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The effects of different forms of the sound-velocity function cs(T ) on
the hydrodynamic evolution of matter created in the central region of ultra-
relativistic heavy-ion collisions are studied. At high temperatures (above
the critical temperature Tc) we use the sound velocity function obtained
from the recent lattice simulations of QCD, whereas at low temperatures
we use the ideal hadron gas model. At moderate temperatures different
interpolations between those two results are employed. They are charac-
terized by different values of the local maximum (at T = 0.4 Tc) and local
minimum (at T = Tc). The extreme values are chosen in such a way that at
high temperature all considered sound-velocity functions yield the entropy
density consistent with the lattice simulations of QCD. We find that the
presence of a distinct minimum of the sound velocity leads to a very long
(∼ 20 fm/c) evolution time of the system. Since such long evolution times
are not compatible with the recent estimates based on the HBT interferom-
etry, we conclude that the hydrodynamic description becomes adequate if
the QCD cross-over phase transition renders the smooth temperature vari-
ations of the sound velocity, with a possible shallow minimum at Tc where
the values of c2

s (T ) remain well above 0.1.
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1. Introduction

The analysis of the data collected recently at RHIC suggests that mat-
ter created in ultra-relativistic heavy-ion collisions behaves like a perfect
fluid [1]. This hypothesis inspires new interests in the studies of relativistic
hydrodynamics of perfect and viscous fluids [2–17]. The aim of this paper is
to study the effects of the temperature dependence of the sound velocity on
the hydrodynamic evolution of matter created in ultra-relativistic heavy-ion
collisions. We use the approach to the relativistic hydrodynamics of perfect
fluid where the sound velocity is the only thermodynamic parameter enter-
ing the formalism [18–20]. In this way, we are able to observe and analyze
the immediate consequences of a particular choice of the function cs(T ) on
the space-time evolution of matter.

Our study may be regarded as complementary to Ref. [21], where the
effects of a particular choice of the equation of state on the particle spectra
and elliptic flow were studied. Our approach differs from Ref. [21] by the
selection of the equations of state under investigations. In our case the
equations of state are always constrained by the lattice results in the high
temperature limit and differ from each other mainly in the neighborhood of
the critical temperature. On the other hand, the main differences between
the equations of state studied in Ref. [21] appear in the region above the
critical temperature.

In our approach the full information about the equation of state is con-
tained in the temperature dependent sound velocity. At high temperatures,
T > 1.15Tc, we use the sound velocity function obtained from the recent
lattice simulations of QCD [22], whereas at low temperatures, T < 0.15Tc,
we use the result of the ideal hadron gas model [19]. At moderate temper-
atures different interpolations between those two results are employed. The
interpolating functions have a local maximum at T = 0.4Tc (corresponding
to the maximal value of the sound velocity in the hadron gas) and a local
minimum at T = Tc (corresponding to the expected minimal value of the
sound velocity at the phase transition). The values of the sound velocity
at the maximum and minimum are chosen in such a way that in the limit
of very high temperatures all considered sound-velocity functions yield the
entropy density consistent with the lattice simulations of QCD.

We emphasize that in all the considered cases we take into account only
smoothly varying functions cs(T ), hence we deal with the cross-over phase
transitions rather than with the rigorous phase transitions of a given order
that might be determined by the discontinuity of the appropriate thermo-
dynamic variable. Nevertheless, the deeper is the minimum of the sound
velocity at the critical temperature, the more the system evolution resem-
bles the behavior typical for the exact first order phase transition. The main
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difference between the first order phase transition studied commonly in the
literature and the approximate first-order phase transition studied below (as
one of the examples) is that in our case the phase transition does not lead
to the ideal quark–gluon plasma but rather to strongly interacting plasma
characterized by the lattice results.

In spite of such differences, in agreement with earlier studies [23–26] we
find that a deep minimum of the sound velocity leads to the very long, ex-
ceeding 20 fm (c = 1), evolution time of the system. We further find that
even moderate minima lead to quite long evolution times of the system,
which exceed 15 fm. Clearly, such long evolution times are not compatible
with the recent HBT estimates of the lifetime of the system. For exam-
ple, one finds times of about 10 fm using the RHIC data in the relation
RL(mT) = τ

√

Tk/mT [27], which connects the longitudinal pion correlation
radius RL, the kinetic freeze-out temperature Tk, the evolution time τ , and
the transverse mass of the pion pair mT. Another example is Ref. [28] that
obtained only 6 fm for the effective duration of the hydrodynamic evolution
in Au+Au collisions at RHIC.

