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We derive the two-loop corrections to Bhabha scattering from heavy
fermions using dispersion relations. The double-box contributions are ex-
pressed by three kernel functions. Convoluting the perturbative kernels
with fermionic threshold functions or with hadronic data allows to deter-
mine numerical results for small electron mass me, combined with arbitrary
values of the fermion mass mf in the loop, m2

e ≪ s, t, m2
f , or with hadronic

insertions. We present numerical results for mf = mµ, mτ , mtop at typical
small- and large-angle kinematics ranging from 1 GeV to 500 GeV.

PACS numbers: 12.38.Bx

1. Introduction

Bhabha scattering is one of the theoretically best studied scattering pro-
cesses at e+e− colliders and can also be measured with a high precision. The
accuracy of the Monte Carlo programs developed originally for physics at
LEP is about 10−3, and with a complete two-loop calculation one may reach
10−4. The latter number is indicative of efforts for the International Linear
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Collider (ILC), here especially in the GigaZ option running at the Z boson
resonance, but also for meson factories running at much smaller energies of
about 1 or 10 GeV.

Recent years brought considerable progress in the determination of the
virtual NNLO corrections. The virtual O(α2) contributions to the massless
differential Bhabha cross section have been determined in [2]. Shortly after,
this result was used for deriving the O(α2L) (L = ln(s/m2

e)) corrections to
massive Bhabha scattering in [3]. The missing photonic correction terms
of the order of O(α2L0) were derived, also from [2], in [4, 5]. The virtual
corrections from fermion loop insertions, including the corresponding double-
box diagrams, could not be covered by that method. For nf = 1, i.e.

the case of only electron loops, the corresponding diagrams were evaluated
analytically in [6–9], and the net nf = 1 cross section in [10, 11].

At this stage the numerically most important two-loop corrections were
known. For a complete treatment one needs additionally the nf = 2 two-loop
corrections with heavy fermion insertions, including the hadronic corrections
which replace the loop insertions from light quarks. The leptonic nf = 2
contributions have been derived quite recently in two papers in the limit
m2

e ≪ m2
f ≪ s, t; with a direct Feynman diagram calculation in [12], and

using a factorization formula that relates massless and massive amplitudes
in [13] (for that method see also [14]).

It might be interesting to mention that the original expectations on the
necessity of a complete, direct two-loop massive Feynman diagram evalua-
tion were not fulfilled. After the analytical evaluation of a massive planar
and a massive non-planar double-box diagram (both with seven propaga-
tors) in [15] and in [16], respectively, there was hope to evaluate all the
remaining diagrams soon. There are 33 two-loop box master integrals, nine
of them with seven lines [17]. In fact, from recent studies on the exact and
mass expanded treatment of two-loop box master integrals in [18] and [19],
respectively, it became clear that an evaluation of all the massive master
integrals is a more complicated task than was expected. Quite recently, the
case of non-planar master integrals was successfully treated in another, but
related context [20]. Proceeding similarly for Bhabha scattering seems fea-
sible now. As a matter of fact, due to these reasons, the direct Feynman
diagram approach was not used for the phenomenologically needed two-loop
predictions and the above-mentioned papers [15–19] remained so far a mere
interesting, challenging theoretical development.

In this paper, we report on the evaluation of the leptonic nf = 2 two-loop
contributions with arbitrary mass of the heavier fermion, i.e. exploring the
extended kinematical region m2

e ≪ m2
f , s, t. We use the dispersion approach,

so that our formulae may be applied without further modification also to
hadronic corrections.
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For a review on the status of Monte Carlo studies for Bhabha scattering
at this conference we refer to [21], and for a discussion on progress related
to radiative loop corrections to [22].

2. Formulae

The classes of two-loop nf = 2 corrections are shown in figure 1. The four
direct and four crossed fermionic two-loop box diagrams, obtained applying
proper permutations to the sample diagram shown in figure 1, are infrared
(IR) divergent, and they have to be combined with other IR-divergent fac-

1d 1e

1b 1c

1a

Fig. 1. Classes of two-loop diagrams for Bhabha scattering containing at least one

fermion loop.

