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Chiral low-energy constants (LECs) carry the information of short-
distance dynamics involving heavier degrees of freedom not present in the
chiral Lagrangian. Our knowledge of the LECs is all-important at phe-
nomenological level because their relevance in the prediction of hadronic
observables at low-energies and, on the other side, because they provide
hints on the construction of a dual theory of QCD in the low-energy regime.
I review briefly the status of these important couplings.

PACS numbers: 11.15.Pg, 12.38.–t, 12.39.Fe

1. Introduction

Chiral symmetry of massless Quantum Chromodynamics has turned to
be a key tool in order to deal with the low-energy domain of strong inter-
actions (typically E ∼ Mπ) where hadron dynamics is not appropriately
described by partonic QCD. It is indeed the guiding principle in the con-
struction of Chiral Perturbation Theory (χPT) [1–3] that intends to be the
dual effective theory of QCD, i.e. it describes a perturbative quantum field
theory of strong interactions at low-energies.

The χPT Lagrangian involves a perturbative expansion guided by powers
of external momenta (p) and light quark masses (m), with p ∼ m, over a
hadronic scale Λχ, driven by the loop expansion required by unitarity, p2/Λ2

χ

or the one that rules the lightest heavier degrees of freedom omitted in the
Lagrangian, as the ρ(770) mass, p2/M2

ρ . It includes the hadronic fields that
live in this energy region, the multiplet of Goldstone bosons (π, K, η), and
classical auxiliary fields that help to determine Green functions satisfying the
appropriate Ward identities. The theory can be systematically constructed
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by looking for all the operators that, with the ingredients above and up to a
fixed order in the O(pn) expansion, satisfy the chiral symmetry constraint [4]:

LχPT = LχPT
2 + LχPT

4 + LχPT
6 + . . . . (1)

LχPT
2 embodies the spontaneous breaking of chiral symmetry and depends

only on two parameters: F ∼ 92.4 MeV, related with the decay constant of
the pion, and B0F

2 = −〈0|ψψ|0〉, the vacuum expectation value of the light
quarks1.

Higher orders in the expansion bring in the information of the dynamics
of short-distance contributions arising from heavier degrees of freedom that
have been integrated out, for instance, resonance states. As in any effective
field theory (EFT) this information is incorporated into the couplings of the
operators:

LχPT
4 =

10∑

i=1

Li O
(4)
i , LχPT

6 =

90∑

i=1

Ci O
(6)
i , (2)

for SU(3). Explicit expressions for the operators can be read from Refs. [3,5].
In Eq. (2) Li and Ci are the chiral LECs at O(p4) and O(p6) respectively;
they are not provided by chiral symmetry. At present we do not know how
to construct this Lagrangian directly from partonic QCD and, accordingly,
we do not know how to determine the LECs from that framework. Hence
we have to use our knowledge on the foundations of EFTs. LECs in χPT
should receive contributions from the energy regime at or above the scale
that rules the chiral perturbative expansion [6]. It is reasonable to infer that
the dynamics of the lightest meson resonances in the hadronic spectrum,
that are not included explicitly in the Chiral Lagrangian, would provide the
larger contribution. Following this assumption the determination of the in-

put of the resonance spectrum to the Li LECs in LχPT
4 [7] showed that they

indeed saturate the values extracted from phenomenological analyses. As
a consequence, it is reasonable to think that the most important contribu-
tion to the LECs is provided by the energy region immediately above the
integrated scale (E ∼ Λχ ∼Mρ).

The determination of LECs is crucial for the predictability of low-energy
hadronic observables determined using χPT. In the last ten years many
of these processes have been evaluated up to O(p6) ( [8] and references
therein) but our ignorance of the values of the involved LECs lessens the
practical value of that enormous task. Therefore it is mandatory to explore
procedures that allow us to determine or, at least, provide reliable estimates
for the values of chiral LECs up to O(p6).

