvalue. There is not a unique solution
to the decoupling equation QHP = 0 and typically a solution of the form
X = expω with ω2 = 0 is assumed. Differently stated, ω has only non-
zero matrix elements of the type ωQP , moreover the wave function φ is the
P -space part of the eigenstate of the bare Hamiltonian and ωφ is the Q-space
part of the eigenstate.

We are free to select the P -space. A convenient choice is the Hilbert space
spanned by a set of physically motivated single-particle states. However if
we increase the size of the P -space we end up recovering the full Hilbert
space as a limit. If shell effects are properties of the effective Hamiltonian
in the P -space, then these shell effects should remain as we increase more
and more the P -space and hence shell effects should be also seen using bare
Hamiltonians. Clearly, this motivates the study of shell effects in simple
bare Hamiltonians. Certainly we do not suggest that this is the method
to be used for realistic calculations. The method of constructing effective
Hamiltonians is practical, reasonable accurate, and unavoidable.
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In this work we consider a simple semirealistic bare Hamiltonian. The
Modified Afnan–Tang S3 potential (MATS3) (Ref. [6]), which consists of the
following terms dependent on the distance r between the nucleons

v = vs(r)Π01 + vt(r)Π10 + vo(r)(Π00 +Π11) , (1)

where ΠST is the projector to the values (ST ) of the spin and isospin of the
two nucleons, has been widely used in testing many-body methods and cen-
tral correlations (see for example Refs. [4,7-9]). The singlet, triplet and odd
potentials vs, vt, vo are a sum of Gaussians and contain a moderately strong
repulsive core. The largest values of the core (at r = 0) are 811.0MeV,
630.3MeV and 1000.0MeV in the singlet, triplet and odd channels, respec-
tively. The Afnan–Tang S3 potential does not include the odd-channel.
We consider the case of the Deuterium in a semi-analitical method and the
case of 4He. The results discussed in this work can be understood in the
following way, especially the ones relative to the closed shell case of 4He.

A given number of major oscillator shells can be used to define a trun-
cated bare Hamiltonian. We found that few Slater determinants are neces-
sary to obtain the ground-state energy of this truncated bare Hamiltonian.
As the number of major oscillator shells is increased, we obtain better ap-
proximations to the bare Hamiltonian in the full Hilbert space and again few
Slater determinants account for the, now much lower, binding energy. In the
largest single-particle space that we were able to use, a single Slater deter-
minant properly projected to good angular momentum and parity Jπ = 0+

accounts for about 84% of the binding energy of 4He. We evaluated the bind-
ing energy in the full Hilbert space using the effective Hamiltonian obtained
with the Lee–Suzuki method. In constructing the effective Hamiltonian,
we have used the variant of the method which gives a hermitian effective
Hamiltonian in a way very similar to the no-core shell model approach of
Ref. [10].

Therefore, the problem with shell effects, at least for 4He and for the
potential used in this work, does not seem to originate from the fact that the
bare Hamiltonian requires a very large number of Slater determinants, but
rather, that the truncated bare Hamiltonian matrix is a poor approximation
to the one evaluated in the full Hilbert space. That is, the number of single-
particle states may not be sufficiently large. Differently stated, the exact
binding energy of the bare truncated Hamiltonian problem is much smaller
than the one in the full space.

The method used in evaluating the binding energy for both the truncated
bare and the effective Hamiltonian (for comparison) is the Hybrid Multide-
terminant method (Ref. [11]), whereby the many-body wave function is writ-
ten as a linear combination of symmetry unrestricted Slater determinants
and exact quantum numbers are restored with the appropriate projectors.
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That is

|ψ〉 = P̂

Nw∑

α=1

gα|φ, α, n〉 |φ, α, p〉 . (2)

The labels n and p refer to neutrons and protons respectively, P̂ is the
projector that restores the exact quantum numbers and |φ, α, τ = n, p〉 is
a Slater determinant built from the generalized creation operators

c†n(α, τ) =

Ns∑

i=1

Ui,n(α, τ) a†i,τ . (3)

that is

|ψ〉 =

Nw∑

α=1

gα

∏

τ=n,p

c†1(α, τ) c
†
2(α, τ) . . . c†Nτ

(α, τ)|0〉 . (4)

