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We consider the factorisation properties of on-shell QCD amplitudes
with massive partons in the limit when all kinematical invariants are large
compared to the parton mass and discuss the structure of their infrared sin-
gularities. The dimensionally regulated soft poles and the large collinear
logarithms of the parton masses exponentiate to all orders. Based on this
factorisation a simple relation between massless and massive scattering
amplitudes in gauge theories can be established. We present recent ap-
plications of this relation for the calculation of the two-loop virtual QCD
corrections to the hadro-production of heavy quarks.

PACS numbers: 12.38.Bx, 13.85.–t, 14.65.Ha

1. Introduction

Amplitudes for hard scattering processes in Quantum Chromodynamics
(QCD) are of basic importance both for theory and phenomenology and pre-
cision predictions for them must include higher-order quantum corrections.
An important aspect in explicit computations are the singular limits of am-
plitudes at higher loops. Here, one has to consider two types of limits, soft
and collinear, related to the emission of gluons with vanishing energy and
to collinear parton radiation off massless hard partons, respectively.

For massless QCD amplitudes the corresponding singularities are regu-
larised by working in d dimensions and appear as explicit poles in (d − 4).
Typically two powers in 1/(d − 4) are generated per loop. When massive
particles are involved, some of the collinear singularities are screened by the
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parton masses, which gives rise to large logarithmically enhanced contribu-
tions. In both cases the structure of the singularities can be understood from
the factorisation property of QCD and it can be predicted to all orders based
on a small number of perturbatively calculable anomalous dimensions. More-
over, factorisation gives rise to an extremely simple universal multiplicative
relation between a massless amplitude and its massive version in the limit
when the parton masses are small with respect to all other kinematical in-
variants. This relation can be employed to derive virtual QCD corrections at
higher loops including all logarithms in the heavy quark mass as well as all
constant (mass-independent) contributions. We demonstrate the predictive
power of factorisation with recent results for the two-loop QCD amplitudes
for heavy-quark production in hadronic collisions.

2. Factorisation of QCD amplitudes

We are interested in general 2 → n scattering processes of partons pi

p : p1 + p2 → p3 + . . . + pn+2 . (1)

The corresponding scattering amplitude Mp depends on the set of fixed
external momenta {ki}, masses {mi} and colour quantum numbers {ci},

|Mp〉 ≡ Mp

(

{ki}, {mi}, {ci},
Q2

µ2
, αs(µ

2), ε

)

, (2)

as well as on the strong coupling constant αs, the renormalisation scale µ
and the parameter ε of dimensional regularisation, d = 4 − 2ε. Also, we
denote explicitly the hard scale Q of the process typically related to the
center-of-mass energy, e.g. Q =

√
s with s = (k1 + k2)

2.
Let us briefly recall the factorisation of on-shell amplitudes for massless

partonic processes [1, 2]. In d-dimensions we can write Eq. (2) as a product

of functions J (m=0)
p , S(m=0)

p and H[p]

|Mp〉(m=0) =J (m=0)
p

(

Q2

µ2
, αs(µ

2), ε

)

S(m=0)
p

(

{ki},
Q2

µ2
, αs(µ

2), ε

)

|Hp〉 , (3)

where we use matrix notation suppressing the colour indices. The jet func-

tion J (m=0)
p depends only on the external partons. It collects all collinearly

sensitive contributions and is colour-diagonal. Coherent soft radiation aris-

ing from the overall colour flow is summarised by the soft function S(m=0)
p ,

which is a matrix in colour space. The short-distance dynamics of the hard
scattering is described by the (infrared finite) hard function Hp, which to
leading order is simply proportional to the Born amplitude.
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The factorisation formula (3) organises the singularity structure of any
massless QCD amplitude. From the operator definitions for the functions

J (m=0)
p and S(m=0)

p and the corresponding renormalisation group properties
one derives evolution equations. The solution of the latter gives rise to an all-
order exponentiation in terms of well-known anomalous dimensions. As an
upshot, all 1/ε terms related to the emission of gluons with vanishing energy
and to collinear parton radiation off massless hard partons, respectively,
exponentiate to all orders in perturbation theory, see e.g. [2, 3].

