
Vol. 38 (2007) ACTA PHYSICA POLONICA B No 11

NEUTRINO OSCILLATIONS IN THE CASE

OF GENERAL INTERACTION∗
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The process of the neutrino production, oscillation in the vacuum or
in matter, and detection in the case of interactions which are beyond the
Standard Model is considered. Neutrino states are described by the density
matrix. The final neutrino production rate does not factorize. The known
Maki–Nakagawa–Sakata neutrino states and the factorized production rate
are recovered in the νSM regime.

PACS numbers: 14.60.St, 14.60.Pq, 25.30.Pt

1. Introduction: Lagrangian of the extension of the νSM

The aim of this short presentation is to check how neutrino production,
oscillation and detection processes are modified if a new physics (NP) de-
scribes neutrino interaction. Let us begin with the process of the production
(P ) of the massive neutrino νi (i = 1, 2, 3) accompanied by the lepton lα
(α = e, µ, τ):

lα + P1 → νi + P2 , (1)

followed, after traveling along the baseline L, by its detection (D):

νi + D1 → lβ + D2 , (2)

where P1, P2 and D1, D2 are the accompanied particles.
Below we specify the NP extension of the interaction Lagrangian. Its

charged current (CC) part describes the neutrino production and detection
events, whereas the neutral current (NC) part modifies the neutrino inter-
action in a medium.
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1.1. Charged and neutral current Lagrangian for NP

The CC Lagrangian includes the νSM and the new LH and RH currents:

LCC =
−e

2
√

2 sin θW

{

∑

α,i

ν̄i [ γ
µ(1 − γ5)εLUL∗

αi + γµ(1 + γ5)εRUR∗
αi ] lα W+

µ

+
∑

α,i

ν̄i [ (1 − γ5)ηLV L∗
αi + (1 + γ5)ηRV R∗

αi ] lα H+

+
∑

u,d

ū [ γµ(1 − γ5)ǫ
q
LU∗

ud + γµ(1 + γ5)ǫ
q
RU∗

ud] d W+
µ

+
∑

u,d

ū [ (1 − γ5)τLW L∗
ud + (1 + γ5)τRW R∗

ud ] d H+
}

+ h.c. , (3)

where UL is the A−V νSM unitary neutrino mixing matrix [1]. The UR and
V L,R are the NP neutrino mixing matrices in the CC sector, the A+V and
(pseudo)scalar (P, S) one, respectively. The coupling constants εL, ǫ

q
L are

taken to be the global factors deviating slightly from their νSM values. For
relativistic neutrinos the appropriate NC Lagrangian is:

LNC =
−e

4 sin θW cos θW

{

∑

i,j

ν̄i

[

γµ(1 − γ5)ε
Nν

L δij + γµ(1 + γ5)ε
Nν

R ΩR
ij

]

νj

+
∑

f=e,u,d

f̄
[

γµ(1 − γ5)ε
Nf

L + γµ(1 + γ5)ε
Nf

R

]

f

}

Zµ . (4)

The νSM mixing matrix is diagonal, whereas ΩR
ij depends on the NP pa-

rameters [2]. The couplings εNν

L , ε
Nf

L and ε
Nf

R are the global factors very
close to their νSM values. The NP factors in LCC and LNC are the small
deviations from zero.

From LCC and LNC we could construct [3] the general low energy four-
fermion effective interaction Hamiltonian H which describes the coherent
neutrino scattering inside matter. As we consider three massive neutrinos
in two possible helicity states (λ = ±1) hence the NP effective Hamiltonian
Hλ,i; η,k in the mass — helicity base |λ, i〉 is the 6 × 6 dimensional matrix:

H = M +

(

H−− H−+

H+− H++

)

, (5)

where the mass term is equal to:

M=diag(E0
1 , E0

2 , E0
3 , E0

1 , E0
2 , E0

3 ) with E0
i =Eν +

m2
i

2Eν

, i=1, 2, 3 . (6)
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Here Eν is the energy for the massless neutrino [4]. The antidiagonal terms
in Eq. (5) originate in the tensorial T interaction which appears as a result
of the Fiertz rearrangement applied to the scalar part of LCC. The diagonal
terms are connected with the A±V interactions, both the νSM and NP ones.
The more detailed description of the νSM and NP decomposition of H could
be found in [5] and its full analysis is postpone to the forthcoming paper.

