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After reviewing some basic concepts of the theory of strongly interact-
ing matter above nuclear energy density and reviewing some salient results
of the experimental program at the Relativistic Heavy Ion Collider (RHIC),
these lectures explain why the quark–gluon plasma observed in the RHIC
experiments has been called a “perfect liquid.” They then give an intro-
duction to some recent ideas concerning the possible origin of the nearly
inviscid nature of the quark–gluon plasma and discuss the connection be-
tween low viscosity and strong parton energy loss of hot QCD matter.

PACS numbers: 13.85.–t, 12.38.Mh

1. QCD matter under extreme conditions

Nuclear matter can be compressed in two very different ways: A slow
squeeze results in cold matter at high net baryon density; a rapid squeeze
produces hot matter high in energy density. The first type of compression is
impossible to perform in the laboratory, but it can be achieved in the cosmic
environment by stellar collapse: The cores of old neutron stars are thought
to contain nuclear matter at up to ten times normal baryon density and at
rather low temperatures on the nuclear scale, in the keV range. Hot, dense
nuclear matter can be produced in the laboratory by colliding two heavy
nuclei at high energies. The higher the collision energy, the lower is the net
baryon content of the matter formed in the center of mass. Of course, hot
nuclear matter also existed for a brief time shortly after the Big Bang, with
temperatures exceeding 200 MeV (about 2 × 1012 K) for the first 10 µs in
the history of our universe.

Nuclear collisions of this kind occur regularly in cosmic ray reactions,
but these are rare and difficult to study. Systematic studies using high-
energy accelerators now have a history of over 30 years, beginning with the
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BEVALAC at Berkeley, followed by the BNL–AGS and the CERN–SPS,
and culminating presently at the Relativistic Heavy Ion Collider (RHIC)
at BNL. In the near future, even higher energies will be explored at the
CERN–LHC, and large net baryon densities will be studied at RHIC and,
later, GSI–FAIR. The goal of all these experimental programs is to produce
and study equilibrated nuclear matter at energy densities far exceeding that
of ground state nuclear matter (ε0 ≈ 0.14 GeV/fm3). As we shall discuss
below, this goal has been achieved with spectacular results, especially at
RHIC.

The theory of nuclear matter under extreme conditions is based on
the fundamental theory of strongly interacting matter, quantum chromody-
namics (QCD). This gauge theory of SU(3)-color describes the interactions
among quarks and gluon by means of the Lagrangian

LQCD = −1

4
Ga

µνG
aµν +

∑

f

ψ̄fγ
µ
(

i∂µ − gAa
µt

a
)

ψf +
∑

f

mf ψ̄fψf . (1)

In this expression, Aa
µ, G

a
µν denote the gluon potential and field strength

tensor, respectively, with the color index a running from 1 to N2
c − 1 = 8.

ψf denotes the quark field of flavor f = u, d, s, . . ., γµ are the Dirac matrices,
ta the generators of SU(3) in the fundamental representation, and mf the
(current) quark masses.

At high density, the separation between quanta becomes small and either
the Fermi momentum or the thermal momentum becomes large. The asymp-
totic freedom of QCD then suggests that interactions among the quarks and
gluons are relatively weak, and their contribution to the energy density of
the matter should be relatively small. We can then estimate the energy den-
sity as a function of the temperature T . Denoting the number of internal
degrees of freedom by ν and assuming zero net baryon density (µB = 0) we
have

ε ≈ ν

∫
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(2π)3
E
(

eE/T ± 1
)

−1
≈
(
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7

8
νQ

)

π2

30
T 4 , (2)

where we have neglected the quark masses in the last step. The degrees of
gluons and quarks are easily counted: νG = 2(N2

c − 1) [spin and color] and
νQ = 4NcNf [spin, baryon number, color, and flavor]. For Nf = 2 flavors
(u, d) one finds that a temperature of 160MeV is needed to reach an energy
density of 1GeV/fm3, roughly 7.5 times that of normal nuclear matter.

If one wants to obtain more reliable information about the equation of
state of QCD matter or wants to find out in which temperature domain
the rough estimate (2) applies, one must turn to exact calculations of the
energy density. At present, this requires massive computer simulations of
QCD discretized on a lattice. Over the past few years, increasingly precise
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lattice calculations of thermal QCD, extrapolated to the continuum and
thermodynamic limits and to small quark masses, have become available
(see Fig. 1). These show a rapid transition from a low-energy region to
a region with nearly constant ε/T 4 at Tc ≈ 160MeV. Detailed studies of the
baryon number susceptibilities have shown that below Tc the matter can be
understood as a rather dilute gas of hadrons. Above Tc, the matter behaves
as a SU(3)-colored plasma of interacting quarks and gluons. The various
susceptibilities (specific heat, scalar quark density, Polyakov loop) exhibit
strong peaks at Tc, but they do not diverge. The transition between the
low-temperature and the high-temperature domains is thus not a true phase
transition, but has the character of a rapid cross-over [1]. Precisely how
wide the cross-over region is and whether it is characterized by a universal
value of Tc or slightly different values for different physical observables, is
a matter of intense discussion [2, 3].
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Fig. 1. Thermodynamic quantities ε, P, s divided by T 4 for QCD matter as function

of temperature T for µB = 0. The quantity (45/2π2)s/T 4 can be considered as

a measure of the number of thermodynamically active degrees of freedom.