Most important for our considerations is the jet function, which contains
all collinear contributions from the external partons. It is, therefore, of the
form

J (m=0)
p =

∏

i∈ {all legs}

J (m=0)
[i] =

∏

i∈ {all legs}

(

F (m=0)
[i]

)
1

2

, (4)

where i = q, g for quarks and gluons. J (m=0)
[i] is the individual jet function

of each external parton, which by definition, one identifies with the (gauge

invariant) form factor of a quark or a gluon, F (m=0)
[i] . Of course, the latter

function is well-known in QCD, see e.g. [4, 5].
When masses are introduced the picture described above gets modified.

However, the basic factorisation of the QCD amplitude in jet, soft and hard
function from Eq. (3) can be retained. With the exception of contributions
related to heavy quark loops (see below) in the presence of a hard scale Qwe
can write for the partonic process (1)

|Mp〉(m) =J (m)
p

(

Q2

µ2
, {mi}, αs(µ

2), ε

)

S(m)
p

(

{ki},
Q2

µ2
, αs(µ

2), ε

)

|Hp〉 , (5)

where all non-trivial mass dependence enters in the functions J (m)
p and

S(m)
p , while power suppressed terms in the parton masses are neglected inHp.

The jet function for massive partons can be defined in complete analogy to

Eq. (4), i.e. we identify J (m)
[i] with the massive form factor F (m)

[i] . This

guarantees exponentiation with largely the same anomalous dimensions as
in the massless case. Also the soft anomalous dimensions which govern the
soft function have a smooth limit for vanishing parton masses.

In summary, from comparison of Eqs. (3) and (5) one can deduce a remar-
kably simple relation between a massless and a massive amplitude in the
small-mass limit. Thus, QCD factorization provides us with [6]

M(m)
p =

∏

i∈ {all legs}

(

Z
(m|0)
[i]

)
1

2 × M(m=0)
p , (6)
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where we have again suppressed the colour indices. M(m=0)
p and the cor-

responding massive amplitude M(m)
p in the small mass limit m2 ≪ Q2 are

multiplicatively related by a universal process independent function Z
(m|0)
[i] .

With the definitions for the jet functions in Eq. (4), it is directly given in
terms of the respective form factors,

Z
(m|0)
[i]

(

m2

µ2
, αs, ε

)

= F (m)
[i]

(

Q2

µ2
,
m2

µ2
, αs, ε

)(

F (m=0)
[i]

(

Q2

µ2
, αs, ε

))−1

, (7)

where the index i denotes the (massive) parton and αs =αs(µ
2). The process-

independence is manifest in Eq. (7), because Z
(m|0)
[i] is only a function of the

(process-independent) ratio of scales µ2/m2. The (process-dependent) scaleQ
cancels completely between the massive and the massless form factors.

Eq. (6) can be used to predict any massive amplitude from the known
massless one, which is a great advantage in practice, as the latter is much
easier to compute. Moreover, Eq. (6) includes not only the singular terms
and the logarithms in the massive amplitude but extends even to the mass-
independent constant contributions. However, there is one important side
condition on Eqs. (6) and (7), concerning all terms proportional to the num-
ber of heavy quarks nh. These two-loop contributions are excluded explicitly

from the definition of Z
(m|0)
[i] . In order to incorporate them additional pro-

cess dependent terms appear as has been shown e.g. in QED for Bhabha
scattering [7].

3. Hadro-production of heavy quarks

As an application of the formalism developed, we consider the pair-
production of heavy quarks in the qq̄-annihilation and the gluon fusion chan-
nel,

q : q(k1) + q̄(k2) → Q(k3,m) + Q̄(k4,m) , (8)

g : g(k1) + g(k2) → Q(k3,m) + Q̄(k4,m) ,

where ki denote the on-shell parton momenta and m the mass of the heavy
quark, thus k2

1 = k2
2 = 0 and k2

3 = k2
4 = m2. Energy-momentum conserva-

tion implies kµ
1 + kµ

2 = kµ
3 + kµ

4 and we consider the scattering amplitude for
the processes (8) in QCD perturbation theory

|Mp〉(m) = 4παs

×
[

|M(0)
p 〉(m)+

(

αs

2π

)

|M(1)
p 〉(m)+

(

αs

2π

)2

|M(2)
p 〉(m)+O(α3

s )

]

, (9)
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which defines the series expansion in the strong coupling αs = αs(µ
2) and

µ is the renormalisation scale. As usual the MS-scheme for the coupling
constant renormalisation is employed and the mass m is taken to be the
pole mass.