1 It happens that the loop expansion of the theory tells us that Λχ ∼ 4πF that is of

the same order than Mρ. Hence there is only one scale in the perturbative expansion

of the theory.
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2. Tools: Large-NC and QCD asymptotic constraints

As illustrated in the O(p4) case [7, 9], a procedure to systematically
disclose the structure of the resonance contributions to the LECs in χPT is
available. The key point is to construct a Lagrangian theory that includes
resonances, Goldstone bosons and auxiliary fields respecting the underlying
chiral symmetry. There are several tools that allow us to grab important
properties of QCD and to implement them in an EFT-like Lagrangian model.
Two relevant features to consider are:

(i) Weinberg [1] and Leutwyler [10] state that if one writes down the most
general Lagrangian, including all terms consistent with assumed sym-
metry principles, and then calculates matrix elements with this La-
grangian to any given order of perturbation theory, the result will be
the most general possible S-matrix amplitude consistent with analyt-
icity, perturbative unitarity, cluster decomposition and the principles
of symmetry that have been required.

(ii) The 1/NC coupling (NC is the number of colours in QCD) can be taken
as a perturbative expansion parameter [11]. Indeed large-NC QCD
shows features that resemble, both qualitatively and quantitatively,
the NC = 3 case [12]. In practice the consequences of this approach
are that meson dynamics in the large-NC limit is described by tree
diagrams of an effective local Lagrangian involving an infinite spectrum
of zero-width mesons.

Both statements can be combined by constructing a Lagrangian in terms
of SU(3) (Goldstone mesons) and U(3) (heavier resonances) flavour multi-
plets as explicit degrees of freedom respecting the underlying chiral symme-
try. Then upon integration of the heavier states, the χPT Lagrangian is to
be recovered. This procedure has been systematically established [7, 9, 13]
and devises what is known as Resonance Chiral Theory (RχT). Its content
is schematically given by:

LRχT = LχPT
2 +

∑

n

LGB
n>2 + LR , (3)

where LGB
n>2 has the same structure than LχPT

4 , LχPT
6 ,. . . in Eq. (2) though

with different coupling constants, and LR involves terms with resonances
and their couplings to Goldstone modes:

(1) The construction of the operators in the LR is guided by chiral sym-
metry for the Goldstone mesons and by unitary symmetry for the
resonances. The general structure of these couplings is:

O = 〈R1R2 . . . Rmχ(pn)〉 ∈ L

m

︷ ︸︸ ︷
RR...R
(n) , (4)
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where Rj indicates a resonance field and χ(pn) is a chiral structured
tensor, involving the pseudoscalar mesons and auxiliary fields only.
With these settings chiral symmetry is preserved upon integration of
the resonance fields and, at the same time, the low-energy behaviour
of the amplitudes is guaranteed.

(2) Symmetries do not provide information on the couplings in LR as these
incorporate short-distance dynamics not included explicitly in the La-
grangian. The latter is supposed to bridge between the energy region
below resonances (E ≪MV ) and the parton regime (E ≫MV ). This
hypothesis indicates that it should match both regions and it satis-
fies, by construction, the chiral constraints. To suit the high-energy
behaviour one can match, for instance, the OPE of Green functions
(that are order parameters of chiral symmetry) with the corresponding
expressions evaluated within our theory. In addition, the asymptotic
trend of form factors of QCD currents is estimated from the spectral
structure of two-point functions and it is enforced on the observables.
This heuristic strategy is well supported by the phenomenology [12–16]
and provides information on the resonance couplings.

RχT does not have an expansion parameter, hence it does not admit
a conventional perturbative treatment. There is, of course, the guide pro-
vided by 1/NC that translates into the loop expansion, however, there is
no counting that limits the number of operators with resonances that have
to be included in the initial Lagrangian. The number of resonance fields
to be kept relies essentially in the physical system that we are interested
in. Moreover, the maximum order of the chiral tensor χ(pn) in Eq. (4) is
constrained by the high-energy behaviour.

As commented above, large-NC requires, already at NC → ∞, an infi-
nite spectrum in order to match the leading QCD logarithms, though we do
not know how to implement this in a model-independent way. The usual
approach in RχT is to include the lightest resonances because their phe-
nomenological relevance, though there is no conceptual problem that pre-
vents the addition of a finite number of multiplets. This cut in the spectrum
may produce inconsistencies in the matching procedure outlined above [17].
To deal with this, one can include more multiplets that may delay the ap-
pearance of that problem.