2. The quark–gluon plasma

What is clear from the lattice results is that above Tc many quantities are
well described by positing that the thermodynamically active constituents of
QCD matter are interacting quarks. A striking example are the off-diagonal
flavor susceptibilities. If a quasi-particle picture applies to the quark–gluon
plasma, the ratio [4]

CXY = 3
〈XY 〉 − 〈X〉〈Y 〉
〈Y 2〉 − 〈Y 〉2 (3)
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of the covariance of the flavor quantum numbers X and Y and the variance
of Y alone is a sensitive indicator of the flavor quantum numbers of the
plasma constituents [5]. In the narrow temperature range T = (1 ± 0.1)Tc

lattice calculations show a striking transition of the quantities CBS and CQS

from the values expected for a hadron gas containing strange baryons with
integer electric charge Q and baryon number B to matter whose carriers
of baryon number and electric charge have the fractional quantum numbers
characteristic of strange quarks (see Fig. 2).
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Fig. 2. Flavor susceptibility ratios CBS and CQS as a function of T/Tc. The results

of lattice simulations [6] are compared with expectations for a weakly coupled

hadronic gas and a quasi-particulate quark–gluon plasma [7]. The transition to

CBS = CQS = 1 expected for matter in which baryon number is carried by quarks

occurs in a narrow range around Tc.

How high in temperature one needs to go for gluons to also be de-
scribed in such a picture is still unclear, but the thermodynamic functions
are reproduced well in an approach based on perturbative quasi-particles for
T ≥ 3Tc [8,9]. These gluonic quasi-particle modes acquire a thermal “mass”
of order gT , which helps avoid many infrared problems of the bare thermal
gauge theory. An immediate consequence is the screening of the long-range
color force responsible for quark confinement at zero temperature. In the
weak coupling limit, the static color-electric potential Aa

0 of a heavy color
charge embedded in the quark–gluon plasma satisfies the Poisson equation

−∇2Aa
0 = gρa

G(Aa
0) + gρa

Q(Aa
0) , (4)
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where ρa
G/Q(Aa

0) = −µ2
G/QA

a
0 are the induced color polarization densities of

gluons and quarks in the plasma, respectively. The perturbative calculation
yields:

µ2
G = (gT )2 , µ2

Q =
Nf (gT )2

6
, (5)

implying an exponentially screened static color potential with a range
µ−1

G/Q< 0.5 fm. This picture suggested by a perturbative treatment is borne

out by lattice simulations of the free energy of a pair of heavy, static quarks
[10] (see Fig. 3).
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Fig. 3. Free energy F1 of a pair of heavy quarks forming a color singlet as a function

of QQ̄ separation r for various different temperatures. The potential is increasingly

screened as the temperature increases. The screening effect at T < Tc is due to

pair production of light quarks from the vacuum when R is large.

For a long time it was thought that extended, though screened, color
fields could not be generated in a quark–gluon plasma, because there exists
no coherent source for such fields. (Owing to the absence of free quarks in na-
ture, one cannot construct a “color battery.”) Over the past decade, however,
it has been realized that dynamic plasma mechanisms permit the formation
of extended color fields by a kind of instability driven “color dynamo” [11,12].
These instabilities are generalizations of the phenomena first identified by
Weibel in electromagnetic plasmas with an anisotropic momentum distri-
bution [13]. Fluctuations in the (color) current densities of such a plasma
are found to induce (color-)magnetic fields which, in turn, amplify the orig-
inal fluctuations producing a run-away effect. Momentum anisotropies are
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expected in a heavy-ion collision, where the longitudinal motion along the
beam axis provides for a natural source of momentum space anisotropy. In
a quark–gluon plasma, the exponentially growing fields eventually saturate
due to the nonlinear interactions present in the Yang–Mills equation govern-
ing the SU(3) gauge field [14]. Detailed simulations (see Fig. 4) have shown
that the fields in the steady state are characterized by an intensity of order
〈E2〉 ≈ 〈B2〉 ∼ g2T 4 and a correlation length of order (gT )−1 [15].

Fig. 4. Spatial and temporal structure of dynamically generated color fields in

a quark–gluon plasma with an anisotropic momentum distribution [16].

A second conceptually important difference between normal nuclear or
hadronic matter and the quark–gluon plasma phase is the restoration of
the spontaneously broken chiral symmetry due to the disappearance of the
vacuum quark condensate 〈0|q̄q|0〉 at high temperature. As a result, the dy-
namical (“constituent”) masses of the light quarks u, d (s) of order 300MeV
(500MeV) give way to the much smaller current masses of order 5–10MeV
(100MeV) believed to be generated by the interaction with the Higgs field,
as illustrated in Fig. 5. It should be noted, however, that the interaction of
the quarks with the thermal medium induces a new type of dynamical mass
of order gT , which does not violate chiral symmetry. Although the phe-
nomenon of chiral symmetry restoration is well established owing to lattice
simulations, it is not easy to identify experimentally accessible signatures
of this phenomenon. Electromagnetic probes, such as lepton pairs, may
provide the best handle, but it remains uncertain how the effects of quark
deconfinement and chiral symmetry restoration in the emission spectrum
can be separated.
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Fig. 5. Right panel: The overwhelming part of the mass of “constituent” u, d, and

s quarks in hadrons in the normal QCD vacuum are dynamically generated by

the vacuum quark condensate (bottom). This contribution to the mass disappears

above Tc and only the current mass generated by the Higgs field (top) remains.

