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We discuss some recent developments in SUSY Grand Unified Theories
based on the gauge group SO(10). Considering renormalisable Yukawa
couplings, we present ways to accommodate quark and lepton masses and
mixings.
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1. Introduction

Grand unified theories (GUTs) based on the group SO(10) [1] are in-
teresting because its 16-dimensional irreducible representation (irrep), the
spinor representation, contains all chiral fermions included in a Standard
Model (SM) family plus an additional SM gauge singlet, the right-handed
neutrino. Moreover, such theories allow type I and type II seesaw mech-
anisms for generating light neutrino masses. The basis of the Lie algebra
so(10) consists of 45 antisymmetric real matrices, usually taken to be

(Mpq)jk = δpjδqk − δqjδpk (1 ≤ p < q ≤ 10) , (1)

i.e.,

M12 =







0 1 · · ·
−1 0 · · ·
...

...
. . .






, etc. (2)

The commutation relations are

[Mpq,Mrs] = δpsMqr + δqrMps − δprMqs − δqsMpr . (3)
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Defining a Clifford algebra with basis elements Γp and anticommutation
relations

{Γp, Γq} = 2δpq1 (1 ≤ p, q ≤ 10) , (4)

it is easy to show that the quantities [3, 4]

1

2
σpq ≡ 1

4
[Γp, Γq] (5)

fulfil the so(10) commutation relations. Therefore, any representation of the
Clifford algebra is at the same time a representation of so(10).

1.1. The 16-dimensional spinor representation

The Clifford algebra associated with so(10) has a 32-dimensional irrep.
However, the associated so(10) representation obtained via (5) is reducible.
It decays into the spinor irrep 16 and its complex conjugate 16. The Pati–
Salam group G422 ≡ SU(4)C × SU(2)L × SU(2)R, where SU(4)C unifies
colour and lepton number [2], is very useful for a classification of the fields
contained in so(10) irreps. The decomposition of the 16 is given by

16
422
= (4,2,1) ⊕ (4,1,2) . (6)

The further decomposition of the G422 multiplets with respect to the SM
gauge group G321 ≡ SU(3)C × SU(2)L × U(1)Y is

(4,2,1)
321
= (3,2)1/6 ⊕ (1,2)

−1/2 , (7)

(4,1,2)
321
= (3,1)1/3 ⊕ (3,1)

−2/3 ⊕ (1,1)1 ⊕ (1,1)0 . (8)

Thus the SM fermion field assignments (all fields are to be considered left-
handed) are given by

(4,2,1) :

(

ur uy ub ν
dr dy db e

)

, (4,1,2) :

(

dc
r dc

y dc
b ec

uc
r uc

y uc
b νc

)

. (9)

1.2. Scalars for Yukawa couplings

For the Yukawa couplings one has two options: One option is to take
into account only “low-dimensional” scalar irreps like 10 and 16; in that case
one has to resort to non-renormalizable interactions. The other option [3,4]
is to take the scalar irreps which appear in

16 ⊗ 16 =

(

10

1

)

⊕

(

10

3

)

⊕
1

2

(

10

5

)

= 10 ⊕ 120 ⊕ 126 ; (10)
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here one has rather high-dimensional irreps. Note that in 16⊗16 only totally
antisymmetric tensors with uneven rank occur: the vector 10, the totally
antisymmetric 3-tensor 120 and the totally antisymmetric, selfdual 5-tensor
126. Selfdual means that ∗126 = i126; the star indicates the formation of
the dual tensor with the epsilon tensor of rank 10. The 126 is a genuinely
complex irrep. Therefore, the scalars for renormalisable Yukawa couplings
are given by 10, 120 and 126.

1.3. The Yukawa Lagrangian and fermion mass matrices

With the scalar irreps of the previous subsection the Yukawa Lagrangian
reads [3]

LY =
1

2

(

Hab16
T
aLC−1B Γp10p16bL

+Gab16
T
aLC−1B ΓpΓqΓr120pqr16bL

+Fab16
T
aLC−1B ΓpΓqΓrΓsΓt126pqrst16bL + H.c.

