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HEAVY FLAVOUR PRODUCTION IN DEEP-INELASTIC
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We calculate the O(ε)-term of the two-loop massive operator matrix
elements for twist 2-operators, which contribute to the heavy flavour Wilson
coefficients in unpolarised deep–inelastic scattering in the asymptotic limit
Q2 ≫ m2. Our calculation was performed in Mellin space using Mellin–
Barnes integrals and generalised hypergeometric functions. The O(ε)-term
contributes in the renormalisation at 3-loop order.
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1. Introduction

In the range of small values of the Bjørken variable x, the contribution of
heavy flavour corrections to deep-inelastic structure functions is of the order
of 20–40% and hence has to be known in the QCD analyses of the structure
functions for high precision extractions of the parton densities and the QCD
scale ΛQCD [1]. In the full kinematic range, a semi-analytic result for the
heavy flavour Wilson coefficients up to next-to-leading order exists [2], with
a fast implementation to Mellin-space given in [3], whereas a fully analytic
result of O(α2

s ) could be achieved in the limit Q2 ≫ m2 in [4], Q2 denoting
the virtuality of the exchanged photon and m2 — the mass of the heavy
quark. The corresponding Wilson coefficient for FL at O(α3

s ) was calcu-
lated in [5]. In this limit, the heavy-flavour contributions can be expressed
as a convolution of light-flavour Wilson coefficients and massive operator
matrix elements (OMEs) between light partonic states. The results in [4]
have been obtained using integration-by-parts techniques. We performed a
first recalculation of these OMEs in Mellin-space [6, 7], using both Mellin–
Barnes integrals and generalised hypergeometric functions. This shifts the
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problem of solving complicated integrals of Nielsen-type in [4], to the cal-
culation of sums over products of harmonic sums [8, 9] depending on the
Mellin-parameter N , weighted binomials and Euler Beta-functions. The
expressions in our result are even on the diagrammatic level considerably
smaller than the ones obtained in [4], and are seemingly more suitable to
the problem. In this paper, we show a first step towards the O(α3

s )-term of
the heavy-flavour Wilson coefficients, by calculating in dimensional regular-
isation the O(ε)-term of the two-loop OMEs, with ε = D − 4.

2. Method

Our calculation is performed in the asymptotic limit Q2 ≫ m2, apply-
ing the light-cone expansion, where, as the massless renormalisation group
equation (RGE) gives a splitting of the deep-inelastic structure functions
F2/L into a convolution of perturbatively calculable Wilson coefficients and
non-perturbative parton distribution functions, the massive RGE allows to
write the heavy flavour contribution to the twist-2 Wilson coefficients as a
convolution of light-flavour Wilson coefficients and massive operator matrix
elements [4]:

HS,NS
(2,L),i

(
Q2

µ2
,
m2

µ2

)
= AS,NS

k,i

(
m2

µ2

)

︸ ︷︷ ︸
massive OMEs

⊗ CS,NS
(2,L),k

(
Q2

µ2

)
.

︸ ︷︷ ︸
light Wilson coefficients

These OMEs are universal objects, calculable via the corresponding flavour
singlet, pure-singlet and non-singlet operators between partonic states, de-
termining the non-power contributions in m2/Q2. The process dependence
is then solely given by the massless light Wilson coefficients [10].
The OMEs contain ultraviolet and collinear divergences, the former being
removed through renormalisation, the latter absorbed into the parton distri-
bution functions. To two-loop order, the renormalised gluonic OME reads:

A
(2)
Qg =

1

8

{
P̂ (0)

qg ⊗
[
P (0)

qq − P (0)
gg + 2β0

]}
ln2

(
m2

µ2

)
−

1

2
P̂ (1)

qg ln

(
m2

µ2

)

+ a
(1)
Qg ⊗

[
P (0)

qq − P (0)
gg + 2β0

]
+ a
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with similar expressions for the quarkonic contributions. Here, P
(k−1)
ij are

the kth-loop splitting functions, β0 is the lowest order expansion coefficient

of the β-function, and µ2 the renormalisation and factorisation scale. a
(k)
ij

and ā
(k)
ij are the O(ε0) resp. O(ε)-terms in the expansion of the OME. As

a first step towards a O(α3
s ) calculation, one needs each of these quantities
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to one additional order in ε, since they then enter the constant term of the
OME by multiplying the corresponding splitting functions. The O(ε)-term

of the OME A
(2)
ij , ā

(2)
ij , is a new result presented here and the main topic of

this calculation.

3. Calculation

The diagrams can be grouped into two sets: one-loop in one-loop inser-
tions and generic two-loop diagrams. They are calculated using FORM [11]
and MAPLE programs. Fig. 1 shows some diagrams contributing to the gluonic
OME.

b: e:

Fig. 1. Two example diagrams contributing to the gluonic OME, with all fermion

lines massive and external momentum p2 = 0.

The rules for operator insertion are, e.g., given in [12]. The calculation
is done on the one hand by the use of Mellin–Barnes integrals to produce
numeric results. These results serve as a check for the analytic results,
obtained by expressing the diagrams as generalised hypergeometric functions
which are first expanded in ε and then summed up to the desired order.

