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In this lecture I give a short introduction to the high energy limit of
hadronic interactions. The elements of the Regge theory, Pomeron in QCD
and high energy scattering in AdS/CFT correspondence are presented.
I discuss the resummation of the hard Pomeron which in the case of the
fixed coupling leads to the value of intercept equal to two in the limit of
the strong coupling.

PACS numbers: 12.38.Cy, 12.38.Bx, 13.60.Hb

1. Introduction

The high energy behavior of the hadronic total cross sections remains
one of the biggest unsolved problems in the theory of the strong interac-
tions. The problem is that, even at the very high energies s — oo, there is
a range of scales probed in such a process. Many exclusive processes with
an additional large scale can be treated using perturbative methods thanks
to the property of asymptotic freedom and the factorization theorems. On
the other hand, the total cross sections are notoriously difficult to evaluate
from the first principles and, therefore, one has to rely on phenomenological
models. The high energy asymptotics of the hadronic interactions was first
investigated within the S-matrix and Regge theory. Powerful methods based
on few general principles were elaborated, despite the lack of information on
the microscopic dynamics. The high energy limit in QCD was calculated
within the leading logarithmic approximation in the logarithms of energy.
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The result was the famous BFKL Pomeron, which indeed has the Regge
behavior. More recently, in string theory the AdS/CFT conjecture opened
up a new path for understanding the large coupling limit of gauge theories.
In this approach the high-energy scattering of hadrons is dominated by the
gravitational scattering with the Pomeron Regge trajectory being identified
with the graviton trajectory. The picture might be complicated since the
unitarity corrections are to be taken into account, and also by the fact that
the AdS/CFT conjecture is tested for UV finite and conformal theory and
so far the dual description for QCD theory is not known. In this lecture
I will bring some of these ideas, namely I will give a short and elementary
introduction to the Regge theory, high energy limit in QCD and the strong
coupling limit within the string theory. I will also discuss the progress in
resummation at high energy in QCD, which in principle allows to perform
the interpolation between small and large couplings (at least in the case of
N =4 SYM theory).

2. S-matrix and the Regge theory

The S-matrix theory, which was developed in an attempt to understand
the theory of strong interactions, relied on few assumptions based on a very
general and fundamental principles, see [1|. The postulates for the scattering
S-matrix (out|in) were the following:

e Lorentz invariance. The S-matrix had to be therefore, a function of
the invariants s, t, u and possibly masses of the incoming and outgoing
particles.

e Unitarity of S matrix : SST = STS = 1. The unitarity really comes
from the conservation of the probability. The probability of the in-
coming state to scatter into a given outgoing state must be one if we
sum over all possible outgoing states.

e Short range of the strong interactions. This allows to treat the incoming
and outgoing states as free when t — oo, t — —oo (here ¢ is the time).

e Analyticity. The S-matrix should be an analytic function of s,¢,u
with only the singularities due to stable or unstable particles and these
which are required by the unitarity. This postulate is very important
for the construction of the S-matrix theory but at the same time is
very controversial.

e Crossing. This is really consequence of the analyticity postulate. The
physical kinematic regime for the process

a+b—c+d,

is when s > 0 and t,u < 0. According to the analyticity postulate the
amplitude A(s, ¢, u)gp—cq 18 an analytic function and, therefore, it can
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be continued to another region where ¢ > 0 and s,u < 0 which gives
an amplitude for a different process

a+e—b+d.
Thus the same function describes both processes and one can identify

A(s,t, 1) geia = AL, 5, 1) ab—sed -

These postulates lie at the foundations of the S-matrix approach. A partic-
ular insight into the behavior of the amplitude at high energy was gained by
looking into its properties in the angular momentum plane. By performing
the partial wave amplitude decomposition for 2 — 2 scattering in t-channel
one can show that the amplitude admits the representation

