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AdS/CFT correspondence is used to model the dynamics of one-dimen-
sional expansion of N = 4 SYM plasma. Criterium of nonsingularity of the
dual geometry is shown to fix both, large proper time dynamics (to be
of the perfect fluid type) and subleading corrections to it (viscosity and
relaxation time). Time-dependent D7-brane embedding is shown as a first
step towards adding a fundamental matter into the expanding plasma.
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1. Introduction

Quark–gluon plasma created in RHIC turned out to be a strongly cou-
pled phase of QCD [1]. This raises a question of its theoretical understanding
originating from the first principles. Recently the famous AdS/CFT corre-
spondence [6] has been proposed as a tool to carry out analytical investiga-
tions in a strongly coupled gauge theory at a finite temperature [10]. In this
paper gravity dual is used to model one-dimensional expanding plasma of
N = 4 super Yang–Mills theory (SYM) with a very large number of colors
in the boost-invariant setting [11]. In the first part of this paper, second
order relativistic hydrodynamics [3–5] is used to extract viscosity and re-
laxation time from holographically reproduced energy-momentum tensor of
the gauge theory [15]. These two quantities are of great importance because
they can be compared to the ones describing QCD plasma.
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The second part is devoted to introducing the fundamental matter to
N = 4 SYM expanding plasma system (this reduces supersymmetry by
the factor of 2, but at a finite temperature supersymmetry is broken any-
way). On the dual side this corresponds to adding Nf ≪ Nc D7-branes [19].
A time-dependent D7-brane embedding is the first step towards the calcu-
lation of the meson spectra in the expanding plasma [20].

The paper is organized as follows: in Section 2 Bjorken hydrodynamics [2]
is reviewed, next in Section 3 second order relativistic hydrodynamics [4] is
introduced, Section 4 contains holographic renormalization method [7], in
Section 5 systematic way of solving Einstein equations for large proper times
is explained together with formulas for metric coefficients, Section 6 provides
the details of viscosity and relaxation time calculations within the framework
of second order relativistic hydrodynamics [15], Sections 7 and 8 are devoted
to the embedding of the D7-brane in a time-dependent background [20],
conclusions and summary of open problems are located in Section 9.

2. Boost invariant energy-momentum tensors

The operator of particular interest on the N = 4 SYM side is the
energy-momentum tensor. The gauge gravity duality will be used to model
its dynamics in the QCD setting corresponding to one-dimensional expan-
sion of quark–gluon plasma [11]. If x0 is time-like coordinate and x1 de-
notes direction of expansion, then the coordinates naturally adopted to
probe one-dimensional expansion in boost-invariant setting are proper time
τ =

√
(x0)2 − (x1)2 and rapidity y = arctanh(x1/x0). Directions perpen-

dicular to the expansion will be denoted x⊥. Boost-invariance forces all
physical quantities to depend on proper-time τ only [11].

After imposing all the symmetries on energy-momentum tensor T µν (con-
servation, tracelessness and rotational symmetry in the transverse plane) the
resulting outcome is an energy-momentum tensor fully expressed in terms
of energy density f(τ) = T 00 [11].

The aim of applying the AdS/CFT correspondence in this context is to
reproduce the dynamics of energy-momentum tensor of N = 4 SYM from
gravitational description. Having established the physical vacuum expecta-
tion value of energy-momentum tensor, second order relativistic hydrody-
namics is used to calculate viscosity η and relaxation time τπ.

3. Second order viscous hydrodynamics

Viscous corrections to perfect fluid energy-momentum tensor are of great
importance because viscosity carries the information whether the system is
weakly or strongly coupled. Second order hydrodynamics is a framework in
which thermodynamical quantities are expanded up to the second order in
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gradient expansion [4, 5]. Introduction of relaxation time, parameter corre-
sponding to characteristic scale of equilibration, results in a causal theory.
Evolution equation takes the form

dρ

dτ
= −4

3

ρ

τ
+

Φ

τ
, (1)

where

Φ =
4

3

η

τ
(first order formalism) , (2)

τπ
dΦ

dτ
= −Φ +

4

3

η

τ
(second order formalism) . (3)

Limit τπ → 0 reduces equations to parabolic type which violates causality.
In order to extract relaxation time, it is assumed on dimensional reasons

that tπ = rt
(B)
π where relaxation time for Boltzmann free gas assumes the

form t
(B)
π = 3

2
η
p [5]. This reduces the problem of finding dimensionless con-

stant r [15].