Left panel: Current mass due to Higgs field (blue) and constituent mass due to

quark condensate (red) of the six known quark flavors. The quark mass is shown

in MeV on a logarithmic scale.

Rigorous algorithms for the simulation of lattice QCD only exist for zero
net baryon density. In recent years, however, several ingenious techniques
have been invented that allow to extrapolate the simulations to nonzero
values of the baryon chemical potential µB [17–20]. Most of these simulations
predict that the cross-over regime between hadronic matter and quark–gluon
plasma narrows as µB increases and eventually gives way to a discontinuous
phase transition. The critical endpoint of the first-order transition line may
lie as low as µB ≈ 300 MeV [21]. Unfortunately, the precise location of
the critical point has been found to be extremely sensitive to the values of
the current quark masses. Some calculations even indicate that the critical
point might not exist [22]. Following the phase boundary to even higher
values of µB one may encounter a triple point, where the line separating
hadronic matter from the quark–gluon plasma meets the phase boundary
between quark–gluon plasma and color superconducting quark matter [23].
It must be noted, however, that such studies are still very much exploratory
and speculative.

3. Results from RHIC

The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National
Laboratory was constructed to heat nuclear matter beyond Tc by colliding
heavy nuclei at sufficiently high energy, and thus to discover the quark–gluon
plasma and explore its properties [24]. Because lattice QCD simulations
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are not yet able to reliably address the dynamic processes that govern the
plasma evolution and response to perturbations. Initial expectations for the
dynamic properties of the quark–gluon plasma were based on approximate
analytical QCD calculations which assume that the color forces between
quarks and gluons at high temperature are weak and can be treated per-
turbatively. Such analytical calculations suggested that the quark–gluon
plasma should behave like a dilute gas, a loose assembly of particles which
explodes in a more or less spherical pattern. The RHIC experiments have
provided spectacular evidence that the quark–gluon plasma defies this ex-
pectation, at least in the temperature domain T ≤ 2Tc accessible at RHIC.
Far from behaving like a dilute gas, the matter created in collisions of heavy
nuclei flows like a nearly “perfect” liquid of liberated quarks, with almost
undetectable viscosity.

The insights into the nature of quark–gluon plasma have made the first
phase of RHIC a great success. In its first six runs (2000–2006), RHIC
has provided four different collisions systems (Au+Au, d+ Au, Cu+Cu, and
p+ p) at a variety of energies, ranging from nucleon–nucleon center-of-mass
energies of 19.6 to 200GeV. The largest data samples were collected at the
highest energy of 200GeV, where the accelerator has achieved sustained
operation at four times the design luminosity. The ability to study proton–
proton, deuteron–nucleus, and nucleus–nucleus collisions at identical center-
of-mass energies with the same detectors has been key to systematic control
of the measurements. The experiments also measure the impact parameter
(distance of closest approach) and the orientation of the reaction plane in
each event. This detailed categorization of the collision geometry provides
a wealth of differential observables, which have proven to be essential for
precise, quantitative study of the plasma. The results obtained by the four
RHIC experiments (BRAHMS, PHENIX, PHOBOS, and STAR), published
in nearly 200 journal articles and four summary publications [25–28], are in
remarkable quantitative agreement with each other.

The initial set of heavy ion results from RHIC has provided evidence for
the creation of a new state of thermalized matter at an unprecedented energy
density of (30–100) ε0, which exhibits almost ideal hydrodynamic behavior.
Important results from the RHIC experiments include [29]:

• chemical (flavor) and thermal equilibration of all observed hadrons
including multi-strange baryons; only the reaction gg → s̄s is known
to achieve this on the time-scale of the nuclear reaction;

• strong elliptic flow, indicating early thermalization (at times less than
1 fm/c) and a very low viscosity of the produced medium;

• collective flow patterns related to independently flowing quarks, not
hadrons;
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• strong jet quenching, implying a very large parton energy loss in the
medium and a high color opacity of the produced matter;

• strong suppression of open heavy flavor mesons at high transverse mo-
mentum, implying a large energy loss of heavy (c and b) quarks in the
medium;

• direct photon emission at high transverse momentum that remains
unaffected by the medium;

• charmonium suppression effects that are similar to those observed at
the lower energies of the CERN-SPS.

Among the results, three discoveries are most relevant to this lecture:
“Elliptic” flow: The measured hadron spectra and their angular distribu-

tions in non-central heavy-ion collisons reveal the enormous collective motion
of the medium. In addition, measurements of electrons from the decays of
hadrons containing charm quarks indicate that even heavy quarks flow with
the bulk medium. These conclusions are based on measurements of the sec-
ond Fourier coefficient v2 of the azimuthal distribution of particles around
the beam axis [30, 31]:

d2N

pTdpTdφp
=

dN

2πpTdpT
(1 + 2v2(pT) cos 2φp + · · ·) , (6)

where the angle φp is measured with respect to the reaction plane. The RHIC
data are in good agreement with predictions for the hydrodynamic expan-
sion of a nearly viscosity-free liquid — often referred to as a “perfect” liquid
— from an initial oval-shaped configuration characterized by an anisotropic
pressure gradient. The relative abundances of the produced hadrons with
transverse momenta below 1.5GeV/c, the shapes of their transverse mo-
mentum spectra, and their anisotropic or elliptic flow patterns are well de-
scribed by ideal relativistic hydrodynamics with an equation of state similar
to the one predicted by lattice QCD. Ideal hydrodynamics predicts a sys-
tematic fine structure in the behavior of the elliptic flow strength parameter
v2 as a function of transverse momentum pT for hadrons of different mass
(see Fig. 6). The magnitude of the observed collective flow points to rapid
thermalization and equilibration of the matter on a time-scale of less than
1 fm/c [32].