o0
2s
At =3 o) (1+2). )
where a;(s) is the partial wave amplitude and the P; is the Legendre poly-
nomial. The continuation to the s-channel and the Sommerfeld—Watson
transform allows to rewrite the above relation

lt) 2s
(204 1) 14+ — 2
%dl L sm7rl <+t>’ @)

where now a(l,t) are the functions which are analytical continuation of the
amplitudes a; in (1). The contour C' is shown in left plot in Fig. 1, it goes
around the positive real axis and encompasses all the poles given by the
sin7l in the denominator of (2). One can then deform the contour C' so
that it is parallel to the imaginary axis in I-plane. There might be poles
and cuts which must be encircled and so the amplitude can be rewritten
as a sum over the poles, cuts and the integral which runs along the line
(—=1/2 —ioc0, —1/2+1i00), see right-hand plot in Fig. 1. We are here primar-
ily interested in the Regge limit, ¢.e. in the limit when the s > —t, that
is at very high energies and small angle scattering. In this limit the contri-
bution to the amplitude is dominated by the rightmost pole in the complex
angular momentum plane and the background integral over the contour C’,
(see right-hand plot in Fig. 1), vanishes. In the case when the simple pole
(rather than the cut) dominates, the amplitude can be approximated as

ima(t)

nte 7
2

In this equation «(t) is the leading Regge pole which depends on the mo-
mentum transfer ¢ and controls the high energy behavior of the amplitude;

A(s,t) — B(t) s (3)
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7 is the signature factor and all the normalization and the residue of the
pole are absorbed into the function ((¢). The amplitude (3) can be thought
of as coming from the exchange of the object-Reggeon in the ¢-channel. Its
angular momentum is equal to a(t). This is rather complicated object since
its spin depends on t and we cannot think about it as an ordinary particle
since it does not have a definite representation of the Lorentz group.

/[ /[

o O

Fig. 1. Shape of the contour in the angular momentum plane.

So far we have considered the process with negative ¢ values but if we now
look into the process with t-values positive then we expect the amplitude
to have poles which correspond to the actual physical particles a(m?) = J;.
Here J; is the actual spin of physical particle with mass m;. An interesting
observation made by Chew and Frautschi in the early sixties [3] was that
when plotting the spin of the mesons as a function of their mass, the points

lie on a universal straight line. This dependence was parametrized as
a(t) =a(0) +da't,

with «(0) being the intercept and o the slope parameter. These straight
lines were called Regge trajectories. Interestingly, the linear behavior contin-
ues to negative values of ¢ and it then corresponds to the scattering process
with the exchange of the reggeon with the same quantum numbers (except
spin of course, which is not defined) as the mesons lying on the trajectory.
For example the process 7~ p — 7%n could be well described using the p tra-
jectory. Thus the Regge trajectories turned out to be universal quantities,
for positive t they contain physical particles with distinct values of masses
and spins, whereas for the negative t values they control the energy behavior
of the scattering process.
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2.1. The Pomeron

The p trajectory had intercept a(0) < 1. From the optical theorem one
obtains that the scattering cross section behaves as

OTOT ~ Sa(O)—l ]

Thus the p trajectory discussed in the previous section, which corresponds to
the exchange of the object with isospin I = 1 leads to the cross section which
decreases with the energy. Pomeranchuk showed that if there is a charge
exchange in any process then the cross section would decrease at very large
energies. On the other hand, if the cross section increases it should be
dominated by the reggeon with the quantum numbers of the vacuum. Such
Reggeon is called the Pomeron. The situation could be more complicated
by the Odderon state, a Reggeon which is odd under charge conjugation,
whose contribution could be constant with the energy [4].