Only if the sound velocity has a shallow minimum resulting from the
simplest interpolation between the ideal hadron gas result at T = 0.85Tc

and the lattice result at T = 1.15Tc, see Fig. 1, one finds that the evolution
time of the system might be compatible with the HBT result. We thus
conclude that the hydrodynamic description becomes adequate if the QCD
cross-over phase transition renders the smooth temperature variations of the
sound velocity, with a possible shallow minimum at Tc where the values of
c2
s (T ) remain well above 0.1.

Fig. 1. Temperature dependence of the square of the sound velocity at zero baryon
density. The plot shows the result of the lattice simulations of QCD [22] (solid
line) and the result obtained in the ideal hadron gas model [19] (dashed line). A
piece of the thick solid line describes the simplest interpolation between the two
calculations. The critical temperature Tc equals 170 MeV.
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2. Temperature dependent sound velocity

In Fig. 1 we show the function c2
s (T ) obtained from the ideal hadron gas

calculation [19] and the lattice simulations of QCD [22]. The ideal hadron
gas result (dashed line) was obtained with the full mass spectrum of reso-
nances [29, 30]. One can check that at very small temperatures the sound
velocity is determined basically by the properties of the massive pion gas; for
T ≪ mπ, where mπ is the pion mass, one finds cs(T ) =

√

T/mπ. Clearly,

this behavior is quite different from the limiting value cs = 1/
√

3 characteriz-
ing the massless pion gas. The lattice calculations (solid line) were obtained
for physical masses of the light quarks and the strange quark [22]. One can
see that the results of the two calculations cross around the critical temper-
ature, we assume Tc = 170 MeV, and may be naturally interpolated (see a
thick solid line in this region). Taking the lattice result at the face value,
one expects that the sound velocity significantly drops down in the region
T ≈ Tc. Similar behavior, with cs(Tc) reaching zero, is expected in the case
of the first order first transition where the changes of the energy happen at
constant pressure. However, the lattice simulations suggest that for three
massive quarks with realistic masses we deal with the cross-over rather than
with the first order phase transition, hence the sound velocity remains fi-
nite, as is consistently shown in Fig. 1. Nevertheless, the exact values of
the sound velocity in the region T ≈ Tc are in our opinion poorly known,
since the lattice calculations are not very much reliable for T < Tc and, at
the same time, the use of the hadron gas model with vacuum parameters
becomes unrealistic for large densities (temperatures)1. In this situation,
it is practical to consider different interpolations between the lattice and
hadron-gas results and to analyze the physical effects of a particular choice
of the interpolating function.

In this paper we consider three different sound-velocity functions cs(T ).
Below, we refer to these three options as to the cases I, II and III, see Fig. 2.
In the case I, we use the sound-velocity function which agrees with the ideal
hadron gas model of Ref. [19] in the temperature range 0 < T < 0.85Tc

and with the lattice result in the temperature range T > 1.15Tc. In the
region close to the critical temperature, 0.85Tc < T < 1.15Tc, a simple
interpolation between the two results is used. We have checked that such a
simple interpolation yields directly the entropy density consistent with the
lattice result. Namely, the use of the thermodynamic relation

s(T ) = s(T0) exp





T
∫

T0

dT ′

T ′c2
s (T

′)



 , (1)

1 The authors of Ref. [22] state that in the hadronic phase the lattice spacing is larger
than 0.3 fm and the lattice artifacts cannot be controlled in this region.
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Fig. 2. Three different forms of the sound velocity used in the present hydrodynamic
calculations. The solid line describes the interpolation between the lattice and the
hadron-gas results [19] with a shallow minimum where c2

s
= 0.14 (case I), the dashed

line describes the interpolation with a dip where c2

s = 0.08 (case II), finally the
long-dashed line describes the interpolation with a deep minimum where c2

s = 0.03

(case III). In order to render the same entropy density at high temperatures, in
the cases II and III the sound velocity in the region T ≈ 0.4 Tc is slightly increased
compared to that considered in the case I. The larger values of the sound velocity
in this region may be attributed to the repulsive van der Waals effects.

relating the entropy density with the sound velocity for zero baryon chemical
potential, gives the function s(T ) which agrees with the lattice result at high
temperatures, s(T )/T 3 ≈ 12 at T = 1.5Tc [22].

