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The theoretical status of NNLO QCD corrections to the inclusive radia-
tive B → Xsγ decay in the standard model is briefly overviewed. Emphasis
is put on recent results for three-loop fermionic corrections to matrix ele-
ments of the most relevant four-quark operators.
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1. Introduction

The inclusive B → Xsγ decay mode, a flavor-changing-neutral-current
process and therefore loop-suppressed in the standard model (SM), is known
to be a sensitive probe of new physics. Obviously, deriving constraints on the
parameter space of physics beyond the SM relies strongly on both accurate
measurements and precise theory predictions within the SM.

Combining measurements of BaBar, Belle and CLEO [1], the current
world average for the branching ratio with a cut Eγ,0 > 1.6GeV on the

photon energy in the B-meson rest frame reads [2]

B(B̄ → Xsγ)exp

Eγ>1.6 GeV =
(

3.55 ± 0.24 +0.09
−0.10 ± 0.03

)

× 10−4 , (1)

where the first uncertainty corresponds to a combined statistical and sys-
tematic error, the second one is due to the theory input in the extrapolation
of the measured branching ratio to the reference value Eγ,0, whereas the
third one is connected to the subtraction of b → dγ events. The overall
error of the world average amounts to about 7% which is comparable with

∗ Presented at the XXXI International Conference of Theoretical Physics, “Matter to
the Deepest”, Ustroń, Poland, September 5–11, 2007.

∗∗ Work supported by the Sofia Kovalevskaja programme of the Alexander van Hum-
boldt Foundation sponsored by the German Federal Ministry of Education and Re-
search.

(3537)



3538 T. Schutzmeier

the expected size of next-to-next-to-leading order (NNLO) QCD effects to

the perturbative transition b → Xparton
s γ. Thus, a complete SM calculation

at this accuracy level is desired.
To a large extent, the NNLO program has been finished and the latest

theoretical estimate based on the results [3]

B(B̄ → Xsγ)theor

Eγ >1.6 GeV
= (3.15 ± 0.23) × 10−4 (2)

is in good agreement with the experimental value Eq. (1). Here, the error
consists of four types of uncertainties added in quadrature: non-perturbative
(5%), parametric (3%), higher-order (3%) and mc-interpolation ambigu-
ity (3%).

2. The effective theory framework

The partonic decay width Γ (b → sγ) receives large contributions of
logarithms log M2

W/m2
b . Resumming them at each order of αs is most suit-

ably done in the framework of an effective low-energy theory with five active
quarks by integrating out the top and heavy electroweak fields. The relevant
effective Lagrangian is given by

Leff = LQCD×QED(u, d, s, c, b) +
4GF√

2
V ∗

tsVtb

8
∑

i=1

Ci(µ)Qi(µ) . (3)

The usual QED-QCD Lagrangian for the light SM fields is stated in the first
term whereas the second term gives the local operator product expansion
(OPE) with Wilson coefficients Ci(µ) and operators Qi(µ) up to dimen-
sion six built out of the light fields. Vij denotes elements of the Cabibbo–
Kobayashi–Maskawa matrix and GF the Fermi coupling constant.

The operator basis reads

Q1,2 = (s̄Γic)(c̄Γ
′

i b) ,

Q3,4,5,6 = (s̄Γib)
∑

q
(q̄Γ ′

iq) ,

Q7 =
e

16π2
mb(µ) (s̄LσµνbR)Fµν ,

Q8 =
g

16π2
mb(µ) (s̄LσµνT abR)Ga

µν , (4)

where Γ and Γ ′ represent various products of Dirac and color matrices.
mb(µ) is the bottom mass in the MS scheme and the sum runs over all light
quark flavours q.
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Consistent calculations of Γ (b → sγ) in the effective framework are per-
formed in three steps. The Wilson coefficients Ci(µ0) µ0 ≈ MW are first de-
termined at the electroweak scale by requiring equality of Green’s functions
in the effective and full theory at leading order in (external momenta)/MW .
Subsequently, the operator mixing under renormalization is computed by
evolving Ci(µ) from µ0 down to the low-energy scale µb with help of effec-
tive theory Renormalization Group Equations (RGE). Finally, the matrix
elements with single insertions of effective operators are computed. Non-
perturbative effects appear only as small corrections to the last step, which
is connected to the heaviness of the bottom quark and the inclusiveness of
the B → Xsγ decay mode.