The meaning of the symbols in Eq. (3) and Eq. (4) is the following. The
complex coefficients Ui,n(α, τ) and gα are determined variationally minimiz-

ing the expectation values of the Hamiltonian 〈ψ|H|ψ〉/〈ψ|ψ〉, a†i,τ is the
operator that creates a nucleon in the harmonic oscillator single-particle
state i and |0〉 is the particle vacuum. The minimization of the expectation
values of the Hamiltonian is carried out using the powerful quasi-Newtonian
gradient methods as described in detail in Ref. [11]. We have used two

sets of projectors P̂ . In some cases we have used the projectors to good
z-projection of the angular momentum and parity Jπ

z = Jπ. In some other
cases we have used the full angular momentum projector to good Jπ. This
last type of projector decreases the number of Slater determinants necessary
to accurately describe the ground-state. A projected, symmetry unrestricted
Slater determinants is equivalent to a very large number of m-scheme Slater
determinants as it can be seen by substituting Eq. (3) in Eq. (4). Precisely
the inclusion of a very large number of m-scheme Slater determinants in just
one symmetry-unrestricted Slater determinant with good quantum numbers
restored with the projectors before variation, makes this method the ideal
one to study shell effects. The method brings together the advantages of the
Quantum Monte Carlo Diagonalization method (QMCD) (Ref. [12]) and of
the VAMPIR method (Ref. [13]).

In Section 2 we analyze the case of Deuterium mostly in a semianalytical
fashion and in Section 3 we discuss the case of 4He.
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2. Deuterium

For the case of Deuterium we first diagonalize the intrinsic Hamiltonian

H = −
~

2

M
∆+ vt(r) , (5)

since only the triplet channel gives the bound state. M in Eq. (5) is the
nucleon mass. We took ~

2/2M = 20.72125MeV fm2. The ground-state
wave function φrel(r) has an intrinsic energy of −2.222MeV, r being the
relative distance. In order to localize the system we multiply this intrinsic
wave function by a normalized Gaussian of the center of mass ψcm(Rcm) =
Nexp(−aR2

cm/2) (we selected a = 1.4478 fm−2)

φ(~rn, ~rp) = ψrel(r)ψcm(Rcm) , (6)

rn and rp being the position of the neutron and the proton, respectively.
The total wave function of Eq. (6) has an angular dependence on cos θnp,
where θnp is the angle between the vectors ~rn and ~rp. It can be analyzed in
terms of the Legendre polynomials Pl, that is

φ(~rn, ~rp) =
∞∑

l=0

ξ(rn, rp)Pl(cos θnp) , (7)

using the well known identity that relates the Legrendre polynomials and
the spherical harmonics, one has

φ(~rn, ~rp) =
∑

l,m

4π

2l + 1
ξl(rn, rp)Ylm(r̂n)Y ∗

lm(r̂p) . (8)

In order to disentangle entirely this wave function, we need to expand the
radial function ξ(rn, rp) in terms of radial single-particle wave functions. Let
us discretize the lengths rn and rp and consider the eigenvalue problem for
the matrix rnξl(rn, rp)rp, that is

rnξl(rn, rp)rp =
∑

k

Rl,k(rn)El,k Rl,k(rp) (9)

after inserting into Eq. (8), and redefining the weights El,k to include the
coefficient 4π/(2l + 1), we obtain

φ(~rn, ~rp) =
∑

l,m,k

El,k

Rl,k(rn)

rn
Ylm(r̂n)

Rl,k(rp)

rp
Y ∗

lm(r̂p) . (10)
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We can properly normalize the radial wave functions by integration and
redefine again the weights El,k. The normalization of the wavefunctions
implies the sum rule ∑

k,l

(2l + 1)E2
l,k = 1 . (11)