It is convenient to define the function Ap(ε,m, s, t, µ) for the squared
amplitudes summed over spins and colours as

∑

|Mp|2 = Ap(ε,m, s, t, µ) , p = q, g . (10)

Ap is a function of the Mandelstam variables s, t and u given by

s = (p1 + p2)
2 , t = (p1 − p3)

2 − m2 , u = (p1 − p4)
2 − m2 , (11)

and has a perturbative expansion similar to Eq. (9)

A(m)
p (ε,m, s, t, µ) = 16π2α2

s

×
[

A4,(m)
p +

(

αs

2π

)

A6,(m)
p +

(

αs

2π

)2

A8,(m)
p +O(α3

s )

]

. (12)

In terms of the amplitudes the expansion coefficients in Eq. (12) may be
expressed as

A4,(m)
p = 〈M(0)

p |M(0)
p 〉(m) , (13)

A6,(m)
p = 〈M(0)

p |M(1)
p 〉(m) + 〈M(1)

p |M(0)
p 〉(m) , (14)

A8,(m)
p = 〈M(1)

p |M(1)
p 〉(m) + 〈M(0)

p |M(2)
p 〉(m) + 〈M(2)

p |M(0)
p 〉(m) , (15)

where the results for A6,(m)
p have been presented e.g. in [8,9] and the so-called

loop-by-loop contribution in A8,(m) can be found in [10], both results with
the complete dependence on the heavy-quark mass. The new contribution

is the real part of 〈M(0)
p |M(2)

p 〉(m) up to powers O(m) in the heavy-quark
mass [11, 12].

In order to obtain 〈M(0)
p |M(2)

p 〉(m) from Eq. (6), we have to construct the

appropriate functions Z
(m|0)
[i] from the on-shell heavy-quark form factor and

the massless on-shell ones, all results being known [4, 5, 12, 13] to sufficient
orders in αs and powers of ε. An explicit expression for

Z
(m|0)
[Q] = 1 +

αs

2π
Z

(1)
[Q] +

( αs

2π

)2
Z

(2)
[Q] + O(α3

s ) , (16)

up to two loops is known [6]. As mentioned above, the definition (16)
accounts in particular for all fermionic terms except for those linear in nh.
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The leading nf terms ∼ (nfαs)
n for the process gg → QQ̄ in Eq. (8) can also

be predicted, where we denote the total number of flavours with nf , which
is the sum of nl light and nh heavy quarks. Keeping only terms quadratic
in nh and/or nf = nh + nl one has up to two loops,

Z
(m|0)
[g] = 1 +

αs

2π
Z

(1)
[g] +

( αs

2π

)2
Z

(2)
[g] + O

(

α3
s

)

, (17)

where

Z
(2)
[g] =

(

Z
(1)
[g]

)2
+

2

3ε
nfTF Z

(1)
[g] + O

(

nh
1 × nl

0
)

, (18)

with Z
(1)
[g] ∼ nh known from [6,12]. Note that Z

(1)
[g] is also equal to the O(αs)

term in the gluon wave function renormalisation constant Z3.
Exploiting the predictive power of the relation Eq. (6) and applying it

to the processes (8) we get

2Re〈M(0)
q |M(2)

q 〉(m) = 2Re〈M(0)
q |M(2)

q 〉(m=0) + Z
(1)
[Q]A

6,(m=0)
q

+ 2Z
(2)
[Q]A

4,(m=0)
q + O

(

nh
1 × nl

0
)

+ O(m) , (19)

2Re〈M(0)
g |M(2)

g 〉(m) = 2Re〈M(0)
g |M(2)

g 〉(m=0) + (Z
(1)
[Q]Z

(1)
[g] )A6,(m=0)

g

+ 2
(

Z
(2)
[Q] + Z

(2)
[g] + Z

(1)
[Q]Z

(1)
[g]

)

A4,(m=0)
g

+O
(

nh
1 × nl

0
)

+ O(m) , (20)

which assumes the hierarchy of scales m2≪s, t, u, i.e.we neglect termsO(m).
Eqs. (19) and (20) predict the complete real part of the squared amplitudes

〈M(0)
p |M(2)

p 〉(m) except (as indicated) for those terms, which are linear in

nh. The real part of the two-loop massless amplitudes 〈M(0)
p |M(2)

p 〉(m=0)

are computed in [14, 15]. The finite remainders of the latter agree with
the corresponding terms constructed from the two-loop helicity amplitudes
calculated of [16, 17] after the infrared subtraction procedure is performed.