)

. (11)

In this Lagrangian we have SO(10) indices 1 ≤ p, q, r, s, t ≤ 10 and family
indices 1 ≤ a, b ≤ 3. The SO(10) “charge-conjugation matrix” B has the
properties

BT = B , B−1Γ T
p B = Γp . (12)

Due to the structure of LY , the Yukawa coupling matrices must fulfil

HT = H , GT = −G , F T = F . (13)

The vacuum expectation values (VEVs) kd,u, κd,u,ℓ,D, vd,u of the Higgs dou-
blets contained in the scalars of LY determine the mass matrices of the
fermions. For the charged fermions we have

Md = kd H + κd G + vd F , (14)

Mu = ku H + κu G + vu F , (15)

Mℓ = kd H + κℓ G − 3 vd F . (16)

The −3 is a Clebsch–Gordan coefficient. In the neutrino sector also SU(2)
triplet VEVs wR and wL, stemming from the 126, occur. One needs the
following matrices:

MD = ku H + κD G − 3 vu F , MR = wR F , ML = wL F , (17)

where MR with the large VEV wR is the mass matrix of the heavy Majorana
neutrinos. The mass matrix of the light neutrinos is determined by the
seesaw mechanism:

Mν = ML − MT
DM−1

R MD. (18)

The VEV wL is small according to the type II seesaw mechanism.
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2. The Minimal SUSY SO(10) GUT

The Minimal SUSY SO(10) GUT [5] (MSGUT) is characterised by the
following multiplets. Each fermion family resides in a 16, the gauge bosons
are, of course, in the adjoint representation 45 and the scalars are given
by 10 ⊕ 126 ⊕ 126 ⊕ 210. The 210 is the totally antisymmetric tensor of
rank 4. The tasks of the different scalar multiplets are the following:

• 10 ⊕ 126 → Yukawa couplings,

• 126 ⊕ 126 ⊕ 210 → breaking SO(10) down to G321,

• 126 → avoiding SUSY breaking at high scales.

The idea is that SUSY breaking is accomplished by soft terms at G321 stage.
A further condition is that of minimal finetuning [6]: At the electroweak
scale there are only two light Higgs doublets Hd, Hu, just the ones which
appear in the Minimal Supersymmetric Standard Model (MSSM). This is
a non-trivial condition because each of the scalar multiplets contains two
SM doublets, one for each hypercharge ±1/2.

However, the minimal SUSY SO(10) is GUT ruled out [7,8]. It is amazing
that this theory is so constrained that one can falsify it. In essence the reason
for the failure of the MSGUT can be formulated in the following way:

The MSSM gauge coupling unification occurs at the scale MGUT

without intermediate scale, but neutrino masses via the seesaw
mechanism require a scale Mseesaw < MGUT.

Identifying the electroweak scale with the SM VEV v ≃ 174 GeV and us-
ing ∆m2

atm ∼ 2.5 × 10−3 eV2 for the atmospheric neutrino mass-squared
difference, we find

v2/Mseesaw &

√

∆m2
atm ⇒ Mseesaw . 6 × 1014 GeV. (19)

Thus, Mseesaw is more than one order of magnitude below MGUT ≃ 2× 1016

GeV from the MSSM gauge coupling unification. This is the source of the
problem.

Let us present some details. In the MSGUT, G = 0 in the mass formulas
(14)–(18). Suppose the VEVs kd,u, vd,u, wR,L are free parameters, then
one obtains an excellent fit to known fermion masses and mixings [8]. The
number of independent parameters in the system of mass matrices is 21, 13
absolute values and 8 phases, whereas the number of observables is 18: nine
charged-fermion masses, two neutrino mass-squared differences, six mixing
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angles and one CKM phase. This fit is done by minimising [8]

χ2(p) =
n

∑

i=1

(

fi(p) − Ōi

σi

)2

, (20)

where p = {p1, . . . , pr} is the set of parameters (in the MSGUT r = 21) and
the functions fi(p) are the predictions for the observables (n = 18 in our
case). In (20) the input values Ōi ± σi have to be taken at the GUT scale,
extrapolated via the renormalisation group equations of the MSSM from the
values of the observables at the electroweak scale [9]. A suitable numerical
procedure for finding the minimum of χ2 is the downhill simplex method [8].