×

×

×+

+

Fig. 2. The fermionic two-loop boxes combine with other diagrams to an infrared-

finite cross-section contribution.
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torizable corrections in order to get an IR-finite contribution to the cross
section. In particular, we have to add the interference of two-loop box
(class e) and reducible vertex diagrams (class c) with the tree-level ampli-
tude to the interference of one-loop vertex and box diagrams with one-loop
vacuum polarization diagrams. Finally, we construct an IR-finite quantity
taking into account also the real emission of one soft photon from one-loop
vacuum polarization diagrams. Sample contributions are given in figure 2.

The net contribution of pure self-energy corrections (classes a–b), ir-
reducible vertex diagrams (class d), and the aforementioned IR-divergent
contributions reads as

dσNNLO,ferm.

dΩ
=

dσa,b

dΩ
+

dσd

dΩ
+

dσrest

dΩ
, (1)

where dσrest/dΩ can be split in two components,

dσrest

dΩ
=

dσbox

dΩ
+

dσfact.

dΩ
. (2)

We concentrate now on the renormalized two-loop box diagrams of class e,
whose total contribution to the cross section may be written as

dσbox

dΩ
=
(α

π

)2 α2

2 s

( m2
e

s
ReAs +

m2
e

t
ReAt

)

. (3)

Here the auxiliary functions As and At can be conveniently expressed through
three independent form factors BI, with i = A,B,C, evaluated with different
kinematical arguments,

As = BA(s, t) + BB(t, s) + BC(u, t) − BB(u, s) ,

At = BB(s, t) + BA(t, s) − BB(u, t) + BC(u, s) . (4)

The particular contribution of the diagram of figure 1 coming from the in-
terference with the tree-level s-channel is BA(s, t), and from the t-channel
is BB(s, t).

For the evaluation of hadronic corrections, we observe that each term
of Eq. (4) can be written through the convolution of a kernel function KI ,
I = A,B,C, with the hadronic cross-section ratio Rhad,

BI,had(s, t) =

∞
∫

4M2
π

dz

z
Rhad(z)KI (s, t, z) . (5)
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For leptons and the top quark, we have to replace 4M2
π → 4m2

f and Rhad →
Rfer, given by

Rfer(z) = Q2
f Cf

√

1 − 4
m2

f

z

(

1 + 2
m2

f

z

)

+ ε Rε
fer(z) , (6)

where Qf is the electric charge in units of |e| and Cf is the color factor. Being
the box diagrams IR divergent, and showing poles in ε, one should take into
account higher orders in ε for R. However, after assembling box diagrams
with factorizable corrections, IR poles cancel and R can be evaluated at
order ε0.

The three box kernels are our main technical result. They have been
derived with the aid of the master integrals of figure 3, in the limit m2

e ≪
m2

f , s, t. The master integrals were determined with IdSolver and evaluated

with the Mathematica packages ambre [23] and MB [24], and eventually mass
expanded with a Mathematica package. We also made use of FORM [25].

M6 M7

M4 M5

M1

M

m

γ

M8

m

M2

M3

Fig. 3. The master integrals for the two-loop box kernel functions.
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We reproduce one of the kernels here1,

KC(x, y, z) =
1

3m2
e(y − z)

×
{

2
Fε

ε
x2Lx + 4ζ2x

2

(

z

y
− 2

)

− 2(x2 + y2 + xy)Lx

+ x2

(

z

y
− 1

)

Ly + 2x2

(

z

y
− 1

)

L2
y + 4x2LxLy

+ x2

(

z

y
− 1

)

ln

(

z

m2
e

)

− 2x2

(

z

y
− 1

2

)

ln2

(

z

m2
e

)

+ 4x2

(

z

y
− 1

)

ln

(

z

m2
e

)

ln

(

1 − z

y

)

+ 2x2 ln

(

z

m2
e

)

Lx

− x2

(

z

y
+

y

z
− 2

)

ln

(

1 − z

y

)

− 4x2 ln

(

1 − z

y

)

Lx

+ 4x2

(

z

y
− 1

)

Li2

(

z

y

)

− 2x2Li2

(

1 +
z

x

)

}

, (7)

where Lx = ln(−m2
e/x), Ly = ln(−m2

e/y) and Fε is the normalization factor

Fε =

(

m2
e π eγE

µ2

)

−ε

. (8)

Here µ is the ’t Hooft mass unit and γE is the Euler–Mascheroni constant.