The application of Mellin–Barnes integrals for scalar diagrams in our
framework has already been explained in some detail before, cf. e.g. [6] (see
also [13]). The idea is to express in a loop-by-loop manner the sub-diagram
of a full diagram into a Mellin–Barnes representation and to combine this
with the remaining part. For full diagrams with a numerator structure, one
can make heavily use of the fact that the light-like vector ∆ occurring in
the numerators obeys ∆2 = 0. This reduces the integrals to be calculated to
a smaller set. After finding a suitable Mellin–Barnes integral representation,
we use the mathematica package MB [14] to numerically calculate the Mellin–
Barnes integrals for fixed values of Mellin-N , up to a given order in ε. As an
example, Table I shows up to some generic multiplicative factors the results
for the full diagram e of Fig. 1.

TABLE I

Mellin moments N = 2 and N = 6 for diagram e.

Diagram N 1/ε2 1 ε ε2

e 2 8.88889 −11.2593 9.82824 −12.8921 2.39145

6 2.93878 −4.24257 3.39094 −4.3892 0.826978
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By closing the contour and applying the theorem of residues, it is in
principle possible to even obtain analytic results from the Mellin–Barnes
representation [6]. However, the way of hypergeometric functions turned
out to be more appropriate for the calculation of analytic results. In this
case, one first introduces Feynman parameters and does the two momentum
integrations. As an example, the scalar version of diagram e of Fig. 1 with
all propagators to the power one, evaluates to:

Ie : =
(∆p)N−1Γ (1 − ε)

N(N + 1)(4π)4+ε(m2)1−ε

×

1∫

0

dz dw
w−1−ε/2(1 − z)ε/2z−ε/2

(z + w − wz)1−ε

[
1 − wN+1 − (1 − w)N+1

]
.

On rewriting this Feynman parameter integral into a P FQ-function, one
obtains a product of 3F2-functions and the Euler Beta-function B(a, b) :=
Γ (a)Γ (b)/Γ (a + b):
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c : =
S2

ε

(4π)4(m2)1−ε
(∆p)N−1 .

One then expands this expression up to the desired order in ε, in this
obtaining finite and infinite sums over harmonic sums and Beta-functions:

Ie =
c

N(N + 1)

∞∑

s=1

{
1

s2
−

S1(s)

s
+

S1(N + s)

s
−

B(N + 1, s)

s

}
+ O(ε) .

It is the next step of summing up the various sums over harmonic sums and
more complicated expressions, which constitutes the most difficult part of
the calculation. These sums could be solved among other things using their
integral representations, where a certain amount of more complicated sums
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could be calculated using the mathematica package SIGMA [15, 16]. For the
integral e, one obtains up to O(ε):

Ie =
c

N(N+1)

{
S2

1(N)+3S2(N)

2
+

S3
1(N)+3S1(N)S2(N)+8S3(N)

12
ε

}

.

In a similar manner, it was possible to calculate all diagrams contributing
to the calculation of the O(ε)-term of the two-loop unpolarised OMEs. Here
algebraic relations between harmonic sums were used [17].

4. Results

The O(ε) contributions to the mass-renormalised unpolarised OMEs for
the singlet, pure-singlet, and non-singlet cases read:
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with the polynomials Pi given by

P1 =3N
6 + 30N

5 + 15N
4
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3
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2
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9
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2
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Here, Si,... ,j ≡ Si,... ,j(N), β ≡ β(N + 1), and ζi ≡ ζ(i) is Riemann’s Zeta-
function. In all results, there is an overall factor S2

εa2
s(m

2/µ2)ε and an overall
factor (1+(−1)N )/2 in all singlet and pure-singlet cases. The above Mellin-
space expressions can be converted to x-space using analytic continuation
in N and Mellin inversion [18].
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5. Comparison

The results in [4], which are up to constant order in ε, involved 48 basic
functions, cf. [7]. Our results for the constant part of the OMEs gave raise
to only six harmonic sums, where five of them can be obtained from S1(N)
through differentiation after analytic continuation and using algebraic rela-
tions. This leads to an amount of only two basic functions [19]. To order
O(ε), we encounter the following 14 harmonic sums:

{S1, S2, S3, S4, S−2, S−3, S−4} , S2,1, S−2,1, S−3,1, S2,1,1, S−2,1,1,

S−2,2, S3,1 .

We can again group the first seven functions into the same class. Addition-
ally, one finds that the function S−2,2 depends on S−2,1 and S−3,1, and the
harmonic sum S2,1 depends on S3,1, which leaves us to order ε with only six
basic harmonic sums, as also observed for a large variety of other two-loop
processes, cf. [20].

6. Conclusion

We have calculated the O(ε)-term of the unpolarised massive two-loop
OMEs, contributing to the heavy-flavour Wilson coefficients in the asymp-
totic limit Q2 ≫ m2, as a first step towards the O(α3

s )-term of these Wilson
coefficients. The calculation was done in Mellin space, where numeric results
were obtained by the use of Mellin–Barnes integrals, whereas analytic results
were calculated using generalised hypergeometric functions. After applying
algebraic relations, the analytic result for the O(ε)-term is expressible in
only six basic harmonic sums.

This work was supported in part by DFG Sonderforschungsbereich Tran-
sregio 9, Computergestützte Theoretische Physik. We would like to thank
C. Schneider for useful comments.
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