The experimental data on pp and pp scattering exhibit slow increase of
the total cross section with the increasing c.m.s energy. This increase can
be universally parametrized by the small power a(0) — 1 ~ 0.08 both for
pp and pp collisions [5]. The two cross sections differ at small energies, but
they exhibit universal growth for large energies. In fact, it is very interesting
that all the hadronic cross section (pp, pp, 7" p, 7 p, K*p, K~ p) have this
universal behavior [5]. The same growth is also seen in the photoproduction
cross section yp. Thus we conclude that the total cross sections in strong
interactions have an intriguing property of universality at high energies.

3. Gauge theory

The S-matrix provided an important insight into the high energy asymp-
totics. It could not, however, answer more detailed questions about the ex-
act behavior since it lacked the microscopic dynamics. The first attempt
to derive the Pomeron from QCD was done by Low and Nussinov. They
considered the 2-gluon exchange process. This simple model did not have,
however, the features expected from the Regge theory, for example it is not
a Regge pole. The improved approach based on the resummation of the
leading logarithms of energy was pioneered by Lipatov and collaborators [6].
The original 2-gluon exchange model was dressed with subsequent gluon
emission in the approximation s > —t. More precisely, the gluon emissions
were resummed in the limit where each power of the strong coupling is ac-
companied by the logarithm of the energy. The set of diagrams resumed in
this approximation is shown in Fig. 2 where each gluon exchanged in the
t-channel acquires the “reggeized” propagator

. a EG(k‘QT)
. ig S i,
ij(si)sz) = kTW<kTZ> )
7, T 7, T
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where 8; = (ki_1 — kiy1)? with k; = (kzj,ki_,ki,T) being the momenta ex-
changed in the ladder and

Ne.a —q?
2 cQs 2 T
= d“k 4
EG(qt) A / Tk%(kT—QT) ) ( )

is the gluon Regge trajectory. The latter object was obtained by the sum-
mation of the diagrams with the virtual exchanges of gluons in the leading
logarithmic approximation. As seen from (4) this object is infrared divergent
so formally one needs a cutoff on the small momenta to properly define it.
The vertices between the ordinary emitted gluons and the reggeized gluons
are effective vertices. They result from the summation of different tree level
single gluon emission diagrams. The final result for the imaginary part of
the amplitude with arbitrary number of the gluon emissions is rather com-
plicated but it turns out that it can be succinctly represented as a solution
to the integral equation of the Bethe—Salpeter type

wfo(kir, kor, qr) =8P (kir —kor) + / Ay K (kyr, Ky, qr) fuo (K, ko, ar) -
(5)

Here w is the Mellin conjugate variable to the Ins and K is the (energy
independent) integral BFKL kernel which contains the real part coming
from the square of the effective vertex in Fig. 2 and the virtual part from
the Regge trajectory. The function f is called the gluon Green’s function
and it depends on the four off-shell momenta and the rapidity (or w). The
important property of this equation is that it is infrared safe, unlike the
gluon Regge trajectory.

"00000000‘
"000000000‘

0000000000

Fig.2. The schematic representation of the diagram summed in the BFKL calcu-
lation. The blobs represent the effective Lipatov vertex. The gluons exchange in
the t-channel are reggeized. The are represented by the zigzag lines.
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The solution to this equation was found by employing the fact that the
kernel has a conformal symmetry in 2-dimensions [7]. Therefore, one can
diagonalize this operator with the conformal eigenfunctions. For the pur-
poses of this lecture it is sufficient to know the solution for zero momentum

transfer ¢t = —q% = 0. The eigenvalue equation can be written as
agN, 1 o
Koxgp =0 xwm) g, dplhr) = —=(8) /et
71'\/5

where the eigenvalue function is

X(v,n) = 2Re [w(l) — 4 (% v+ g)] . (6)

The dominant contribution is at n = 0. The eigenvalue function has simple
poles at

1
’y:§+iV:.-.,—2,_1;071727"‘ )

and a saddle point at v = 1/2. The BFKL equation gives rise to the cut
singularity which can be seen by solving

asN. 1
" x(n=0,7v), (7)

1=

for w. The cut structure is clear since as ~ varies along the imaginary axis
(1/2 —i00,1/2 + o00) the value of w from this equation varies from —oo to
41n2agN, /.