3. Status and prospects

I comment briefly the present status and several developments on our
knowledge of chiral LECs.
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3.1. O(p4)

Contributions from the lightest multiplets of vector resonances (JPC =
1−−) to SU(2) [2] and vector, axial-vector (1++), scalar (0++) and pseu-
doscalar (0−+) resonances to SU(3) [7] LECs are in general good agreement
with those values extracted from observables [18], showing that those reso-
nances saturate the phenomenological values. This has been lately confirmed
by the inclusion of one multiplet of resonances with 2++ and 1+− quantum
numbers [19] that are shown to play, quantitatively, a minor role.

A study of the strange quark mass dependence of the O(p4) SU(2) LECs
(ℓri ) up to O(p6) has also been recently performed [20]. The authors essen-
tially obtain:

ℓri = δi7
F 2

8B0ms
+ ai + bix+ O(x2) , i = 1, . . . 7 , (5)

where x = M2
K/(16π

2F 2) and ms is the mass of the strange quark. Here
ai = ai(Lj , lK) arise at O(p4) and bi = bi(Lj , Ck, lK) at O(p6), with lK =
log(M2

K/µ
2). The dependence on the strange quark or kaon mass is explicitly

stated above. In addition, and for later discussion, the bi parameters can
be written as bi = p0,i + p1,ilK + p2,il

2
K with an explicit dependence p0,i =

p0,i(LjLk, Cl), p1,i = p1,i(Lj).

3.2. O(p6)

In Ref. [13] we have constructed the RχT Lagrangian needed to evaluate
the resonance contributions to the O(p6) LECs in Eq. (2). It can be shown [9]
that, at O(p4), all local terms in LGB

4 (see Eq. (3)) have to vanish in order
not to spoil the asymptotic behaviour of QCD correlators. A corresponding
result at O(p6) is still lacking but we have also assumed that all the couplings
in LGB

6 are set to zero.
LRχT in Eq. (3) involves 124 a priori unknown couplings. Some addi-

tional work provides an enormous simplification:

(i) Upon integration of resonances not all couplings appear independently
in the LECs. In general only several combination of couplings inter-
vene and, to take into account this case, one can perform suitable
redefinitions of the fields. This procedure may upset the high-energy
behaviour of the theory but it is correct for the evaluation of the LECs.
Indeed, the unknown couplings are reduced to 77.
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(ii) The next step is to enforce short-distance information, i.e. the lead-
ing behaviour at large momenta, for two and three-point functions
and form factors. This procedure, set in Ref. [9], relies on the well-
known properties of partonic scattering or asymptotic QCD [21]. Two-
current correlators and associated form-factors provide 19 new con-
straints on couplings, while the three-point Green functions studied
till now: 〈VAP〉 [15] and 〈SPP〉 [13, 16], give 6 and 5 independent re-
strictions, respectively. We are left with 47 couplings. Further studies
along this line can diminish even more number of unknown constants.

Notwithstanding, we can already determine fully, at this point, the res-
onance contribution to the O(p6) couplings C78 and C89 (that appear in
π → ℓνℓγ and π → ℓνℓγ

∗, respectively), C87 (in 〈AµAν〉), C88 and C90 (in
F π

V (q2) and the q2 dependence of the form factors in Kℓ3), C38 (in 〈SS〉)

and C12 and C34 (in F π,K
V (q2) and fK0π−

+ (0)).
The evaluation of resonance contributions to Cj carried out in Ref. [13]

can be termed as an NC → ∞ evaluation (with a cut spectrum). It is in-
teresting to notice that when the values obtained for Cj (namely CR

j ) are

substituted in the expressions obtained in Ref. [20] for p0,i, the different com-
binations of Cj couplings vanish (except for i = 7) [22]. Something similar
happens with the combinations of LiLj products under additional condi-
tions. The reason of these unexpected cancellations is still not understood
and it would imply that, in the large-NC limit, resonance saturation of O(p4)
SU(2) chiral LECs is already achieved at leading order. This would be very
much satisfactory both for the 1/NC expansion and for the determination
of resonance contributions to chiral LECs. It is nice to have something left
to understand for the future.

I wish to thank Michał Czakon, Henryk Czyż and Janusz Gluza for the
excellent organization (but for the weather) of the XXXI International Con-
ference of Theoretical Physics in Ustroń, Poland. This work has been sup-
ported in part by the EU MRTN-CT-2006-035482 (FLAVIAnet), by MEC
(Spain) under grant FPA2004-00996 and by Generalitat Valenciana under
grant ACOMP/2007/156.