2. Implementation of the density matrix formalism

The density matrix approach to the neutrino oscillation phenomenon
is analyzed e.g. in [6, 7]. Such formalism is here more than merely the
elegant form of the analysis. Indeed, for relativistic neutrinos produced and
detected by the left-handed (LH) mechanism of the νSM, the oscillation
rates factorize ( [8], see also below) and the analysis is based on the QM
evolution of the pure neutrino state |~p, λ, i > of momentum ~p, helicity λ and
mass i [8]. Yet, if the NP of the right-handed (RH), scalar, or pseudoscalar
interactions is involved, then the states are mixed and the density matrix
formalism becomes the necessity. Below we present the way it works.

The neutrino statistical operator of the production process (1) written
in the mass-helicity basis is equal to [7]:

̺α
P (~p, L = 0) =

∑

λ,λ′=±1

3
∑

i,i′=1

|~p, λ, i〉 ̺α
P (~p;λ, i;λ′, i′) 〈~p, λ′, i′| , (7)

undergoing in the homogeneous medium the following quantum evolution
(with L = T ):

ρα
P (~x=~0, t=0) → ρα

P (~x= ~L, t=T )=e−i(HT )ρα
P (~x=~0, t=0) ei(H T ) , (8)

where H is given by Eq. (5). Suppose that in the production process (1) the
momentum of the initial lepton lα lies along the z axis. In the case of the
lack of the polarization in the process (1), the reduced density matrix for
the neutrino in the production place has the following form:

̺α
P (λ, i;λ′, i′) =

1

Nα

∑

λP2
λP1

λα

Aα
i

λ;λP2

λP1
,λα

(~p)
(

Aα
i′

λ′;λP2

λP1
,λα

(~p)
)∗

, (9)

where Aα
i

λ;λP2

λP1
,λα

(~p) are the amplitudes for the production process and to

preserve Tr(̺α
P ) = 1 the normalization constant Nα has to be equal to:

Nα =
∑

λ=±1

3
∑

i=1

∑

λP2
λP1

λα

Aα
i

λ;λP2

λP1
,λα

(~p)
(

Aα
i

λ;λP2

λP1
,λα

(~p)
)∗

. (10)

Here λ and λP2
, λP1

, λα are the helicities for the neutrino and the other
particles.
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As we are interested in the evolution of the density matrix in the LAB
frame hence the density matrix ̺α

P should be calculated in this frame also,
which is more arduous, than in the CM one. However, for the large oscillation
baseline L, only neutrinos which are produced in forward direction in the
CM frame will reach the detector. Then for the relativistic limit, it could
be proved [7] that the Wigner rotation is negligible, that means

̺LAB
P (~pLAB) = ̺CM

P (~pCM → ~pLAB) . (11)

Therefore we perform the calculation of ̺α
P in the CM frame and (for the

Lagrangian (3) and (4)) from Eq. (9) we obtain the 3×3 density submatrices:

̺α
P (−1, i; −1, i′) =

1

Nα

[

Aε2
L
ε2
LUL∗

αi UL
αi′ + Aη2

R
η2

RV R∗
αi V R

αi′

+ AεL ηR
εLηR (UL∗

αi V R
αi′ + V R∗

αi UL
αi′)

]

, (12)

̺α
P (+1, i; +1, i′) =

1

Nα

[

Aε2
R
ε2
RUR∗

αi UR
αi′ + Aη2

L
η2

LV L∗
αi V L

αi′

+ AεRηL
εRηL (UR∗

αi V L
αi′ + V L∗

αi UR
αi′)

]