3. Numerical results

The sum of the box contributions with IR-divergent factorizable correc-
tions (see figure 2 for sample cases) is infrared-finite and can be cast in the
following form,

dσrest

dΩ
=
(α

π

)2 α2

s







∞
∫

4M2

dz
R(z)

z

1

t − z
F1(z)

+Re

∞
∫

4M2

dz
R(z)

z

1

s − z + iδ

[

F2(z) + F3(z) ln

(

1 − z

s + iδ

)]

+πIm

∞
∫

4M2

dz
R(z)

z

1

s − z + iδ
F4(z)







. (9)

1 Some formulae have to be omitted here due to limited space; they may be found at
the webpage http://www-zeuthen.desy.de/theory/research/bhabha/bhabha.html
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We may show here one of the auxiliary functions Fi(z),

F1(z) =
1

3

{[

3

(

t2

s
+ 2

s2

t

)

+ 9 (s + t)

]

ln

(

s

m2
e

)

+

[

−z2

(

1

s
+

2

t
+ 2

s

t2

)

+ z

(

4 + 4
s

t
+ 2

t

s

)

+
1

2

t2

s
+ 6

s2

t
+ 5s + 4t

]

ln

(

− t

s

)

+ s

(

−z

t
+

3

2

)

× ln

(

1 +
t

s

)

+

[

1

2

z2

s
+ 2z

(

1 +
s

t

)

− 11

4
s − 2t

]

ln2

(

− t

s

)

−
[

1

2

z2

t
− z

(

1 +
s

t

)

+
t2

s
+ 2

s2

t
+

9

2
s +

15

4
t

]

ln2

(

1 +
t

s

)

+

[

z2

t
− 2z

(

1 +
s

t

)

+ 2
s2

t
+ 5s +

5

2
t

]

ln

(

− t

s

)

ln

(

1 +
t

s

)

− 4

[

t2

s
+ 2

s2

t
+ 3 (s + t)

] [

1 + Li2

(

− t

s

)]

−
[

2
z2

t
− 4z

(

1 +
s

t

)

− 4
t2

s
− 2

s2

t
+ s − 11

2
t

]

ζ2

−
[

t2

s
+ 2

s2

t
+ 3
(

s + t
)

]

ln
(z

s

)

ln

(

1 +
t

s

)

+

[

z2

(

1

s
+ 2

s

t2
+

2

t

)

− z

(

t

s
+ 2

s

t
+ 2

)]

ln
(z

s

)

−
[

z2

(

1

s
+

1

t

)

+ 2z
(

1 +
s

t

)

+ s + 2
s2

t

]

× ln
(z

s

)

ln
(

1 +
z

s

)

+

[

z2

s
+ 4z

(

1 +
s

t

)

− t2

s
− 4 (s + t)

]

× ln
(z

s

)

ln
(

1 − z

t

)

−
[

z2

(

1

s
+ 2

s

t2
+

2

t

)

− 2z

(

t

s
+ 2

s

t
+ 2

)

+
t2

s

+ 2(s + t)

]

ln
(

1 − z

t

)

+

[

z2

t
− 2z

(

1 +
s

t

)

+ 2
t2

s
+ 8s + 4

s2

t
+ 7t

]

× ln
(

1 − z

t

)

ln

(

1 +
t

s

)

−
[

z2

(

1

s
+

1

t

)

+ 2z
(

1 +
s

t

)

+ s + 2
s2

t

]

× Li2

(

−z

s

)

+

[

z2

s
+ 4z

(

1 +
s

t

)

− t2

s
− 4 (s + t)

]

Li2

(z

t

)

−
[

z2

t
− 2z

(

1 +
s

t

)

+
t2

s
+ 5s + 2

s2

t
+ 4t

]

Li2

(

1 +
z

u

)

}

+ 4

(

1

3

t2

s
+

2

3

s2

t
+ s + t

)

ln

(

2ω√
s

)[

ln

(

s

m2
e

)

+ ln

(

− t

s

)

− ln

(

1 +
t

s

)

− 1

]

. (10)
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Table I and Table II contain numerical results for small- and large-angle scat-
tering at a variety of energy scales. We report the QED tree-level prediction,
as well as the process-dependent contributions at NNLO of Eq. (9); in other
words, we exclude from the tables pure self-energy corrections, which can be
described introducing a running fine-structure constant and were deeply in-
vestigated in the past (see [26]), and irreducible vertex contributions (see [27]
and [28]). A complete phenomenological analysis requires also to add the
corresponding terms arising from unresolved real fermion pair production.