REFERENCES

[1] S. Weinberg, Physica A 96, 327 (1979).

[2] J. Gasser, H. Leutwyler, Ann. Phys. 158, 142 (1984).

[3] J. Gasser, H. Leutwyler, Nucl. Phys. B250, 465 (1985).



Chiral Low-Energy Constants: Status and Prospects 3465

[4] G. Ecker, Prog. Part. Nucl. Phys. 35, 1 (1995) [hep-ph/9501357].

[5] J. Bijnens, G. Colangelo, G. Ecker, J. High Energy Phys. 9902, 020 (1999)
[hep-ph/9902437].

[6] H. Georgi, Nucl. Phys. B361. 339 (1991).

[7] G. Ecker, J. Gasser, A. Pich, E. de Rafael, Nucl. Phys. B321, 311 (1989).

[8] J. Bijnens, Prog. Part. Nucl. Phys. 58, 521 (2007) [hep-ph/0604043].

[9] G. Ecker, J. Gasser, H. Leutwyler, A. Pich, E. de Rafael, Phys. Lett. B223,
425 (1989).

[10] H. Leutwyler, Ann. Phys. 235, 165 (1994) [hep-ph/9311274].

[11] G. ’t Hooft, Nucl. Phys. B75, 461 (1974); E. Witten, Nucl. Phys. B160, 57
(1979).

[12] S. Peris, M. Perrottet, E. de Rafael, J. High Energy Phys. 9805, 011 (1998)
[hep-ph/9805442]; M. Knecht, S. Peris, M. Perrottet, E. de Rafael, Phys. Rev.
Lett. 83, 5230 (1999) [hep-ph/9908283]; S. Peris, B. Phily, E. de Rafael, Phys.
Rev. Lett. 86, 14 (2001) [hep-ph/0007338].

[13] V. Cirigliano, G. Ecker, M. Eidemüller, R. Kaiser, A. Pich, J. Portolés, Nucl.
Phys. B753, 139 (2006) [hep-ph/0603205].

[14] M. Knecht, A. Nyffeler, Eur. Phys. J. C21, 659 (2001) [hep-ph/0106034];
A. Pich, Proceedings of the Phenomenology of Large NC QCD, ed. R. Lebed,
World Scientific, Singapore 2002, p. 239 [hep-ph/0205030]; G. Amorós,
S. Noguera, J. Portolés, Eur. Phys. J. C27, 243 (2003) [hep-ph/0109169];
P. D. Ruiz-Femenía, A. Pich, J. Portolés, J. High Energy Phys. 0307, 003 (2003)
[hep-ph/0306157]; J. Portolés, P. D. Ruiz-Femenía, Nucl. Phys. Proc. Suppl.
131, 170 (2004) [hep-ph/0311251]; J. Portolés, Nucl. Phys. Proc. Suppl. 164,
292 (2007) [hep-ph/0509279].

[15] V. Cirigliano, G. Ecker, M. Eidemüller, A. Pich, J. Portolés, Phys. Lett. B596,
96 (2004) [hep-ph/0404004].

[16] V. Cirigliano, G. Ecker, M. Eidemüller, R. Kaiser, A. Pich, J. Portolés,
J. High Energy Phys. 0504, 006 (2005) [hep-ph/0503108].

[17] J. Bijnens, E. Gamiz, E. Lipartia, J. Prades, J. High Energy Phys. 0304, 055
(2003) [hep-ph/0304222].

[18] G. Amorós, J. Bijnens, P. Talavera, Nucl. Phys. B602, 87 (2001)
[hep-ph/0101127].

[19] G. Ecker, C. Zauner, Eur. Phys. J. C52, 315 (2007) [hep-ph/0705.0624];
G. Ecker, Acta Phys. Pol. B 38 (2007), these proceedings.

[20] J. Gasser, C. Haefeli, M. A. Ivanov, M. Schmid, Phys. Lett. B652, 21 (2007)
[hep-ph/0706.0955].

[21] M. Froissart, Phys. Rev. 123, 1053 (1961); S. Weinberg, Phys. Rev. Lett. 18,
507 (1967); T. Das, V.S. Mathur, S. Okubo, Phys. Rev. Lett. 19, 859 (1967);
G.P. Lepage S.J. Brodsky, Phys. Rev. D22, 2157 (1980).

[22] C. Haefeli, private communication.


