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We review the main features of the recently presented method for the
evaluation of one-loop amplitudes of arbitrary scattering processes, in which
the reduction to scalar integrals is performed at the integrand level. The
coefficients of the scalar integrals are extracted by means of simple alge-
braic equations constructed by numerically evaluating the numerator of the
integrand for specific choices of the integration momentum. The method is
very well suited for an automatized and efficient implementation.

PACS numbers: 11.15.Bt, 12.38.Bx

1. Introduction and general motivations

The experimental programs at future colliders require high precision pre-
dictions for multi-particle processes. At the tree level, the introduction of
efficient recursive algorithms [1] improved the theoretical description of such
processes. However, the current need for precision goes beyond tree order.
Starting with LHC, all analyses will require at least next-to-leading order
calculations (NLO).

Many of the ingredients needed to accomplish such calculations were
already developed in the fundamental work of Refs. [2, 3]. However, after
almost three decades, only few one-loop calculations involving more than
five particles have been completed [4].

The difficulties arising in this kind of calculation are well known: on the
one hand the presence of a very large number of Feynman diagrams, on
the other the appearance of numerical instabilities, that should be cured or
avoided.
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In the last few years, several groups have been working on the problem
of constructing efficient and automatized methods for the computation of
one-loop corrections for multi-particle processes. Many different interesting
techniques have been proposed: these contain numerical and semi-numerical
methods [5], as well as analytic approaches [6] that make use of unitarity
cuts to build NLO amplitudes by gluing on-shell tree amplitudes [7]. Some
of these techniques require additional rational terms to be computed sepa-
rately [8]. For a recent review of existing methods, see [9].

The main purpose of this talk is to illustrate a different approach to NLO
calculations [10,11]. The method benefits from previous work of Pittau and
del Aguila [12]. We will review the main features of the method including
a simple recipe for the computation of rational terms. We will then illustrate
the status of the numerical implementation and the applications already
performed. Finally, we will briefly comment on possible future developments.

2. General method

Any m-point one-loop amplitude can be written, before integration, as

A(q̄) =
N(q)

D̄0D̄1 · · · D̄m−1

, (1)

where D̄i = (q̄ + pi)
2
− m2

i . The bar denotes objects living in n = 4 + ε

dimensions and a tilde objects of dimension ε. Physical external momenta pi

are 4-dimensional objects, while the integration momentum q is in general
n-dimensional. Following this notation, we have q̄2 = q2 + q̃2 and D̄i =
Di + q̃2.

The integrated amplitude can be expressed in a basis of known integrals,
such as 4-, 3-, 2- and 1-point scalar integrals. The task of the reduction is
therefore to determine the coefficients in front of each one of the integrals.

In order to perform the calculation, we need three main building blocks:
the evaluation of the numerator function N(q), the determination of the
coefficients via reduction method, and finally the evaluation of the scalar
functions. This talk will describe in some detail how the second step can
be accomplished. Concerning the other two steps, N(q) is evaluated numer-
ically using a separate routine, and only for the values of q needed in the
reduction, while scalar integrals are provided by FF [13] for massive internal
particles, and OneLOop [14] in the massless case.

Let us now focus on the reduction. The procedure described below is the
main idea on which the method is based. When performing a calculation, it
can be considered as a black-box, since it is completely process-independent:
for any given numerator function N(q), the reduction can be performed in
an efficient automatized way. We provide an implementation of the general
algorithm in the package CutTools [15], that will soon be available upon
request from the authors.
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2.1. Reduction

Assuming for the moment that the numerator N(q) is fully 4-dimensional,
we can rewrite it at the integrand level in terms of Di as

N(q) =

m−1
∑

i0<i1<i2<i3

[

d(i0i1i2i3) + d̃(q; i0i1i2i3)
]

m−1
∏

i6=i0,i1,i2,i3

Di

+

m−1
∑

i0<i1<i2

[c(i0i1i2) + c̃(q; i0i1i2)]

m−1
∏

i6=i0,i1,i2

Di

+

m−1
∑

i0<i1

[

b(i0i1) + b̃(q; i0i1)
]

m−1
∏

i6=i0,i1

Di

+

m−1
∑

i0

[a(i0) + ã(q; i0)]

m−1
∏

i6=i0

Di . (2)

The quantities d(i0i1i2i3) are the coefficients of 4-point scalar functions
with denominators labeled by i0, i1, i2, and i3. In the same way, we call
c(i0i1i2), b(i0i1), a(i0) the coefficients of all possible 3-point, 2-point and

1-point scalar functions, respectively. The quantities d̃, c̃ , b̃ , ã are what we
define as “spurious” terms, i.e. terms that are present in the decomposition
at the integrand level, but will vanish upon integration. These terms still
depend on the integration momentum q.

After fixing the form of all the spurious terms, our calculation is reduced
to the algebraic problem of extracting all the coefficients. This is achieved
simply by evaluating N(q) at different values of the integration momentum q.
As a further simplification, there is a very good set of such points: we can
use values of q for which a subset of denominators Di vanish. Operating in
this manner, the system becomes “triangular”; we can first solve for 4-point
functions, then 3-point functions and so on.