In the cases II and III, the sound-velocity interpolating functions have
a distinct minimum at T = Tc. Comparing to the case I [with cs(Tc) = 0.37
and c2

s (Tc) = 0.14], the value of the sound velocity at T = Tc is reduced by
25 % in the case II [where cs(Tc) = 0.28 and c2

s (Tc) = 0.08], and by 50%
in the case III [where cs(Tc) = 0.19 and c2

s (Tc) = 0.03]. From Eq. (1) one
concludes that the relative decrease of the sound velocity at Tc leads to
the relative increase of entropy density for high temperatures. Hence, in
order to have the same value of the entropy density at high temperatures,
a decrease of the sound velocity function in the region T ≈ Tc should be
compensated by its increase in a different temperature range. For our inter-
polating functions in the cases II and III we assume that the values of cs(T )
in the range 0.15Tc < T < 0.85Tc are slightly higher than in the case I, see
Fig. 2. Such modifications may be regarded as the parameterization of the
repulsive van der Waals forces in the hadron gas. The values of the max-
ima are chosen in such a way that the entropy densities for three considered
cases are consistent with the lattice result, see the upper left panel of Fig. 3
where the functions s(T )/T 3 are shown. We stress that in the three consid-
ered cases the values of cs(T ) in the temperature range Tc < T < 1.25Tc
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Fig. 3. The temperature dependence of the entropy density and energy density,
the two upper panels, as well as the energy density dependence of the pressure
and sound velocity, the two lower panels. One can observe that the deeper is the
minimum of the sound velocity function, the steeper is the increase of the entropy
density and the energy density.

remain significantly below the massless limit 1/
√

3. Such a limiting value is
implicitly used in many hydrodynamic codes assuming the equation of state
of non-interacting massless quarks and gluons for T > Tc, see for example
the extended 3+1 hydrodynamic model of Ref. [12]. We expect that the
cooling of the central part of our system will be significantly slower than the
cooling of the systems containing an ideal quark–gluon plasma in the core
and this effect reflects the non-perturbative phenomena taking place above
Tc that may be attributed to the formation of strongly interacting quark–
gluon plasma. We also note that our study differs from the 3+1 model of
Ref. [6] where the interpolation between the equation of state of the ideal
quark–gluon plasma above Tc (not of the lattice QCD) and the resonance
gas below Tc was introduced. We have checked that the corrections intro-
duced in this way differ from the non-perturbative effects found in the lattice
simulations. Moreover, Fig. 3 of Ref. [6] (lower left panel) indicates that the
sound velocity at low temperatures does not drop to zero as in our case.
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3. Hydrodynamic equations

In this section we recapitulate the main features of approach to the
relativistic hydrodynamics, which is the generalization of the method intro-
duced by Baym et al. [18] and has been developed in Ref. [19] (introduction
of the temperature dependent sound velocity and initial transverse flow) and
Ref. [20] (inclusion of the cylindrical asymmetry). We rewrite the equations
in such a way that the sound velocity is the only thermodynamic parameter
characterizing the matter. Such reformulation of the hydrodynamic equa-
tions is always possible in the case of zero net baryon density. Since we
consider the evolution of matter formed in the central region at the largest
RHIC energies, the approximation of zero net baryon density is reasonable.
Thermal analysis of the ratios of hadron multiplicities indicates that the
baryon chemical potential at RHIC top energies is about 30 MeV, i.e., it is
much smaller than the corresponding temperature of about 170 MeV [31,32].
We also restrict our considerations to the boost-invariant and cylindrically
symmetric expansion. The assumption of boost-invariance is again good for
the central region, while the effects of azimuthal asymmetry are typically
small, of the order of 10%, and have no effects on our conclusions.

In the case of vanishing baryon chemical potential the hydrodynamic
equations may be written in the following form

uµ∂µ (T uν) = ∂νT , (2)

∂µ (suµ) = 0 , (3)

where T is the temperature, s is the entropy density, and uµ = γ (1,v) is

the hydrodynamic four-velocity (with γ = 1/
√

1 − v2). Since temperature
is the only independent thermodynamic variable, all other thermodynamic
quantities can be obtained from pressure given as a function of temperature,
P = P (T ). Such a function plays a role of the equation of state. With the
help of the thermodynamic relations

dε = Tds , dP = sdT , ε + P = Ts , (4)

other thermodynamic quantities may be obtained. In addition, the equation
of state allows us to calculate the sound velocity

c2
s =

∂P

∂ε
=

s

T

∂T

∂s
. (5)