Equation (10) shows that the wave function has been recast in a shell model
expansion. For this interpretation to be valid some conditions must be met.
Even if the intrinsic wave function is suppressed at short distances, only few
weights must contribute appreciably to the sum rule of Eq. (11). Moreover,
the single-particle radial wave functions must be localized around the origin
and, since they do not satisfy an oscillation theorem in any obvious way,
should have approximately the right nodal structure. It is not simple to
determine accurately these radial wave functions, since for large l, k values
their probabilities in the total deuterium wave function are very small. The
nodal structure of these radial wave functions can be different from the one
obtained by diagonalizing a single-particle Schroendinger equation. Here
we are diagonalizing a two-particle wave function. In Table I we show the
largest values of the probabilities E2

l,k for some l values.

TABLE I

Probabilities E2

lk of having single-particle states l, k in the Deuterium wave func-
tion. The sum rule of Eq. (11) obtained with these states is 0.9928.

l k E2

l,k l k E2

l,k

0 1 0.8072767 1 1 0.0332132

0 2 0.0194795 1 2 0.0018147

0 3 0.0014325 1 3 0.0003395

0 4 0.0004355 1 4 0.0001639

0 5 0.0001581 1 5 0.0000192

0 6 0.0000213 1 6 0.0000105

2 1 0.0067855 3 1 0.0014879

2 2 0.0006597 3 2 0.0001814

2 3 0.0001923 3 3 0.0000863

2 4 0.0000875 3 4 0.0000259

2 5 0.0000134 3 5 0.0000057

4 1 0.0004020 5 1 0.0001221

4 2 0.0000570 5 2 0.0000197

4 3 0.0000297 5 3 0.0000095

4 4 0.0000096 5 4 0.0000034
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As it can be seen from Table I, the probabilities of having a given l, k
single-particle state in the deuterium wave function decrease very rapidly
with increasing l or k. However, neglecting small components in the expan-
sion of the wave function in Eq. (10), can give sizable errors to the energy.

In Figs. 1–3 we plot the dominant radial wave functions up to l=2. As it
can be seen, the nodal structure is not similar to the one of the harmonic os-
cillator, or to the one obtained diagonalizing a single-particle Schroedinger
equation. These nodal structures can be different depending on the two-
particle wave-function, sometimes nodes are missing and sometimes there
are more nodes than one would expect. Moreover, sometimes they appear
in intervals where the radial wave function is rather small and thus there
absence or presence is irrelevant. Structures like the one dispalyed in Ta-
ble I and in Figs. 1–3 appear also by choosing a different nucleon–nucleon
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Fig. 3. I = 2 Radial wave function R/r.

potential (for example the Malfliet–Tjon V potential of Ref. [14]). These
structures are qualitatively present even if we replace the repulsive core
with a much stronger one, although we need more l, k radial wave functions
to have a good approximation to the ground state. Moreover, if we con-
sider mathematical models without the repulsive core, the nodal structure
becomes similar to the familiar one where k − 1 is the number of nodes.

Since the set of single-particle wave functions appearing in Eq. (10) is
complete, it can in principle be used as the set of spherical single-particle
wave functions, instead of the harmonic oscillator wave functions, in order to
use the Hybrid Multideterminant method for many-body calculations. We
preferred not to do so since the Lee–Suzuki prescription is very simple to
implement in an harmonic oscillator basis and computationally very expen-
sive in any other basis. For Deuterium we performed this analysis to show
in a simple case how typical shell structure emerges. The real interesting
case is 4He which will be discussed in the next section. Before leaving this
section it is worth mention that this analysis is particularly simple in the
case tensor forces are not included.