, (13)

and ̺α
P (∓1, i; ±1, i′) = 0. The normalization constant Nα is equal to

Nα = Aε2
R
ε2
R + Aε2

L
ε2
L + Aη2

L
η2

L + Aη2
R
η2

R

+AεRηL
εRηL

3
∑

i=1

(

UR∗
αi V L

αi + V L∗
αi UR

αi

)

+AεL ηR
εLηR

3
∑

i=1

(

UL∗
αi V R

αi + V R∗
αi UL

αi

)

. (14)

The A-coefficients are the functions of the energies and momenta of the par-
ticles in the production process (1) of the neutrino. E.g. Aε2

L
and Aε2

R
are

the amplitudes for the CC processes, A−V in SM and A+V in NP, respec-
tively. Similarly, Aη2

L
and Aη2

R
are the amplitudes for the CC processes,

S−P and S+P, respectively. Next, AεLηR
and AεRηL

are the functions of
the amplitudes that mix different helicities of the neutrino. Finally, from
Eqs. (12)–(14) it could be easily noticed that for the νSM interaction the
standard setup for the neutrino, i.e.:

̺α
P (−1, i; −1, i′) = UL∗

αi UL
αi′ and ̺α

P (+1, i; +1, i′) = 0 , (15)

is regained.
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Now, let us discuss the detection process (2) of the neutrino after it
propagates to T = L 6= 0. If the particles D1 are not polarized and the final
particles polarizations are not measured, the differential cross section for the
flavor β neutrino detection in the LAB frame is given by:

dσβ α

dΩβ

=fD

∑

λ,i; λ′,i′

λD1
,λD2

,λβ

A
β
i

λ,λD1

λβ ,λD2

(~pβ) ̺α
P (λ, i;λ′, i′;L=T ) (Aβ

i′
λ′,λD1

λβ ,λD2

(~pβ) )∗ , (16)

where ̺α
P (λ, i;λ′, i′;L = T 6= 0) is the density matrix of the produced neu-

trino after it evolves to the detection point and λ, λD1
, λβ, λD2

are the par-
ticles helicities. fD is the kinematical factor:

fD =
1

64π2 (2 sD1
+ 1) Eν mD1

p3
β

(Eν + mD1
) p2

β − Eβ (~p · ~pβ)
. (17)

Here mD1
and sD1

are the mass and spin of the detector particle. The neu-
trino momentum and energy are noted as ~p and Eν , respectively. Similarly
~pβ and Eβ are the momentum and energy of the β lepton. The amplitudes

A
β
i

λ=±,λD1

λβ ,λD2

(~pβ) describe the detection process (2) and are calculated in the

rest frame of the detector (LAB). The formula (16) could be, after summing
over all helicities of the particles, rewritten as follows:

dσβ α

dΩβ

= fD

∑

i; i′

[

a−−
β;ii′ ̺

α
P (−1, i; −1, i′;L) + 2 cos ϕRe(a+−

β;ii′ ̺
α
P (1, i;−1, i′;L))

−2 sin ϕ Im(a+−
β;ii′ ̺α

P (1, i;−1, i′;L)) + a++
β;ii′ ̺

α
P (1, i; 1, i′;L)

]

. (18)

The a-coefficients (e.g. a−−
β;ii′) are the functions of the energies and momenta

of the particles in the detection process. They depend on the polar angle
θ of the momentum of the β lepton but the dependence on the azimuthal
angle ϕ is openly factorized out. Further investigations of the shape of the
differential cross sections enables us to write the a-coefficients (see Eqs.(3)
and (4)) as follows:

a−−
β;ii′ = AL

εε|εL|2UL∗
βi UL

βi′+AL
εη(ηLε∗LV L

βiU
L∗
βi′+ h.c.)+AL

ηη |ηL|2V L
βiV

L∗
βi′ ,

a++
β;ii′ = AR

εε|εR|2UR∗
βi UR

βi′+AR
εη(ηRε∗RV R

βiU
R∗
βi′ +h.c.)+AR

ηη |ηR|2V R
βiV

R∗
βi′ ,

a+−
β;ii′ = ARL

εη (η∗LεRUR
βiV

L∗
βi′−ε∗LηRV R

βiU
L∗
βi′ )+ARL

εε ε∗LεRUR
βiU

L∗
βi′ =(a−+

β;i′i)
∗ . (19)
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3. Density matrix evolution in a medium. The νSM regime