In reality, hydrodynamics is never ideal; any (non-super)-fluid has non-
vanishing viscosities η, ζ, which describe the deviation of the stress-energy
tensor

T µν =εuµunu−P∆µν +η

(

∇µuν +∇νuµ− 2

3
δµν∇·u

)

+ vζ∆µν∇·u , (7)
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Fig. 6. The momentum dependence of the flow anisotropy v2 (“elliptic flow”) of

hadrons measured in on-central Au+Au collisions at RHIC shows the characteristic

dependence on hadron mass predicted by ideal relativistic hydrodynamics.

from its ideal form in the presence of flow gradients. The expression (7)
is valid in the so-called energy frame and makes use of the abbreviations
∆µν = gµν − uµuν and ∇µ = ∆µν∂ν . η is called the shear viscosity, ζ the
bulk viscosity. ζ vanishes for a scale invariant fluid and is thus expected to
be small for QCD matter, except possibly in the immediate vicinity of Tc,
because scale invariance is only broken in QCD by the small current quark
masses and by quantum effects. One of the exciting theoretical discoveries
of the past few years is the insight that there may be a lower bound on
the ratio between the shear viscosity η and entropy density s of any fluid:
4πη/s ≥ 1 [33]. A “perfect” liquid is a fluid that attains this lower bound.
There is mounting evidence from analysis of RHIC data that the matter
produced is nearly such a perfect liquid, with a viscosity to entropy density
ratio not larger than a factor of four times the lower bound.

Quark recombination: Evidence that the medium is composed of de-
confined, thermalized and collectively flowing quarks comes from detailed
measurements of the spectra of a wide variety of hadrons. Baryons, which
contain three valence quarks, show yields that are strongly enhanced rel-
ative to those of mesons, containing a valence quark and anti-quark, at
intermediate transverse momentum (pT ∼2–5GeV/c) in nuclear collisions,
compared with p + p collisions. This observation is well-described by mod-
els in which baryons and mesons are generated by the recombination of
quarks drawn from a collectively flowing, thermally equilibrated partonic
medium. For transverse momenta pT large enough so that hadron masses
can be neglected, the recombination model predicts hadron spectra to have
the form [34–37]:
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E
dNM

d3p
∼
∫

d3p1d
3p2

(2π)6
wq(p1)wq̄(p2) δ(~p − ~p1 − ~p2) ∼ e−E/T ,

E
dNB

d3p
∼
∫

(

3
∏

i=1

d3pi

(2π)3
wq(pi)

)

δ

(

~p−
∑

i

~pi

)

∼ e−E/T , (8)

for mesons (M) and baryons (B), respectively. Here wq(wq̄) denotes the
phase space density of quarks (antiquarks) in the medium just prior to
hadronization. These expressions predict meson and baryon yields of approx-
imately equal magnitude at the same transverse momentum pT, precisely
what is observed in Au+Au collisions at RHIC, where the p/π+ and p̄/π−

ratios are found to be near unity at pT = 2 − 3 GeV/c. In contrast, hadron
production by quark or gluon fragmentation predicts baryon-to-meson ratios
much smaller than unity.

The recombination model also suggests that the elliptic flow parameters
of mesons and baryons are related to the elliptic flow parameter of quarks by
the scaling law (assuming quarks and antiquarks exhibit the same collective
flow) [35, 38]:

v
(M)
2 (pT) ≈ 2 v

(q)
2 (pT/2) , v

(B)
2 (pT) ≈ 3 v

(q)
2 (pT/3) . (9)

Indeed, the measured elliptic flow patterns of baryons and mesons show
remarkable agreement when scaled by the number of valence quarks (see
Fig. 7). A combination of hydrodynamics and recombination model consid-
erations has been used to suggest a slightly modified scaling behavior for
v2 when analyzed as a function of transverse kinetic energy ẼT = (m2 +
p2
T)1/2 −m, resulting in two distinct branches, one for mesons and the other

for baryons (Fig. 7, left panel). When both v2 and ẼT are scaled by the
number of valence quarks (2 for mesons, 3 for baryons) the two branches
merge into a universal curve for all hadrons (Fig. 7, right panel), indicating
that the flow pattern is originally developed at the quark level1.