Though the fit to fermion masses and mixings turns out to be excellent
if the VEVs are considered as free parameters, this is not the whole story.
In the MSGUT the number of terms in the scalar potential is limited due
to SUSY and the SO(10) multiplet content. Therefore, the VEV ratios are
not free but functions of tan β = 〈H0

u〉/〈H
0

d 〉 and the parameters of the
scalar potential. Thus the fit in the fermionic sector constrains the scalar
potential, resulting in a light scalar G321 multiplet (8,3)0 which destroys
gauge coupling unification [7, 8].

3. The MSGUT plus the scalar 120-plet

The addition of the scalar 120 can release the strain from the mass
and mixing fit, allowing a “small” Yukawa coupling matrix F of the 126

in order to enhance the value of the neutrino masses via the type I seesaw
mechanism [10] with the inverse of F . In references [11, 12] we have put
forward the idea to add the 120 and to make the identification wR ≡ MGUT,
in order to avoid light scalar multiplets except the MSSM Higgs doublets.
This identification was done by hand, therefore, fits to fermion masses and
mixings by leaving the other VEVs as free parameters are only “generic”
fits, without taking into account the full theory. With the 120-plet no new
heavy VEVs appear compared to the MSGUT; the 120 has two SM Higgs
doublets for each hypercharge ±1/2 and now each MSSM Higgs doublet Hd,u

is a linear combination of six doublets.
The aim of [11, 12] was to show that the idea presented above works for

fermion masses and mixings. We used the method of [8] for the numerics.
However, due to the addition of the 120 there is the numerical problem
that the number of parameters is large and the downhill simplex method
becomes time consuming and less trustworthy. Therefore, it is necessary to
reduce the number of parameters, motivated by physical reasons. First of
all, type I seesaw will be dominant and one can neglect type II contributions
to Mν . Furthermore, one can assume real Yukawa couplings, motivated by
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spontaneous CP violation. In [11] we reduced the number of parameters
in addition by postulating a Z2 symmetry: 162 → −162, 120 → −120;
with complex VEVs there are 21 parameters, including 6 phases (Case A).
In [12], dispensing with a family symmetry, we assumed the VEVs of 10 and
126 to be real, but the VEVs of the 120 to be imaginary; this leads to 18
parameters (Case B).

We obtained excellent fits in both cases. E.g. for Case B the minimal
χ2 is 0.33 with normal and 0.011 with inverted neutrino mass spectrum.
Unfortunately we could not find striking predictions, except that both cases
strongly prefer a hierarchical spectrum—see Fig. 1 where χ2 is plotted as
a function the minimal neutrino mass over the solar mass-squared difference.
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Fig. 1. The χ2 of Case B as a function of R = mmin/∆m2

sol
.

4. Conclusions

The MSGUT together with the scalar 120 can excellently reproduce
all known fermion masses and mixings, while identifying the triplet VEV
wR (the “seesaw scale”) with the GUT scale—at least by doing a generic
fit without taking possible relations among the VEVs into consideration.
A more complete discussion has been started in [13], dubbing the model “New
MSGUT” or NMSGUT. Hopefully in the NMSGUT the VEVs necessary
for the fit to fermion masses and mixings are compatible with the scalar
potential on the one hand and gauge coupling unification on the other hand.
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This consistency has yet to be checked. While in the fit to the fermionic
sector spontaneous CP violation mainly played a role in reducing the number
of parameters in the Yukawa couplings [11, 12], there are indications that
it could play a much more important role in SO(10) GUTs [13, 14]. In
particular, in the NMSGUT the requirement of spontaneous CP violation
pushes the GUT scale closer to the Planck scale [13]. In conclusion, we
want to note, however, that still there is no idea how to obtain suitable
simple fermion mass matrices with explanatory power in SO(10) GUTs; the
discussion still centres on accommodation of fermion masses and mixings
and consistency of the theory.
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