3.
4
He

We considered an harmonic oscillator single-particle basis to define a trun-
cated bare Hamiltonian.The harmonic oscillator frequency enters the calcula-
tion only via the matrix elements of the Hamiltonian. Explicitely the MATS3
potential is given as follows. Strengths are in MeV and distances in fm.
The singlet, triplet and odd potentials are of the form

∑3

i=1
wi exp−γir

2.
For the singlet w1 = 1000.0, w2 = −166.0, w3 = −23.0 and γ1 = 3.0, γ2 =
0.8 and γ3 = 0.4. For the triplet w1 = 1000.0, w2 = −326.7, w3 = −43.0
and γ1 = 3.0, γ2 = 1.05 and γ3 = 0.6. For the odd potential w1 = 1000.0,
w2 = w3 = 0.0 and γ1 = 3.0.
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We considered several levels of truncation. We selected ~Ω = 47MeV,
as discussed below, and evaluated the intrinsic energy (i.e. the center of
mass energy has been removed). As a first level we considered only the
0s, 1p single particle states (Nho ≤ 1). In this case the ground state energy
evaluated with a single Slater determinant (with a Jπ = 0+ projector) is
positive and the addition of several Slater determinants does not produce to
a bound state.

Considering instead 3 major oscillator shells (that is Nho ≤ 2) and again
using the full angular momentum projector with one Slater determinant,
(Nw = 1) the energy is −4.446MeV, for Nw = 2 the energy is lowered
to −5.081MeV, with Nw = 3, it becomes −5.194MeV and with Nw = 5,
−5.212MeV. Comparing the results for increasing number of Slater deter-
minants we can see that 5 Slater determinants are sufficient to describe the
ground state (there is still some room for a further small decrease in the
energy). Between 1 and 5 Slater determinants the decrease of the energy is
0.776MeV indicating that just one Slater determinant accounts for most of
the binding energy of this severely truncated Hamiltonian problem.

As the next case we considered Nho ≤ 3. In this case for Nw = 1 the
energy is E = −9.202MeV, for Nw = 2 E = −10.268MeV, for Nw = 3,
E = −10.446MeV and with Nw = 5 we obtain E = −10.52MeV. Again, as
before, 5 Slater determinants describe suffiently well the ground state and
just one Slater determinant accounts for about 87% of the binding energy
of the truncated bare Hamiltonian problem.

Next we considered Nho ≤ 4. The results for energies in MeVs , evaluated
again with the Jπ = 0+ projector before variation, are −15.913, −17.102,
−17.230 and −17.429 for Nw = 1, Nw = 2, Nw = 3, Nw = 5, respectively.
Again we see the previous pattern, that is, one Slater determinant accounts
for most of the binding energy of the bare truncated problem and few Slater
determinants accurately describe the ground state since increasing the num-
ber of Slater determinants, the energy converges.

We kept increasing the single-particle basis in order to approach more
and more the full space. Since the calculations become time consuming using
the Jπ = 0+ projector, we performed the calculations using just one Slater
determinant. For Nho ≤ 5 the energy is E = −19.229MeV. For Nho ≤ 6
we obtained E = −22.388MeV. For Nho ≤ 8, we included in the single-
particle basis all states with l ≤ 3 and for l > 3 we could include only the
single-particle states (n, l) = (0, 4), (n, l) = (1, 4) and (n, l) = (0, 5) since
the calculation becomes too time consuming (all these calculations were
performed on personal computers). In this last case the energy with Nw = 1
is −24.077MeV.
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The largest set of single-particle states we were able to use, consists of
the following states. For l = 0, n = 0, 1, . . . , 8; for l = 1 and l = 2, n =
0, 1, 2, 3, 4; for l = 3, n = 0, 1, 2, 3; for l = 4, n = 0, 1, 2 and n = 0, l = 5 the
total number of single-nucleon states is 460 and with one Slater determinant,
we obtained E = −25.202MeV.

We determined the most convenient harmonic oscillator frequency us-
ing Nho ≤ 8 and just one Jπ

z projected Slater determinant. We changed
the frequency and selected the one that gives the lowest energy. The par-
tial Jπ

z was used to keep down the computational cost. In order to have
an idea of how the energy changes with the ~Ω, we considered (in Mev)
~Ω = 30, 35, 40, 45, 47, 50 and obtained for the energy the values (in Mev)
−13.55,−14.62,−15.18,−15.40,−15.42,−15.40, respectively. As it can be
seen, despite the very large change in the values of ~Ω, the energy does not
change much. The value of the frequency determined in this way, was also
used for the other truncated problems with the full Jπ projector.