One can also find the solution by the saddle point method. To this aim
one can expand the kernel around the saddle point v = 0 to get

x(v) ~ 41n2 — 14¢(3)12.
This leads to the following solution in the diffusion approximation

f(ns/so, kir, kar)

s\ wo 7 ln o
~ - _ 2T
~ N(os, s, kar, ko) <80> P < 28¢(3)as N, In S/So> ’ (8)

where normalization function N depends on the energy and momenta but the
leading behavior has been factored out. We see that the energy dependence
of the solution is governed by the power behavior with the power equal to the
value at the minimum of the kernel wy = 4In2(asN,)/7. The last term on
the right-hand side of Eq. (8) is the diffusion term. The transverse momenta
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play the role of the coordinates and the logarithm of the energy is like the
imaginary time. The diffusion in the transverse momenta is then controlled
by the second derivative of the kernel around its minimum. Therefore, the
BFKL resummation of the leading logarithms in the energy showed that the
gluons “reggeize” i.e. they form composite objects at high energy and that
the amplitude is dominated by the Regge cut. Unfortunately, the BFKL
leading logarithmic resummation turned out to be incompatible with the
experimental data. The power behavior s“° with wg = 41n 2(asN,)/7 ~ 0.5
(say for typical values of ag ~ 0.2) is much too strong not only for the
total proton—proton cross sections but also for the growth of the structure
function F5 in Deep Inelastic Scattering of electron on a proton target where
the behavior is roughly Fy(z) ~ 72 | Az = 0.2 — 0.3'. Therefore, it
became clear that there is a need for higher order terms. We will come back
to this problem in Sec. 5.

4. Graviton and string theory in AdSs background

The graviton is thought to be a quantum of the gravitational field and,
if it exists, it must be a particle of spin two, see for example [8]. Since
it couples to energy-momentum tensor it cannot be a scalar. It cannot be
a vector particle also, since it would lead to difference between particles and
antiparticles which contradicts the experiments. It has to be massless ob-
ject since the gravity is a long range force. The universality of its couplings
to particles can be shown by analyzing the amplitudes for the emissions of
soft gravitons and employing Ward identities [9]. Then directly from the
condition of energy-momentum conservation it follows that all the couplings
of gravitons to particles are equal. Therefore, the principle of equivalence
is a natural consequence of the Lorentz invariance for the massless spin 2
particles. In string theory the graviton emerges as a particular closed string
state. The AdS/CFT conjecture gives a tool for analyzing the gauge theory
in a regime where the standard perturbative methods are insufficient. It
states that the two theories: conformal field theory in d = D — 1 dimensions
and the string theory in an anti de Sitter space-time in D dimensions are
related to each other, [10]. More precisely it states that, the limits of these
two different theories which contain different degrees of freedom are inter-
changed when the coupling ¢?N is varied. When the coupling ¢?N, > 1
then the gauge theory is strongly coupled but the string theory is weakly
coupled. On the other hand when ¢?N < 1 the gauge theory is weakly
coupled, but the gravity is strongly coupled. The conjecture relates the

! We mean here that the effective behavior can be parametrized by the power of this
value. The data are very well described by the conventional renormalization group
equations which do not posses this type of singularity.
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boundary values of the fields on the gravity side to the local operators on
the gauge theory side. The correspondence was checked in a particular case
of the conformal field theory N = 4 super Yang—Mills. This theory apart
from the gauge field A, contains also six scalar fields ¢; and four fermions
X;- All the fields transform in the adjoint representation. The theory is
UV finite and the coupling does not run, this fact makes this theory quite
different from the QCD. Nevertheless, the infrared regime is similar to QCD
and since the computations are easier in this theory it can be thought of as
a useful laboratory for QCD.