Jet quenching: QCD jets arise from the hard scattering of incoming
quarks and gluons and their subsequent fragmentation into directionally
aligned hadrons. The rates for jet production and other hard-scattering
processes grow rapidly with increasing collision energy. The production rates
of such hard probes can be accurately calculated and their interactions with
the medium can be described perturbatively. The access to hard probes
was a primary motivation for constructing RHIC with high center-of-mass

1 I am indebted to A. Bialas for the observation that the anisotropy of collective flow
(elliptic flow) must be manifest at the quark level, if it is established as early in the
collision (τ < 5 fm/c) as hydrodynamics suggests.
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is characteristic for hadron emission by quark recombination from a collectively

flowing, thermal quark–gluon plasma.

energy. This strategy has been validated by the discovery of jet quenching
and its development as a quantitative tomographic probe of the quark–gluon
plasma. Fig. 8 illustrates this discovery, showing the suppression of π0 and
η meson emission in central Au+Au collisions compared with expectations
from measurements in p+ p collisions. The suppression of high-pT hadrons
stands in distinct contrast to the lack of suppression seen in direct photon
yields, which are consistent with perturbative QCD calculations of their
initial production rate.

In QCD, the energy loss of an highly energetic light parton (quark or
gluon) is thought to be dominated by gluon radiation induced by the multiple
scattering of the parton on color charges in the medium. The energy loss
after passage through a homogeneous medium of length L can be expressed
as ∆E ≈ −αsq̂L

2, where the stopping power the medium is governed by the
parameter [39]

q̂ = ρ

∫

dq2 q2
dσ

dq2
∼ µ2

λf
. (10)

Here ρ denotes the density of color charges in the medium and dσ/dq2 is the
differential scattering cross section for a parton on a color charge. µ is the
inverse color screening length (see Eq. (5)) and λf denotes the mean free
path of an energetic parton in the medium. The energy loss parameter q̂
can also be expressed as a correlation function of gluon fields in the medium
along the light cone [40, 41]:
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q̂ = lim
ξ→0

g2CR

N2
c − 1

∫

dy−
〈

F ai+(0)F a+
i (y−)

〉

eiξp+y−

, (11)

where CR is the eigenvalue of the SU(3) Casimir operator for the penetrating
parton.

The experimental data from RHIC can be used to determine the value of
q̂ for the quark–gluon plasma produced in nuclear collisions. This determi-
nation requires a realistic modeling of the reaction geometry and its time evo-
lution. Such analyses are just now being performed using three-dimensional
relativistic hydrodynamics [42–44]. They yield values for q̂ in the range of
0.5–20GeV2/fm (normalized to the conditions at time τ = 1 fm/c), consid-
erably larger than the original predictions made on the basis of perturbation
theory. The large variation of the deduced values of q̂ is caused by differ-
ences in treating the multiple radiation leading to energy loss in the various
approaches.

Additional evidence for the color opacity of the medium is seen in studies
of the angular correlation of the radiation associated with a high-pT trigger
particle [45, 46]. In p + p and d+ Au collisions, a hard recoiling hadron
frequently occurs at 180 degrees in azimuth to the trigger, reflecting the
back-to-back nature of jets in leading order QCD. In sharp contrast, central
Au+Au collisions show a strong suppression of such recoils, accompanied
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by an enhancement and broadening of low-pT particle production. Detailed
analyses indicate that the response of the medium to the passage of an
energetic parton may be of a characteristic hydrodynamical nature: the
energy lost by high-energy parton may re-appear as a collective Mach cone.

4. Toward the “perfect” liquid

As stated above, a “perfect” liquid is a fluid with the smallest shear
viscosity allowed by the laws of nature. That quantum mechanics imposes
a lower limit on the shear viscosity of an entropy carrying fluid can be easily
seen as follows. In kinetic transport theory, the shear viscosity η is governed
by the rate of momentum transport in the fluid:

η ≈ 1

3
np̄ λf =

p̄

3σtr
, (12)

where n is the density, p̄ the average momentum of particles in the medium,
and σtr their transport cross section. In quantum mechanics, cross sections
are bounded by unitarity, which poses a lower bound on the shear viscosity.
E.g., for s-wave scattering:

σtr(p) ≤
4π

p2
−→ η ≥ p̄3

12π
. (13)

A slightly different line of arguments rewrites (12) in terms of the energy
per particle E/N = ε/n and the mean time between scatterings τf = λf/v̄,
and then makes use of the relation S ≈ 4N for the entropy S of a highly
relativistic system of particles. Finally, the argument recognizes that the
uncertainty relation sets the bound (E/N)τf ≥ ~ to obtain

η ≈ 1

12
s

(

E

N

)

τf ≥ ~

12
s ≈ ~

4π
s . (14)

All known materials obey this bound on η; in fact, until recently, the
lowest values of η for all materials exceeded the bound (14) by at least
a factor ten !2 Quite generally, the value of η/s for any material grows at
low and high temperatures and reaches a minimum somewhere in between.
The minimum is usually associated with a phase transition; if the transition
is of first order, a discontinuous jump in η/s is observed.

2 This statement includes helium (4He) below the lambda point, as long as its superfluid
and normal components flow together in bulk. Although the fraction of the entropy
carrying normal component tends to zero as T → 0, its shear viscosity increases so
rapidly that, overall, η/s → ∞.
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The only system for which the ratio η/s is known to saturate the lower
bound (14), at least theoretically, is thermal matter governed by the N = 4
supersymmetric SU(Nc) Yang–Mills theory in the combined limit of strong
coupling and large Nc [47]. In this limit the theory can be solved exactly by
mapping it on a weakly coupled superstring theory in five-dimensional Anti-
deSitter space (more precisely, the space AdS5 × S5), the famous AdS/CFT
duality [48]. The shear viscosity is found to be (setting ~ = 1) [49]:

η =
s

4π

[

1 +
135 ζ(3)

(8g2Nc)3/2
+ · · ·

]

. (15)

There are also more general arguments suggesting that any system that has
a gravity dual satisfies the bound (14) [33]. Quite recently, a real system has
been found in remarkable parallelism with the developments at RHIC, which
comes close to the lower bound on η/s: the dilute, degenerate Fermi gas of
6Li atoms at sub-µK temperatures and artificially induced (via a Feshbach
resonance) strong coupling among its atoms. The best experimental values
for this system presently indicate that it comes within a factor of three of
the η/s bound.