To conclude this section, let us summarize once more the recipe for the
calculation. We first calculate all the coefficients in Eq. (2), by evaluating
the numerator of the integrand N(q) for a set of values of the integration
momentum q. Note, that we do not need to repeat this for all Feynman
diagrams: we can group them and expand for (sub)amplitudes directly. We
just need to specify external momenta, polarization vectors and masses, and
proceed with the reduction. Concerning N(q) we can choose how to proceed
according to the specific calculation: as an interesting development, N(q)
could be determined numerically via recursion relations. Once all the coef-
ficients have been determined, we can multiply them by the corresponding
scalar integrals.
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2.2. Rational terms

As mentioned in the previous section, the reduction has been performed
assuming a purely four dimensional numerator (this singles out the so called
cut-constructable part of the amplitude). In this section we describe one
possible method to calculate the rational parts of the amplitude [11,16]. In
our approach, these contributions originate from the fact that up to now we
expressed the numerator in terms of Di, while the functions appearing in the
denominator are n-dimensional D̄i. Let us go back to the integrand A(q̄) of
Eq. (1) and insert the expression for N(q) of Eq. (2), that we obtained after
determining all the coefficients for both regular and spurious terms. Now,
we rewrite Di by means of

Di

D̄i

= Z̄i , with Z̄i ≡

(

1 −

q̃2

D̄i

)

.

The rational part is produced, after integrating over dnq, by the q̃2 depen-
dence in Z̄i. The expressions for all relevant integrals are reported in the
Appendix of Ref. [11].

In addition to the one just described, there might be other sources of
rational terms coming from objects of dimension ε in the numerator N(q),
according to the specific calculation. These, for example, could originate
from the contraction of Dirac matrices or from powers of q̄2 [17].

3. Numerical tests

3.1. Four-photon and six-photon amplitudes

As a first example of application of the method, we calculated 4-photon
and 6-photon amplitudes, via fermionic loop of mass mf [11]. Those pro-
cesses do not have an immediate physical interest, however they provide
a playground for testing and comparing different methods of calculation.

For the 4-photon amplitudes, we performed a comparison with the ana-
lytic result presented by Gounaris et al. [18], finding perfect agreement both
in the massive and massless cases.

Coming to the 6-photons, there are a few previous results available in the
literature for the massless case. Some time ago, Mahlon presented an exact
analytic result for the helicity configuration [++−−−−] [19]. More recently,
Nagy and Soper, with a fully numerical approach, obtained the results for
the configurations [+ + − −−−] and [+ + − − +−] [20]. The same results
were also recently presented by Binoth et al. [21], that also provide analytic
expressions. Our results are in full agreement with all previous calculations.
We also checked that the cut-constructable part for configurations [+−−−

−−] and [−−−−−−] and the rational terms for all helicity configurations
are identically zero. Finally, we calculated the 6-photon amplitudes with
massive internal fermions. The results have been presented in Ref. [11].
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3.2. ZZZ production

We recently completed the evaluation of the virtual QCD corrections to
the process qq̄ → ZZZ. These results have been recently presented by La-
zopoulos at al. [22], together with the evaluation of the contributions from
real emission. The virtual part of the calculation involves eight different
diagrams, that have been depicted in Fig. 1. Each diagram should be eval-
uated for six permutations of the final particles. It is interesting to notice
that, using our technique, the eight diagrams can be combined in a single
numerator N(q), allowing for a one-shot evaluation of the resulting scalar
coefficients.

Fig. 1. Diagrams contributing to virtual QCD corrections to qq̄ → ZZZ.

The results that we obtain, both for poles and finite parts, agree with
the results obtained by the authors of Ref. [22]. We will report the details
of our calculation in a forthcoming publication.

4. Summary and future outlook

The discovery potential of LHC requires NLO calculations. At present,
there is a variety of interesting options available to perform one-loop multi-
leg calculations, however not a universal method. Moreover, the need for
automatized and efficient implementations puts additional constraints in the
construction of tools to accomplish such tasks.

We recently proposed a method for the numerical evaluation of one-loop
amplitudes in which the reduction is performed at the integrand level. With
respect to other existing methods, it presents several advantages. First of all,
the information required in order to perform the reduction is minimal, sim-
ply the numerical value of the numerator of the integrand for a set of values
of the integration momentum (no analytical expression is necessary). More-
over, the method does not require any computer algebra, which is usually
very time consuming, and it incorporates a solid way to compute rational



3574 G. Ossola

terms. The first tests performed gave good results, both in terms of precision
and efficiency. Moreover, there is still plenty of room for improvement and
optimization. For example, a very appealing possibility is the automatized
evaluation of the numerator function N(q), by means of recursion relations.

An implementation of the general algorithm, together with the main rou-
tines needed to perform the reduction, can be found in the package CutTools,
that will soon be available upon request from the authors.

Work done in collaboration with Costas Papadopoulos and Roberto Pit-
tau. Many thanks to Andre van Hameren and Achilleas Lazopoulos for
detailed numerical comparisons. This research was supported by the ToK
Program “ALGOTOOLS” (MTKD-CT-2004-014319).
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