The high energy limit of the scattering amplitudes was investigated in
the gravity dual, and it turned out that the exchange would be dominated
by the graviton state with jo = 2 [11,12]. What is also interesting that the
same diffusion pattern was found for the amplitude as in the weak coupling
limit. This was interpreted as a diffusion in the fifth (radial) coordinate of
AdS space and on the gauge theory side this corresponds to the diffusion in
the transverse momenta along the ladder. The only difference is in the value
of the power and the diffusion coefficient

2 1

jo = wot+1=2— , D= ——, ¢?N>1, (9

0 0 v g2:N 2/ g*N ©)
N N

jo = w0+1:1+41n20‘jr , D:?g(:s)asw . AN<1, (10)

where jo = wg + 1 with wg from the previous notation. At small values of
the coupling we have a linear increase with the coupling according to the
leading logarithmic approximation (9). At large values of the coupling the
intercept becomes exactly 2 with the correction that vanishes as 1/4/¢g2N
(10). We see that we have two results which should be good approximations
to two different regions of the coupling. The problem is that they are totally
disconnected from each other and it is hard to see that they actually describe
the same object.

5. Resummation at small x

The leading logarithmic approximation gave a very large value for the
intercept of the Pomeron (9). Assuming the typical value of the coupling of
about 0.2, the Pomeron intercept value from this calculation is about 0.5.
This is in a blatant disagreement with the experimental data, especially
the structure function data in deep inelastic scattering. The next-to-leading
correction [13] turned out to be very large,

N, N,
jo =14 4225 (1 - 6.45&> .
™ ™
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Therefore, it became immediately clear that there is a need for the resum-
mation of this series. There are several sources of very large corrections. The
first of them is the running coupling. It is fixed in the leading logarithmic
calculation due to the fact that the subleading contribution (from the point
of view of the leading logarithms in energy) originates from the gluon loops.
It starts to run only at the next to leading level (NLLx). The other im-
portant corrections include the kinematical constraint and the requirement
of the energy momentum-conservation. This was shown [17] to give impor-
tant contribution even before the explicit NLLx calculation. Finally, there
are also corrections coming from the quarks in the evolution. Here we will
only consider the corrections which come from the kinematics since they are
common to both QCD and N =4 SYM theory. The kinematical constraint
comes from a more careful treatment of the final state phase space. The
leading logarithmic approximation is done both on the level of the ampli-
tude and on the phase space of emitted gluons. A careful analysis shows
that, there is a region of momenta for which the emitted gluons are off-shell.
The kinematic constraint imposed onto the real emission part of the kernel
corrects this problem. The result is an all-order resummation of the sub-
leading terms. In particular it was shown that this constraint is responsible
for the triple collinear poles which appear in the next-to-leading calculation
and which constitute numerically a large part of the corrections [14]. It
turns out that it is still insufficient, since the energy momentum is not con-
served exactly. Various schemes were proposed, [18] here we will consider
a very simple model which has energy-momentum conservation imposed on
the level of the eigenvalue [19]. It is rather brute-force method but it does
give qualitatively results which are expected from the gravity calculation at
strong coupling. The anomalous dimensions in the usual renormalization
group approach have a constraint that

'Ygg(j =2)+ 2Nf'7qg(j =2) =0,
Yoq(§ =2) +7q(j =2) = 0, (11)

which is independent of the order of perturbation theory. In N = 4 SYM
the condition is much simpler

’Yuni(j = 2) =0,

where 7,y is defined for example in [15,16]. One can evaluate the anomalous
dimension from the BFKL calculation by solving the equation (7) for 4. This
anomalous dimension does not satisfy the energy momentum constraint.
This is due to the fact, that as mentioned above, the approximations are
made on the level of the amplitude and on the level of the phase space
integral. The simple model that satisfies the energy momentum conservation
was taken in [19] simply as
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1 = asyge(w) x(w,7) ,

X(w,y) = —27E—1/1(7+§)—¢<1—7+%)- (12)
The shifts in the arguments of the kernel eigenvalue come from the kine-
matical constraint. The anomalous dimension in front of the eigenvalue
guarantees the energy momentum conservation when j = w + 1 = 2. The
multiplicative model above is probably too naive. Nevertheless it gives the
result that the intercept becomes 2 for large values of the coupling «y, see
also [15,16].