What about QCD matter? The shear viscosity of thermal QCD matter
has been calculated in perturbation theory by evaluating the lowest order
contributions to parton-parton scattering. At leading logarithmic order and
for Nf = 3 the result is [50]:

ηC ≈ 9s

100π α2
s lnα−1

s
. (16)

The index “C” is intended to indicate that this is the collisional shear vis-
cosity. ηC has also been calculated numerically at leading order α−2

s beyond
the leading logarithm [51]. When the result is plotted as a function of T , one
finds that η/s should exceed unity for a quark gluon plasma at all tempera-
tures (see Fig. 9) [52]. The shear viscosity of a hadronic gas due to collisions
among pions (and kaons) has also been calculated using, both, experimental
cross section data [53] and chiral perturbation theory [54]. The conclusion is
that η/s may fall slightly below unity at T > 100 MeV but rises very rapidly
as the temperature decreases (see Fig. 9).

On the other hand, the RHIC data seem to demand a value of η/s close
to the bound (14). When the elliptic flow is calculated in dimensionally
reduced scenarios — only treating the transverse expansion while maintain-
ing longitudinal boost invariance — one finds that even a value of η = s/4π
seriously affects the agreement with the data obtained in ideal hydrodynam-
ics [55–57]. Obviously, there is a problem. On the one hand, the calculation
clearly show that the elliptic flow is generated while the matter has an energy
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Fig. 9. Predicted shear viscosity-to-entropy density ratio for QCD matter as func-

tion of temperature. The solid line is the leading-order prediction for a perturbative

quark–gluon plasma. The dashed line shows the result for a dilute hadronic gas

using pion cross section data.

density significantly exceeding ε(Tc) ≈ 1GeV/fm3. On the other hand, the
agreement between data and theory requires η/s ≪ 1. One concludes that,
either the perturbative calculation of the shear viscosity of a quark–gluon
plasma fails by a wide margin, or the shear viscosity of the matter produced
in nuclear collisions is not dominated by collisions among partons. The first
alternative has inspired the hypothesis that the quark–gluon plasma in the
temperature range Tc ≤ T ≤ 2Tc relevant to the nuclear collisions at RHIC is
a strongly coupled plasma [58], nicknamed the sQGP, which is not composed
of partonic quasi-particles and may even not be described by quasi-particles
at all.

5. Anomalous viscosity

The second alternative does not discard the quasi-particle picture alto-
gether, but to recall that transport processes in electromagnetic plasmas are
often not dominated by collisions among particles, but by fields permeat-
ing the plasma. Since the quark–gluon plasma is a plasma, after all, it is
not inconceivable that similar mechanisms are at work in the matter formed
at RHIC. Indeed, we have seen earlier (Fig. 4) that plasma instabilities
generate domains of turbulent color fields whenever the parton momentum
distribution is anisotropic. This will be the case before thermal equilibra-
tion is achieved, and it will remain to be true as long as the matter expands
rapidly in the longitudinal direction. In fact, the momentum anisotropy in
the later steady state regime is proportional to the shear viscosity. The
larger the value of η, the more anisotropic is the momentum distribution of
the expanding quark–gluon plasma (see Fig. 10, right panel).
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Fig. 10. Left diagram: Thermal partons are deflected when they pass through

a randomly oriented color field domain of six tm. Right diagram: The longitudinal

expansion in coordinate space implies an oblate momentum distribution of partons

in the medium.

Thus, let us assume that coherent domains of color field exist in the
plasma. The orientation of the field in color space will be random from one
domain to the next, but the domains will be characterized by an average field
energy density and a correlation length rm. Let us, for the moment, assume
that the domain is described by a color-magnetic field Ba. The momentum
deflection of a color charge Qa passing through the domain at the speed of
light is given by |∆p| ≈ gQaBarm, as illustrated in Fig. 10 (left panel). Since
the domains are assumed to be randomly oriented, the momentum direction
of a parton will be randomized after traveling a distance

λ
(A)
f ≈ p̄2

〈(∆p)2〉 rm ≈ p̄2

g2Q2〈B2〉rm
, (17)

where again p̄ denotes the average thermal momentum of a parton in the
plasma. Inserting this expression into the general kinetic theory formula
(12) for the shear viscosity and substituting s ≈ 4n, p̄ = 3T , we obtain the
anomalous viscosity [59]:

ηA ≈ 9sT 3

4g2Q2〈B2〉rm
. (18)