The harmonic oscillator frequency is just a parameter that defines the
variational wave-function. Any value is acceptable and of course the most
convenient is the one that gives the lowest energy for the bare truncated
problem. We opted for this method rather than repeat the full set of cal-
culations with several frequencies, since the computational cost would be
several times larger.

For comparison we also have evaluated the ground state energy us-
ing a renormalized Hamiltonian obtained using the Lee–Suzuki prescription
along the same lines of the no-core shell model approach (Ref. [10]). The
P -space consists of all the Slater determinants that can be formed using
5 major oscillator shells (we considered ~Ω = 33MeV in this case) and the
P + Q-space, of all Slater determinants that can be built with Nho ≤ 200.
The value for the ground state energy is as follows. Using again the Jπ = 0+

projector, for Nw = 1, 2, 3, 5, 10 we obtained E = −29.318, E = −29.685,
E = −29.932, E = −29.994 and E = −30.030, respectively. The calculation
performed with the truncated bare Hamiltonian in the largest single-particle
space that we were able to use (E = −25.202) with just one Slater determi-
nant, accounts for 84% of the binding energy.

Using the truncated bare Hamiltonian, we also evaluated the fractional
number of neutrons and protons in the n, l, j orbits. The results are shown
in Table II. From Table II we can see clearly the shell closure of 4He. We
can also infer that higher l values should have been included, since the value
of ~Ω = 47MeV is large.

Using this large single-particle space, we also performed a calculation
using the Jπ

z projector. In this case the number of Slater determinants nec-
essary to describe the ground state is much larger. The results for the energy
are the following. For Nw = 1, 2, 3, 5, 10, 15, 25 the energies are (in MeVs)
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TABLE II

Fractional number of neutrons (protons) fn (fp) for the projected Hartree–Fock in
the largest space discussed in the text.

n l j fn fp n l j fn fp

0 0 1/2 1.637818 1.638007 1 0 1/2 0.265322 0.265207

2 0 1/2 0.034468 0.034500 3 0 1/2 0.010066 0.010059

4 0 1/2 0.002290 0.002288 5 0 1/2 0.000906 0.000900

6 0 1/2 0.000203 0.000202 7 0 1/2 0.000095 0.000092

8 0 1/2 0.000005 0.000005 0 1 3/2 0.009915 0.009884

0 1 1/2 0.004204 0.004238 1 1 3/2 0.004461 0.004440

1 1 1/2 0.002094 0.002093 2 1 3/2 0.001926 0.001931

2 1 1/2 0.000941 0.000932 3 1 3/2 0.000399 0.000393

3 1 1/2 0.000190 0.000195 4 1 3/2 0.000090 0.000091

4 1 1/2 0.000042 0.000041 0 2 5/2 0.003157 0.003157

0 2 3/2 0.002003 0.001928 1 2 5/2 0.002947 0.002945

1 2 3/2 0.001957 0.001944 2 2 5/2 0.000939 0.000938

2 2 3/2 0.000617 0.000621 3 2 5/2 0.000289 0.000286

3 2 3/2 0.000185 0.000184 4 2 5/2 0.000118 0.000119

4 2 3/2 0.000073 0.000073 0 3 7/2 0.002229 0.002223

0 3 5/2 0.001644 0.001664 1 3 7/2 0.001499 0.001507

1 3 5/2 0.001120 0.001115 2 3 7/2 0.000464 0.000465

2 3 5/2 0.000348 0.000346 3 3 7/2 0.000196 0.000195

3 3 5/2 0.000145 0.000146 0 4 9/2 0.000994 0.000996

0 4 7/2 0.000783 0.000778 1 4 9/2 0.000742 0.000745

1 4 7/2 0.000591 0.000590 2 4 9/2 0.000334 0.000335

2 4 7/2 0.000262 0.000262 0 5 11/2 0.000492 0.000498

0 5 9/2 0.000413 0.000417

−16.097, −21.054, −23.316, −25.156, −26.494, −26.955, and −27.476,
respectively. Comparing the results obtained with 15 and 25 Slater deter-
minants, the energy decrease is 531KeV, indicating, that convergence has
not been completely reached. Presumably the exact ground state energy for
this truncated bare problem is several hundred KeV lower.