Solving this equation for w gives the result shown in Fig. 3. We see that
the constraint forces the curve to have two fixed points. Unlike the leading
logarithmic case, where the kernel eigenvalue can take arbitrary values for
the large values of the coupling constant the minimum of this kernel jo =
1 +wy is constrained to the interval [0,2]. The first correction goes as 1/,/ag
at large values of the coupling, compare (10). The second derivative goes
as 1/as which is probably an artefact of the particular multiplicative simple
model. One can evaluate the minimum of this eigenvalue as a function of the
coupling constant, which is shown in Fig. 4. We see that the model provides
a very nice interpolation between the small and large values of the coupling.

Xeff (¥, Os)
2.5
2
1.5
oéﬁ
-0.5 0.5 1 1.5 7

Fig.3. The solution for w from Eq. (12). Fixed points result from the energy
momentum constraint.

The other interesting feature is the behavior of the diffusion pattern in
weak and strong coupling limits. From (9), (10) we see that the diffusion
vanishes both at weak and at strong values of the coupling. It is also clear
from Fig. 3. The vanishing at small coupling is clear, since it is proportional
to the coupling. At strong coupling the eigenvalue becomes very flat as it



3806 A .M. StaSTO

d as N/t
0.001 0.01 0.1 1 10 100 1000
Fig. 4. The value of the intercept, calculated from the minimum of the resumed
eigenvalue as a function of the coupling constant o N, /7.

tends to a constant. The second derivative then vanishes in this limit. The
physical interpretation is that this region is dominated by the soft gluons
with vanishing energy. The qualitative behavior of the diffusion parameter as
a function of the coupling is shown in Fig. 5. It is zero at agN.=0, agN. =00
and it has to have a maximum at an intermediate value of agV.,.

AD

N

Yy Q,

Fig. 5. The value of the diffusion coefficient as a function of the coupling constant.

6. Conclusions

In these lectures I gave a brief overview of the high energy limit in
hadronic collisions. It is expected that the high energy limit is governed
by the exchange of the object with the quantum numbers of the vacuum,
called the Pomeron. In QCD it can be calculated by the summation of the
Feynman diagrams in the leading logarithmic approximation in the loga-
rithms of the energy. The result leads to the very strong increase of the
amplitude with the energy and it is not compatible with the experimental
data. The resummation of the subleading corrections was shown to tame
this rapid growth and reduce the value of the intercept of the Pomeron.
The large amount of the corrections comes from the exact treatment of the
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kinematics: energy-momentum conservation constraint and the kinematical
constraint. By putting these two constraints onto the kernel, one can show
that there is a limit on a value of the Pomeron intercept when the coupling
constant becomes infinite. It corresponds to wg = 1 which is the value if
there was an exchange of an object with spin two. Several important ques-
tions remain. The unitarity corrections should become equally important in
addition to the single Pomeron exchange, [20]. The graviton itself emerges
here as an object which consists of very soft gluons , in the limit where the
infrared divergences of the gauge theory cancel. The considerations so far
were only done at the level of the fixed coupling in a model which is close to
N =4 SYM theory rather than QCD. Running coupling effects and mixing
with quarks must be taken into account when considering real QCD.

I would like to thank the organizers of the Cracow School of Theoretical
Physics for a possibility to give this presentation and for the very interest-
ing school. This research is supported by the US DOE under grant number
DE-FG02-90ER-40577 and by the Polish State Committee for Scientific Re-
search grant KBN 1 P03B 028 28.
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