As far as the next-to-leading order precision is concerned, this program
has been completed already a few years ago, thanks to the joint effort of
many groups (see for Eg. [4, 5] and references therein). The NNLO calcu-
lation, which involves hundreds of three-loop on-shell vertex-diagrams and
thousands of four-loop tadpole-diagrams, is a very complicated task and,
as already mentioned in the introduction, large parts have already been
finished.

Matching the four-quark operators Q1, ..., Q6 and the dipole operators
Q7 and Q8 at the two- and three-loop level, respectively, has been performed
in [6, 7]. The three-loop renormalization in the {Q1, . . . , Q6} and {Q7, Q8}
sectors was found in [8,9], and results for the four-loop mixing of Q1, . . . , Q6

into Q7 and Q8 were lately provided in [10] completing the anomalous-
dimension matrix. The two-loop matrix element of the photonic dipole
operator Q7 was found, together with the corresponding bremsstrahlung,
in [11, 12] and confirmed in [13]. Moreover, contributions of the dominant
operators in the so-called large-β0 approximation (O

(

α2
sβ0

)

) to the photon
energy spectrum have been computed in [14]. Three-loop matrix elements
of the operators Q1 and Q2 at O

(

α2
sβ0

)

and two-loop matrix elements of

Q7 and Q8 were found in [15] as expansions in the quark mass ratio m2
c/m

2
b .

Recently, we confirmed the findings of [15] on the matrix elements of Q1,2

and were able to extend the calculation beyond the large-β0 approximation
by evaluating the full fermionic contributions [16]. This calculation is briefly
reviewed below. Furthermore, in [17], the full matrix elements of Q1 and
Q2 have been computed in the large mc limit, mc ≫ mb, and subsequently
used to perform an interpolation to the physical region assuming that the
large-β0 part is a good approximation at mc = 0. This is the source of the
interpolation ambiguity mentioned beneath Eq. (2).
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3. NNLO fermionic corrections to the matrix elements of Q1,2

Matrix elements of Q1 and Q2 constitute a crucial input for the accuracy
of the current NNLO estimate Eq. (2). The intention of our recent work [16]
was the determination of full fermionic corrections to these matrix elements
to cross-check the results of [15] and, at the same time, to test the valid-
ity of the massless approximation used in the large-β0 approximation. Our
calculation is based on two different techniques, that were applied to the
master integrals obtained from IBP reduction. In the case of massless quark
loop insertions into the gluon propagator of the relevant NLO diagrams,
all integrals have been performed using the Mellin–Barnes (MB) method.
The MB representations were derived using an automated package [18] and
analytically continued with help of the MB package [19]. After expanding in
z = m2

c/m
2
b the resulting coefficients represented as series over residues could

be resummed with XSummer [20]. In addition, an exact solution through di-
rect numerical integration keeping the full z-dependence was obtained. This
procedure was not applicable in the case of massive quark loop insertions
due to poor convergence. Instead, the method of differential equations as
a second approach was utilized. Using the fact that the master integrals
Vi(z, ǫ) (after rescaling by a trivial factor) are functions of ǫ and the mass
ratio z−1 a system of differential equations has been generated where the
right-hand side was again expressed through master integrals with the help
of relations obtained from the reduction. The solution of this system for
arbitrary values of y proceeded in two steps. First, an expansion in ε and y
for ǫ, y → 0 was performed and the coefficients were calculated recursively
up to high powers of y [21]. Using the resulting high precision values at a
starting point y ≪ 1, the unexpanded system was integrated numerically
up to physical values of y with help of the Fortran package ODEPACK [22].
The path was shifted into the complex plane to avoid special points. Fig-
ure 1 shows the resulting data points together with fits for the renormalized

Fig. 1. Plots of the O(α2

snf ) corrections to matrix elements of Q1 as function
of z = m2

c/m2

b with fermionic loops of mass M and µ = mb. (a): M = mb,
(b): M = mc. The M = 0 case is also shown for comparison.



Progress in the Evaluation of the B → Xsγ Decay Rate at NNLO 3541

matrix elements of Q1 with an internal quark of mass M = 0,mc,mb. In the
case M = mb it is evident that the massless approximation overestimates
the massive result by a large factor. For M = mc this difference is not that
pronounced but still not negligible.

4. Conclusions

Taking new results for the full fermionic corrections at NNLO into ac-
count, the branching ratio is enhanced by about one to two percent in com-
parison to [17]. Moreover, an evaluation of bosonic corrections at this order,
thereby completing three-loop matrix elements, is essential to resolve the
interpolation ambiguity and to further improve the SM prediction for the
B → Xsγ decay.
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