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In this paper a non–singlet QCD analysis of the structure function F2

in LO, NLO and NNLO is performed based on the Jacobi polynomials. For
parameterization we used world data for charged lepton scattering. We
determine the valence quark densities in a wide range of x and Q2.
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1. Introduction

Presently the next-to leading order is the standard approximation for
most of the important processes in QCD. The corresponding one- and two-
loop splitting functions have been known for a long time. The next–to–next–
to–leading order (NNLO) corrections should be included in order to arrive
at quantitatively reliable predictions for hard processes occurring at present
and future high-energy colliders.

In two recent publications [1, 2] a NNLO QCD analysis of F e,p
2 (x,Q2)

and F e,d
2 (x,Q2) in the flavor non–singlet sector was presented. Here our

purpose is to determine the flavor non–singlet parton distribution functions

∗ Presented at the XXXI International Conference of Theoretical Physics, “Matter to

the Deepest”, Ustroń, Poland, September 5–11, 2007.

(3551)



3552 A.N. Khorramian, S.A. Tehrani, M. Ghominejad

xuv(x,Q2) and xdv(x,Q2) in a wide range of x and Q2 by using the Jacobi
polynomial expansion and using the available e(µ)p and e(µ)d world data
[3–7] up to the next-to-next-to leading order.

The plan of the paper is to give a brief review of the theoretical QCD
formalism required for our QCD non-singlet analysis up to three loops in
Section 2. In Section 3 we present the procedure of the QCD fits. Our
results are summarized in this section.

2. Theoretical QCD formalism

The non–singlet (NS) parts of the structure functions F p,d
2 (x,Q2) for

x > 0.3 are related to valence quarks combinations. Since in this region

valence quarks dominate, the structure functions F p,d
2 (x,Q2) at LO given by

F p
2 (x,Q2) =

4

9
xuv(x,Q2) +

1

9
xdv(x,Q2) , (1)

F d
2 (x,Q2) =

5

18
x(uv + dv)(x,Q2) . (2)

In the region x ≤ 0.3 for the difference of the proton and deuteron data we
use

FNS
2 (x,Q2) ≡ 2

[

F p
2 (x,Q2) − F d

2 (x,Q2)
]

=
1

3
x(uv − dv)(x,Q2) +

2

3
x(ū − d̄)(x,Q2) , (3)

here sea quarks cannot be neglected for x smaller than about 0.3. We use
the x(d̄ − ū) distribution at Q2

0 = 4GeV2 as follows

x(d̄ − ū)(x,Q2
0) = 1.195x1.24(1 − x)9.1(1 + 14.05x − 45.52x2) , (4)

as applied in Ref. [1, 2], which plays a marginal role in our analysis.
The evolution equations are solved in Mellin-N space and the Mellin

transforms of the above distributions are denoted by F p,d
2 (N,Q2) and by

FNS
2 (N,Q2), respectively. The non–singlet structure functions are given by

Fk
2 (N,Q2) =

[

1 + as(Q
2)C1(N) + a2

s(Q
2)C2(N)

]

F k
2 (N,Q2) , (5)

for the three cases above. Here as(Q
2) = αs(Q

2)/(4π) denotes the strong
coupling constant and Ci(N)(Q2) are the non-singlet Wilson coefficients.
The solution of the non-singlet evolution equation for the parton densities
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up to 3-loop order is presented in Ref. [2]. In this work we choose the
following parametrization for the valence quark densities

xuv(x,Q2) = Nu xαu(1 − x)βu(1 + ηu

√
x + γux) ,

xdv(x,Q2) = Nd xαd(1 − x)βd(1 + ηd

√
x + γdx) . (6)

The normalizations Nu and Nd being fixed by
∫ 1
0 uvdx = 2 and

∫ 1
0 dvdx = 1,

respectively.

In the next section we can determine the unknown parameters by using
the available world data [3–7] and the Jacobi polynomials method.

3. The procedure of the QCD fit

The evolution equations allow one to calculate the Q2-dependence of
the PD’s provided at a certain reference point Q2

0. These distributions are
usually parameterized on the basis of plausible theoretical assumptions con-
cerning their behavior near the end points x = 0, 1.

In the phenomenological investigations of the unpolarized and polarized
structure functions, for example xg1, xF3 or F2, one of the simplest and
fastest possibilities in the structure function reconstruction from the QCD
predictions for its Mellin moments is Jacobi polynomials expansion. The Ja-
cobi polynomials are especially suited for this purpose since they allow one
to factor out an essential part of the x-dependence of the structure func-
tion into the weight function [8]. Thus, given the Jacobi moments an(Q2),
a structure function f(x,Q2) may be reconstructed in a form of the series [9]

xf(x,Q2) = xβ(1 − x)α
Nmax
∑

n=0

an(Q2)Θα,β
n (x) , (7)

where Nmax is the number of polynomials and Θα,β
n (x) are the Jacobi poly-

nomials of order n. For the moments, we note that the Q2 dependence is
entirely contained in the Jacobi moments

an(Q2) =

1
∫

0

dx xf(x,Q2)Θα,β
k (x)

=
n

∑

j=0

c
(n)
j (α, β)f(j + 2, Q2) . (8)
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Using Eqs. (7)–(8), one can relate the structure function with its Mellin
moments

Fk
2 (x,Q2) = xβ(1 − x)α

Nmax
∑

n=0

Θα,β
n (x)

n
∑

j=0

c
(n)
j (α, β)Fk

2 (j + 2, Q2) , (9)

where Fk
2 (j + 2, Q2) are the moments of the structure function. Nmax,

α and β have to be chosen so as to achieve the fastest convergence of the
series on the r.h.s. of Eq. (9) and to reconstruct Fk

2 with the required accu-
racy. In our analysis we use Nmax = 9, α = 3.0 and β = 0.5. Obviously the
Q2-dependence of the structure function is defined by the Q2-dependence of
the moments. The same method has been applied to calculate the polarized
structure function xg1 from their moments [10].

Now we can use the structure function data measured in charged lepton
proton and deuteron deep inelastic scattering. We used all of the world data

for Fp,d,NS
2 . Using the CERN subroutine MINUIT, we defined a global χ2 for

all the experimental data points in the NNLO case. In Fig. 1 the proton and
deuteron data for F2(x,Q2) are shown in the valence quark region x ≥ 0.3.
The solid lines correspond to the NNLO QCD fit. Also this figure shows
the results of NNLO fit for the kinematic region x ≤ 0.35. Fig. 2 illustrates
the evolution of the valence quark densities xuv(x,Q2) and xdv(x,Q2) for
Q2 = 1GeV2 and Q2 = 10GeV2 at NNLO.
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Fig. 1. The structure functions FNS
2 , F p

2
and F d

2 as function of Q2 in intervals of x.

According to our QCD fits it seems that one should take into account
the target mass corrections and higher twist in the region of large values of
x and small values of Q2.
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Fig. 2. The parton distribution xuv and xdv at some different values of Q2.

The solid (dotted) line is our model for Jacobi approach (Bernstein approach [11]),

the dashed line is the MRST model [12], dashed-dotted line is the A05 model [13],

dashed-dotted-dotted line is the BBG model [2].
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