TABLE I

Numerical values for the differential cross section in nanobarns at a scattering angle
θ = 3◦, in units of 102; MZ = 91.1876 GeV. Bold-face entries are obtained with
dispersion relations. The energy of the soft photon is chosen to be ω =

√
s/2.

√
s [GeV] 1 10 MZ 500

QED Born 440994 4409.94 53.0348 1.76398

rest e 193 5.73 0.1357 0.00673

µ < 1 0.42 0.0408 0.00288

— 0.08 0.0407 0.00288

τ < 1 < 10
−2

0.0027 0.00088

— — −0.0096 0.00084

t < 1 < 10
−2 < 10

−4 < 10
−5

— — — —

The Standard Model cross sections shown here rely on Born formulae
with Z boson and photon exchange a la Zfitter [29,30]. Moreover, although
the contributions from electron loops have been obtained by exact (in me)
evaluation of the Feynman diagrams, we report here for consistency the
approximated results for me ≪ s, t.

We further compare the analytical results of [12] with those obtained
with the dispersion approach and it is nicely seen that the former approach
the latter in regions where the former are expected to become good ap-
proximations. In both tables, for each fermion flavor, we show the result
obtained through the dispersion-based approach (first line) and the one com-
ing from the analytical expansion (second line), neglecting O(m2

f/x), where

x = s, |t|, |u|. When m2
f > x, the entry is suppressed. We switch off in

the tables the effect of the logarithm containing the energy of soft photons
setting ω =

√
s/2.
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TABLE II

Numerical values for the differential cross section in nanobarns at a scattering angle
θ = 90◦, in units of 10−4. See Table I for further details.

√
s [GeV] 1 10 MZ 500

QED Born 466537 4665.37 56.1067 1.86615

full Born 466558 4686.27 1273.2680 0.85496

rest e 807 14.53 0.2706 0.01193
µ 160 6.08 0.1470 0.00726

153 6.08 0.1470 0.00726

τ 2 1.33 0.0752 0.00457

— 1.07 0.0752 0.00457

t < 1 < 10
−2

0.0005 0.00043

— — — −0.00013

The heavier fermions have less influence on the net result, and the top
quark decouples nearly completely. Between 1 and 500 GeV the sum of boxes
with factorizable diagrams with muon loops contributes, roughly speaking,
at the order of permille to the net pure QED cross section, and the tau
lepton contributes less. The Z resonance distorts this figure, by making the
influence of two-loop contributions less influential for large-angle scattering
where the resonance dominates.

4. Summary

We have evaluated the nf = 2 virtual two-loop corrections to Bhabha
scattering due to fermions with arbitrary mass mf in the limit of vanish-
ing electron mass me. We have not combined these (infrared finite) virtual
contributions with those arising from irreducible vertices; the latter are log-
arithmically enhanced by terms of the order up to ln3(s/m2

f ), but are in-

dependent of ln(s/m2
e), being collinear finite. They have to be assembled

with the unresolved real heavy fermion emission, which is known to cancel
the ln3(s/m2

f ) and might lead to a suppression of the net effect. For the
phenomenological analysis we will have also to take into account the effect
of the running of the fine-structure constant. Concerning the results shown
in the tables, the numerical contributions do not exceed the per mille level,
and depend strongly on the kinematics. The formulae presented here apply
to the leptons µ and τ , but also to the top quark. The latter decouples at
small energies, but has to be taken into account at the ILC.

The determination of hadronic corrections is in preparation.
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Note added:
After completion of this article, a draft [31] appeared, where the authors also
study the fermionic corrections to Bhabha scattering with arbitrary masses
of the internal fermions.
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