If we use the scaling estimates 〈B2〉 ∼ g2T 4, rm ≈ (gT )−1 mentioned before,

we obtain ηA/s ∼ g−3 ∼ α
−3/2
s , which suggests that the anomalous viscosity

may dominate over the collisional viscosity in the weak coupling limit.
In order to obtain a quantitative prediction, we need to calculate the

anomalous viscosity in the same formal kinetic theory framework as the col-
lisional viscosity [60]. We start from the perturbed equilibrium distribution
of partons:

f(p) = f0(p) [1 + f1(p)(1 ± f0(p))] , (19)
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where f0(p) = [exp(uµp
µ/T ) ∓ 1]−1 is the Bose (gluons) or Fermi (quarks)

distribution. The perturbation f1(p) for shear strain is parametrized by the
shear viscosity η:

f1(p) =
5η/s

2EpT 2
pipk

(

∇iuk + ∇kui −
2

3
δik∇ · u

)

. (20)

The phase space distribution of partons, f(p), is governed by the non-
Abelian Vlasov–Boltzmann equation

[∂t + v · ∇r + F · ∇p] f(r, p, t) = C[f ] , (21)

where v = p/Ep is the parton velocity, ~F = gQa( ~Ea + ~v × ~Ba) the color
Lorentz force, and C[f ] denotes the collision term. If we assume that the
color fields are randomly oriented and distributed, the ensemble averaged
phase space distribution f̄(p) can be shown to satisfy an equation of the
Fokker–Planck–Boltzmann type:

[∂t + v · ∇r −∇p ·D(p) · ∇p] f̄(r, p, t) = C[f̄ ] , (22)

where the momentum diffusion tensor Dik is given by

Dik(p) =

t
∫

−∞

dt′〈Fi(r
′, t′)Fk(r, t)〉 , with r′ = r + v(t′ − t) . (23)

For isotropically distributed color field domains with a correlation length rm
the diffusion tensor takes the form Dik(p) = 〈F 2〉rm. Following the standard
Chapman–Enskog approach for the calculation of transport coefficients, we
obtain the following result for the shear viscosity:

1

η
= O(1)

〈F 2〉rm
(N2

c − 1)sT 3
+O(10−2)

g4 ln g−1

T 3
≡ 1

ηA
+

1

ηC
. (24)

This expression exhibits several remarkable features. First, the numera-
tor of the anomalous contribution to the shear viscosity, 〈F 2〉rm/(N2

c − 1),
is precisely the contribution of the color field domains to the energy loss
parameter q̂. This is easily seen from the formulation of q̂ as a gluon cor-
relation function along the light cone, Eq. (11). Secondly, a more detailed
scaling analysis reveals that the quantities 〈F 2〉 and rm are functions of the
momentum space anisotropy of the plasma and thus, by virtue of (20), of
η itself. Taking this implicit dependence into account, one finds that the
anomalous viscosity scales as

ηA

s
∼
(

g2|∇u|
)

−3/5
, (25)
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where |∇u| denotes the magnitude of the shear strain. The explicit de-
pendence of ηA on the shear strain gives meaning to the term “anomalous”
viscosity. Since the normal, collisional viscosity scales as ηC ∼ (g4 ln g−1)−1,
but is independent of |∇u|, the collisional viscosity always dominates for
very small shear strains, whereas the anomalous viscosity dominates for large
shear strains and weak coupling! More quantitative statements require the
numerical evaluation of the correlator (23).

6. Exploring the “perfect” liquid

It turns out that the relationship between q̂ and η noticed in the case
of the anomalous viscosity can be generalized to any situation where the
thermal excitations of the medium have the same quantum numbers and
interactions as highly energetic (“hard”) excitations. It not only applies to
QCD, but to any unbroken gauge theory, in which transport cross sections
are dominated by small angle scattering. Under these conditions, one can
derive the following relation [61]:

η

s
= 1.25

T 3

q̂
. (26)

This correspondence fails to hold when the medium is so strongly coupled
that its thermal excitations cannot be described as quasi-particles, as in
strongly coupled super-Yang–Mills (SYM) theory, or when the thermal ex-
citations are described by quasi-particles of a different kind, as in QCD at
temperatures below Tc. This is illustrated in Fig. 11, where the left-hand
side and the right-hand side of Eq. (26) are plotted separately versus the
temperature (for QCD) or the ’t Hooft coupling λ = g2Nc (for the SYM
theory). In both cases, the two sides of the equation diverge when the
medium is not described by a partonic quasi-particle perturbation theory.
In both instances, the right-hand side of (26) is a better measure of the
fundamental coupling strength when the relationship fails to hold.

Reliable independent determinations of η/s and q̂/T 3 from the RHIC
data would thus permit a model independent determination of the strongly
coupled nature of the matter produced in the collisions. If the relation
(26) holds, the quark–gluon plasma at RHIC is composed of partonic quasi-
particles; if it fails, it is a strongly coupled quark–gluon plasma (sQGP).
Presently, the analysis of the RHIC data in terms of η/s and q̂/T 3 is not
yet precise enough to make this determination possible. Using the value
q̂0 ≈ 1–2GeV2/fm extracted in the higher-twist analysis of jet quenching [62]
and the initial temperature T0 ≈ 335MeV deduced from the measured en-
tropy of the final state [63], one finds 1.25T 3/q̂ ≈ 0.12–0.24, not inconsistent
with the constraints on η/s obtained from comparisons of viscous hydrody-
namics calculations with the elliptic flow data.
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Fig. 11. The left-hand side (η/s, red lines) and right-hand side (1.25T 3/q̂, green

lines) of Eq. (26) plotted versus the effective coupling strength. Left panel: QCD;

right panel: N = 4 super-Yang–Mills theory. For QCD, the abscissa shows T/Tc

on a logarithmic scale; for the SYM theory, the abscissa shows the inverse ’t Hooft

coupling, also on a logarithmic scale.