In order to arrive at a complete prediction for 〈M(0)
p |M(2)

p 〉(m) including
all heavy-quark loop corrections, the factorization approach in Eqs. (19),
(20) is supplemented by a direct calculation of all necessary massive Feyn-
man diagrams as an expansion in the small mass. The advantage of this
approach is an independent check of Eqs. (19) and (20) as well as of the cor-
responding massless results. It relies on the reduction of integrals to a set
of masters with the Laporta algorithm [18], the subsequent construction
of Mellin–Barnes representations for all the integrals, see e.g. [19–23] and
the summation of series representations [24] or the application of the PSLQ
algorithm [25].
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We are now able to give the result for the interference of the two-loop and
Born amplitude for the scattering processes (8). For a SU(N)-gauge theory
with N denoting the number of colors, we have CA = N , CF = (N2−1)/2N
and TF = 1/2. As mentioned above, the total number of flavors nf = nl+nh

is the sum of nl light and nh heavy quarks. For qq̄ → QQ̄ and gg → QQ̄ we
have

2Re〈M(0)
q |M(2)

q 〉(m) = 2(N2−1)

(

N2Aq+Bq+
1

N2
Cq+NnlDq,l

+ NnhDq,h +
nl

N
Eq,l +

nh

N
Eq,h + (nl + nh)2Fq

)

,

2Re〈M(0)
g |M(2)

g 〉(m) = (N2 − 1)

(

N3Ag + NBg +
1

N
Cg +

1

N3
Dg

+N2nlEg,l + N2nhEg,h + nlFg, l + nhFg,h

+
nl

N2
Gg,l +

nh

N2
Gg,h + Nnl

2Hg,l + Nnlnh Hg,lh

+ Nnh
2Hg,h +

nl
2

N
Ig,l +

nlnh

N
Ig,lh +

nh
2

N
Ig,h

)

,

and all explicit expressions can be found in [11, 12].
As explained above, the factorisation approach provides results for all co-

efficients except the terms linear in nh. These are Dq,h and Eq,h in Eq. (21)
and Eg,h, Fg,h and Gg,h in Eq. (21), which have been obtained from a direct
calculation of the massive loop integrals as briefly sketched above. Further-
more, to have an independent cross check of the factorisation formulae (19)
and (20) the direct computation of Feynman diagrams has also been ex-
tended to the coefficients Aq, Dq,l, Eq,l and Fq in Eq. (21) and to Ag, Eg,l,
Hg,l, Hg,lh, Hg,h, Ig,l, Ig,lh, and Ig,h in Eq. (21). Of course, for the coefficients
tested we have found full agreement between both methods.

4. Conclusions

We have presented a discussion of the singular behaviour of on-shell QCD
amplitudes with massive particles at higher orders and we have emphasised
the strong similarities between scattering amplitudes with massless and mas-
sive partons in the small mass limit. In this regime, factorisation relates the
two amplitudes multiplicatively by a universal process independent function

Z
(m|0)
[i] . The present results for amplitudes generalise the massless formulae

known previously [1, 2] and they extend one-loop massive results [26] to all
orders. For cross sections the analogous property [27] is now known through
next-to-next-to-leading order [28, 29].
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We have illustrated the predictive power of the factorisation ansatz with
new results for heavy-quark hadro-production at two-loops in QCD [11,12].
The results include all logarithms in the mass m as well as the constant terms
and they can be used as a strong check of any future complete calculation.
Moreover, if combined with the threshold behaviour of the amplitude, which
is not known at present they can serve as a well founded basis for quantitative
predictions for, say, top production at LHC to next-to-next-to-leading order.
In order to obtain physical cross sections, the virtual amplitudes considered
here have to be combined with the corresponding real emission contributions,
of course.

In a similar spirit, one can also derive higher order QCD corrections
to new heavy (coloured) particles, like squark or gluino production in su-
persymmetric extensions of the Standard Model. Also the approach taken
here may prove useful in the future in formulating subtraction schemes with
massive partons for the real emission contributions beyond one loop.
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