From Eq. (5) one immediately finds Eq. (1) discussed in Sect. 2. The com-
plete set of the thermodynamic quantities for the cases I, II and III is shown
in Fig. 3.
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For the boost-invariant systems with cylindrical symmetry Eq. (3) and
the spatial components of Eq. (2) may be rewritten as

vr
∂ ln T

∂t
+

∂ ln T

∂r
+

∂α

∂t
+ vr

∂α

∂r
= 0 , (6)

∂ ln s

∂t
+ vr

∂ ln s

∂r
+ vr

∂α

∂t
+

∂α

∂r
+

1

t
+

vr

r
= 0 , (7)

where α is the transverse rapidity of the fluid defined by the condition vr =
tanh α. The longitudinal component has the well known boost-invariant
form vz = z/t [33]. By introducing the potential Φ (T ) defined by the
differentials

dΦ =
d ln T

cs

= csd ln s , (8)

and by the use of the two functions A± defined by the formula

A± = Φ ± α , (9)

Eqs. (6) and (7) become

∂A± (t, r)

∂t
+

vr ± cs

1 ± vr cs

∂A± (t, r)

∂r

+
cs

1 ± vr cs

(

vr

r
+

1

t

)

= 0 . (10)

We note that Eq. (10) agrees with the formalism discussed in [18] if one
defines a± = exp(A±). If the functions A± are known, the potential Φ may
be calculated from the formula

Φ = 1

2
(A+ + A−) , (11)

and the velocity is obtained from the equation

vr = tanh
[

1

2
(A+ − A−)

]

. (12)

The knowledge of the function cs(T ) allows us, by the integration of Eq. (8),
to determine Φ as a function of the temperature; this function will be called
later ΦT . However, to get a closed system of equations for A+ and A−, we
have to invert this relation and obtain T as a function of Φ; this function
will be called later TΦ . In this way, the sound velocity may be expressed in
terms of the functions A+ and A−,

cs = cs

[

TΦ

(

1

2
(A+ + A−)

)]

, (13)
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and Eqs. (10) may be solved numerically using the standard methods. The
only restriction of our formalism is the condition against the formation of
shock waves [18, 34]

1 − c2
s + csT

dcs

dT
=

d

dT

(s cs

T

)

≥ 0 . (14)

We have checked that this condition is fulfilled by our sound-velocity profiles
I, II and III.

For boost-invariant and cylindrically symmetric systems the entropy con-
servation law (3) implies that the following quantity is conserved in time

S = 2π

∞
∫

0

dr r t γ(t, r)s(t, r) = const . (15)

For one-dimensional expansion this condition is reduced to the famous
Bjorken relation s(t) = s(t0)t0/t. We have checked that the condition (15)
is fulfilled in our calculations with very high accuracy, hence, no artificial
entropy production is present in our algorithm.

4. Initial conditions

For symmetry reasons, both the velocity field vr and the temperature
gradient ∂T/∂r should vanish at r = 0. This condition is achieved if the
functions A+ and A− are initially determined by a single function A(r)
according to the prescription [18]

A+(t = t0, r) = A(r) , A−(t = t0, r) = A(−r) . (16)

Our main physical assumption about the initial state is that the initial tem-
perature profile is connected with the nucleon–nucleus thickness function
TA(r) by the following equation

T (t0, r) = Ts [s(t0, r)] = Ts

[

s0

TA(r)

TA(0)

]

. (17)

Here Ts(s) is the inverse function to the entropy density function s(T ) and
the parameter s0 is the initial entropy at the center of the system. The
idea to use Eq. (17) follows from the assumption that the initially produced
entropy density s(t0, r) is proportional to the density of wounded nucleons at
a distance r from the collision center [35]. We use the value s0 = 70.5 fm−3

which yields T (t = t0, r = 0) = 2Tc. We note that the functions s(T ) and
Ts(s) (evaluated for the cases I, II, and III) agree if the temperature or
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entropy is sufficiently large. Hence, in the three considered cases the initial
temperature profiles are practically the same in the center of the system.
The small differences appear however if we consider larger values of r where
the temperature and entropy drops down. We also note the global entropy
defined by Eq. (15) is exactly the same in the cases I, II and III.