If the effect of the medium on a hard parton can tell us something about
the properties of the matter formed at RHIC, then the fate of the energy lost
by the parton must be even more informative. This issue has two aspects:
the energy lost by the triggered parton and the energy lost by its recoil
partner. The latter is far larger than the former because, on average, the
triggered parton originates close to the near-side surface of the fireball and
thus traverses only a relatively small amount of matter, while the recoil
partner, again on average, propagates through the bulk of the fireball. In
fact, the recoil parton loses so much of its energy that its fragments become
virtually indistinguishable from the matter itself. However, the energy does
not disappear, and its kinematic distribution can be identified by careful
background subtraction. The surprising result of this analysis was that
the excess energy does not appear at 180◦ in azimuth with respect to the
trigger, but at an angle of about 110◦ (see Fig. 12). A three-body coincidence
analysis indicates that the energy appears on both sides of the recoil, ruling
out a simple deflection mechanism.

The explanation most compatible with the data, but also the most spec-
ulative and spectacular one, is that the energy lost by the recoil parton
travels through the medium in the form of a sonic Mach cone [64]. If this is
true, the angular peak position can be used to determine the sound velocity
of the quark–gluon plasma! It would also show that sound propagation in
the medium is only weakly damped and thus confirm that the shear vis-
cosity is small. The formation of a Mach cone trailing a fast color charge
has been demonstrated by explicit calculations in the strongly coupled SYM
theory [65]. In QCD, the precise form of the coupling between a fast color
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Fig. 12. Angular distribution of secondaries around the beam axis with respect

to the direction of the trigger hadron. The red part shows the jet accompanying

the triggered hadron, the blue part shows the fragments of the recoil parton. Left

panel: p+p collisions exhibit the usual 180◦ di-jet event structure. Right panel: In

Au+Au collisions the peak of the recoil secondaries is shifted to 110◦ in azimuth,

suggestive of a Mach cone around the recoil direction.

charge and the sound mode has not yet been derived. What is clear from
phenomenological studies is that the coupling must be highly (about 70%)
effective in terms of energy transfer [66].

The emission pattern of secondaries on the trigger side is also modified
in Au+Au collisions compared with p+ p collisions. In addition to a jet-like
pattern of secondaries at small angles with respect to the trigger hadron with
nearly the same characteristics as in p + p collisions, one finds also a wide
ridge near 0◦ in azimuth but distributed over a wide pseudorapidity range
(∆η > 3) [67]. The chemical composition and spectral distribution of the
hadrons making up the ridge is very similar to the bulk matter. One possible
explanation is that the ridge is formed by the energy lost by the parton that
produced the trigger hadron. Since the jet cone itself has the same shape in
p+p and Au+Au, it must be formed in vacuum, after the parton escapes from
the fireball. But why does the energy radiated during its passage through the
matter spread out longitudinally, but not in azimuth? This could actually
be the result of the deflection of the radiated gluons by turbulent color fields
present in the quark–gluon plasma. If these are mostly color-magnetic fields
oriented in the transverse direction to the beam axis, as it is suggested by
a perturbative analysis of the color field instabilities, they would result in
a preferentially longitudinal deflection of the radiated gluons (see Fig. 13,
left panel). The diffusion in pseudorapidity η, but not in azimuthal angle
φ is, indeed, found when one solves the diffusive transport equation (22)
for radiated gluons in the presence of transversely oriented color-magnetic
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fields (see Fig. 13, right panel) [68]. Similar effects have recently also been
found in self-consistent microscopic simulations of partons propagating in
spontaneously generated color fields [69].
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Fig. 13. Left panel: Schematic representation of the longitudinal deflection of radi-

ated gluons propagating through transversely oriented color-magnetic fields. Right

panel: Longitudinal broadening of the distribution of radiated gluons obtained by

solution of the diffusive Boltzmann equation (22). The final pseudorapidity distri-

bution is shown by the solid red curve.

7. Conclusion

The incredible wealth and quality of the RHIC data have challenged the-
oretical ideas of the physical properties of the quark–gluon plasma on many
fronts. The most remarkable insight gleaned from the data is that the mat-
ter produced in nuclear collisions at RHIC is an almost “perfect”, i.e. nearly
inviscid liquid, whose shear viscosity approaches the lower bound dictated
by unitarity. The strongly coupled super-Yang–Mills theory provides one
model for such a liquid; an alternative model is the turbulent plasma per-
meated by color fields generated by expansion driven plasma instabilities.
If both, shear viscosity η and energy loss parameter q̂ of the matter can be
determined reliably from an analysis of the data, it may be possible to dis-
tinguish between the two scenarios. The found relation, connecting a large
color opacity of the quark–gluon plasma with a low dissipation for collec-
tive flow, is clearly confirmed by the RHIC data. Increasingly differential
studies of the phenomena accompanying jet formation in nuclear collisions
are promising further surprises, which will keep theorists occupied, if not
puzzled, for years to come.
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