In conclusion, we have performed ground state energy calculations using
bare Hamiltonians, in a truncated shell model space. The results indicate
that one or few Slater determinants (with all symmetries restored by the
appropriate projectors before variation) account for most of the binding
energies of the exact, truncated bare problem, and that, by increasing the
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shell model space, this feature remains and it reasonably approximates the
binding energies obtained with microscopically constructed effective Hamil-
tonians. We considered of course the best case of a closed shell nucleus.
It should be stressed that the size of the shell model space necessary for
reasonable convergence strongly depends on the potential employed in the
calculations. The softer the potential, the smaller the shell model space
necessary for reasonable convergence. The “harder” the potential, the larger
the shell model space required for convergence.

REFERENCES

[1] K. Suzuki, S.Y. Lee, Prog. Theor. Phys. 64, 2091 (1980).

[2] K. Suzuki, Prog. Theor. Phys. 68, 1627 (1982); K. Suzuki, Prog. Theor. Phys.
68, 1999 (1982); K. Suzuki, R. Okamoto, Prog. Theor. Phys. 92, 1045 (1992).

[3] M. Hjorth-Jensen, T.T.S. Kuo, E. Osnes, Phys. Rep. 261, 125 (1995).

[4] H. Feldmeier, T. Neff, R. Roth, J. Schnack, Nucl. Phys. A632, 61 (1998);
T. Neff, H. Feldmeier, Nucl. Phys. A713, 311 (2003).

[5] B.S. Pudliner, V.R. Pandharipande, J. Carlson, S.C. Pieper, R.B. Wiringa,
Phys. Rev. C56, 1720 (1997).

[6] I.R. Afnan, Y.C. Tang, Phys. Rev. 173, 1337 (1968); R. Guardiola, A. Faessler,
H. Müther, A. Polls, Nucl. Phys. A371, 79 (1981).

[7] H. Kamada, W. Glöckle, Nucl. Phys. A548, 205 (1992).

[8] G. Co’, A. Fabrocini, S. Fantoni, I.E. Lagaris, Nucl. Phys. A549, 439 (1992);
F.A. de Saavedra, G. Co’, A. Fabrocini, S. Fantoni, Nucl. Phys. A605, 359
(1992).

[9] R. Guardiola, M. Portesi, J. Phys. G 24, L37 (1998).

[10] P. Navratil, J.P. Vary, B.R. Barrett, Phys. Rev. C62, 054311 (2000); I. Stetcu,
B.B. Barrett, P. Navratil, J.P. Vary, Phys. Rev. C71, 044325 (2005).

[11] G. Puddu, J. Phys. G 32, 321 (2006); G. Puddu, Phys. Scr. 74, 576 (2006);
G. Puddu, Eur. Phys. J. A31, 163 (2007).

[12] T. Otsuka, M. Honma, T. Mizusaki, Phys. Rev. Lett. 81, 1588 (1998);
T. Mizusaki, T. Otsuka, Y. Utsuno, M. Honma, T. Sebe, Phys. Rev. C59,
R1846 (1999); T. Otsuka, M. Honma, T. Mizusaki, N. Shimizu, Y. Utsuno,
Prog. Part. Nucl. Phys. 47, 319 (2001).

[13] K.W. Schmid, F. Grummer, A. Faessler, Ann. Phys. (NY) 180, 1 (1987);
K.W. Schmid, Progr. Part., Nucl. Phys. 52, 565 (2004).

[14] R.A. Malfliet, J.A. Tjon, Nucl. Phys. A127, 161 (1969).