If the inclusion of the NP parameters is important it should be at first
seen in the cumulative phenomenon of the long propagation in matter. Let
(Wi λ; a) ≡ (〈λ, i|a〉) be the unitary transition matrix from the |λ, i〉 helicity-
mass eigenbasis to |a〉 energy eigenbasis of the effective Hamiltonian (5), and
Ea are the eigenvalues of H. As the general NP structure of the effective
Hamiltonian is non-diagonal hence (Wi λ; a) is not diagonal too, and it is
clear that the evolution Eq. (8) mixes all entries of the original neutrino
density matrix (9). Hence the evolution of the density matrix ̺α

P :

̺α
P (λ, i;λ′, i′;L = T 6= 0) =

∑

nσ

∑

n′σ′

∑

a,b

Wiλ;a W ∗
nσ;a

×̺α
P (σ, n;σ′, n′;L = T = 0)ei(Eb−Ea) T Wn′σ′;b W ∗

i′λ′;b , (20)

is in this respect different in medium and vacuum, where Wi λ; a = δλ,i; a.
Clearly in vacuum, Eq. (20) has the form:

̺α
P (λ, i;λ′, i′;L = T 6= 0) = ̺α

P (λ, i;λ′, i′;L = 0)ei(Eλ,i−Eλ′,i′ ) L , (21)

that does not mix ̺α
P entries. Hence for νSM in vacuum, Eq. (18) (after using

Eq. (15)) reduces to the νSM, factorized, differential cross section formula:

dσβ α

dΩβ

= fD AL
εε

∑

i; i′

UL
βiU

L∗
βi′U

L∗
αi UL

αi′e
i

m2
i −m2

i′

2 Eν
L

≡ dσβ

dΩβ

(mi = 0) × Pα→β(L) , (22)

and we recover the widely used factorization formula for the neutrino pro-
duction rate. However, in the general case the full expression (18) for the
final cross section does not factorize and it should be used in the future,
more precise neutrino experiments, anywhere NP effects might be studied.

4. Summary and perspectives for the NP corrections

and the νSM medium terms

It has been shown that for the NP Lagrangian (3) and (4), the neutrino
production and detection states are in general mixed. We have presented
the density matrix formalism which enables us to tackle with this sort of
the NP phenomena. It has been shown that only for relativistic neutrino
produced and detected by the LH mechanism the oscillation rate factorizes.
We indicated that analyzed NP corrections may have the V±A or S±P ori-
gin and that the later one may lead to the tensorial spin-flip interactions.
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The phenomenon is well known [3] although its significance has been mainly
ignored as it is effective in the presence of the nonzero mean magnetization
of the medium. Yet recent, systematically collected data on the magnetic
field of the earth seem to support the view that part of it is connected with
the correlated magnetized structures in the earth’s crust [9]. If so, the spin-
flip phenomenon induced by the possible existence of the S−P terms of the
proposed NP should not be ignored. Searching on this phenomenon pushed
us towards the necessity of the recalculation of the crust magnetization im-
pact in the νSM regime also, as it appears in its V±A terms in the CC and
NC interactions. The introductory calculations suggest that the effect can
be meaningful [5], depending on the value of the mean magnetization. The
problem is postpone to the forthcoming paper.
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supported by the Polish Ministry of Science under Grant 1 P03 B 049 26,
by MEC (FPA2006-05294) and by the European Community’s Marie Curie
Research Training Network under contract MRTN-CT-2006-035505 “Tools
and Precision Calculations for Physics Discoveries at Colliders”.
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