We recall that the thickness function is defined by the equation

TA(r) = 2

∫

dz ρ
(

√

r2 + z2

)

, (18)

where the function ρ(r) is the nuclear density profile given by the Woods–
Saxon function with a conventional choice of the parameters: ρ0 = 0.17 fm−3,
r0 = (1.12A1/3 − 0.86A−1/3) fm, a = 0.54 fm, A = 197. We note that the
initial condition (17) may be included in the initial form of the function A(r)

A(t = t0, r) = ΦT

{

Ts

[

s0

TA(r)

TA(0)

]}

. (19)

5. Results

In Fig. 4 we show the isotherms describing the hydrodynamic evolution
of the system with the sound velocity I. The numbers at the isotherms give
the values of the temperature in the units of the critical temperature Tc.
We observe that the center of the system cools down to 0.8 Tc after the
evolution time of about 15 fm. We note that the hydrodynamic description
should be replaced (around T ∼ 0.8Tc) by the model describing hadronic
rescattering (see, e.g., Ref. [9]) whose presence additionally increases the
lifetime of the system. Another option is to assume that freeze-out happens
at high temperature (see Refs. [36,37] where many physical observables were
successfully reproduced under the assumption of a universal freeze-out taking
place at the temperature of 165 MeV). In the latter case the lifetime of the
system may be identified simply with the time when the system passes the
phase transition. In the discussed case this time is of about 10 fm.

In Fig. 5 we show the isotherms describing the hydrodynamic evolution
of the system with the sound velocity II. The initial entropy is exactly the
same as in the case I. One can notice that the central temperature does not
drop below 0.8 Tc before 20 fm. Clearly, the dip in the sound velocity causes
a dramatic increase of the lifetime of the system.

The most striking situation is presented in Fig. 6. Here the sound velocity
with the deepest minimum is considered. Again in this case the initial
entropy of the system is exactly the same as in the cases I and II. One
can notice that the system does not pass the phase transition before the
considered evolution time of 20 fm. Contrary, even at that time the system
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Fig. 4. Isotherms describing the hydrodynamic evolution for the case I; sound
velocity with a shallow minimum where cs(Tc) = 0.37. The numbers denote the
values of the temperature in the units of the critical temperature Tc = 170 MeV.

Fig. 5. Same as Fig. 4 but for the case II; sound velocity with a moderate minimum,
cs(Tc) = 0.28.

has the tendency to expand more, the effect indicated by the shapes of the
isotherms. The evolution time in the case III becomes longer than in the
case II and of course much longer than in the case I. The situation depicted
in Fig. 6 resembles very much the case of the first order phase transition,
where the large latent heat is used to increase the volume of the system at
constant temperature, see Fig. 3(b) where the step in the energy density as
the function of the temperature is seen. Only when the latent heat is totally
consumed, the center of the system starts further cooling.
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Fig. 6. Same as Fig. 4 but for the case III; sound velocity with a deep minimum,
cs(Tc) = 0.19.

Interestingly, the case III describes how our approach with the tempera-
ture dependent sound velocity is capable of imitating the phenomena present
at the real phase transitions. We have to remember, however, that the ap-

proximate first-order phase transition considered here differs from the real
first-order phase transition between the hadron gas and the ideal quark–
gluon plasma.

6. Conclusions

The observation of the effects related with the possible presence of the
softest point of the QCD equation of state triggered the ideas about the
long-living states formed in ultra-relativistic heavy-ion collisions [23–26,38].
In view of the RHIC data indicating a short lifetime of the system we may
analyze the problem of the lifetime in the reverse order, asking the ques-
tion how soft the equation of the state may be to allow for a hydrodynamic
description consistent with the HBT results. In our approach the issue of
the softest point is translated into the problem of realistic behavior of the
sound velocity in the vicinity of the critical temperature. We argue that
the smooth behavior of the sound velocity without any distinct minimum is
favored if we demand the short hydrodynamic evolution time of about 10
fm. Our calculations show, as expected, that the hydrodynamic evolution is
very sensitive to the actual values of the sound velocity and indicates how
extremely important is the good knowledge of the function cs(T ). The reli-
able values of cs are not only required for the vicinity of the phase transition
but also for smaller and larger temperatures, since the sound velocity plays a
role of the coupling between the temperature gradients and the acceleration
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of the fluid. Finally, we note that the cooling of the system may be faster if
the initial pre-equilibrium transverse flow is formed. The inclusion of such a
flow in the initial conditions for the hydrodynamic equations leads naturally
to faster expansion of matter.

We thank Wojciech Broniowski for his very helpful comments and dis-
cussions.
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