4. Selected aspects of AdS/CFT correspondence

The AdS/CFT correspondence postulates an equivalence between string
theory on AdS5× S5 and N = 4 SYM theory in four-dimensional Minkowski
space [6]. In the limit of large number of colors Nc → ∞ and infinite ’t Hooft
coupling λ = gYMN2

c → ∞ string theory reduces to supergravity defined in
asymptotic AdS5 space, which corresponds to strongly coupled gauge theory
in the planar limit.

The dictionary of gauge/gravity duality connects each gauge-invariant
local operator in N = 4 SYM with a field in the bulk. There is a systematic
prescription to extract vacuum expectation values of these operators from
near-boundary behavior of fields in asymptotically AdS5 space. The operator
of particular interest is energy-momentum tensor of the gauge theory and
the field dual to it — the metric. The line element of asymptotically AdS5

space in Fefferman–Graham coordinates [8] takes the form

ds2 =
g̃µνdxµdxν + dz2

z2
. (4)

Near-boundary (z = 0) behavior of the metric following from five-dimen-
sional Einstein equations Rab − 1

2Rgab − 6gab = 0 is

g̃µ,ν = g̃(0)
µν + g̃(2)

µν z2 + g̃(4)
µν z4 + g̃(6)

µν z6 + . . . , (5)
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where g̃
(0)
µν = ηµν (four-dimensional Minkowski metric), g̃

(2)
µν = 0 (consistency

condition) and g̃
(4)
µν = N2

c
2π2 〈Tµν〉. All higher order terms depend only on the

form of energy-momentum tensor [11].
It appears that holography works both ways, near boundary behav-

ior sets energy-momentum tensor and any traceless and conserved energy-
momentum tensor reproduces five-dimensional space-time. The energy-mo-
mentum tensor describing boost-invariant expansion of plasma is fully ex-
pressed in terms of energy density, which is fixed by the dynamics of bound-
ary theory. This means that an additional criterium on the gravity side is
needed so that holographically reproduced data on gauge theory are physical.
In [11] the regularity of RµνρδR

µνρδ was shown to be the correct constraint.

5. Perturbative solution to Einstein equations

Five-dimensional metric respecting all the symmetries of energy-momen-
tum tensor takes the form

ds2 =
−ea(τ,z)dτ2 + τ2eb(τ,z)dy2 + ec(τ,z)dx2

⊥
+ dz2

z2
. (6)

For an energy-density of N = 4 SYM plasma asymptotically behaving like
f(τ) = 1

τs the condition of nonsingularity selects both, s = 4
3 and the form

of large proper-time expansion of metric functions to be

a(τ, z) = a0

( z

τ1/3

)
+

1

τ2/3
a1

( z

τ1/3

)
+

1

τ4/3
a2

( z

τ1/3

)
+ . . . (7)

Equivalent expression holds for b(τ, z), c(τ, z) and Rαβρδ(τ, z)Rαβρδ(τ, z).
Metric functions in the lowest two orders take the form

a(v) =

(
3 − v4

)2

3 (3 + v4)
+

1

τ2/3
2 η0

v4
(
9 + v4

)

9 − v8
,

b(v) = 3 + v4 +
1

τ2/3

(
− 2 η0

v4

3 + v4
+ 2 η0 log

3 − v4

3 + v4

)
,

c(v) = 3 + v4 +
1

τ2/3

(
− 2 η0

v4

3 + v4
− η0 log

3 − v4

3 + v4

)
, (8)

where v = z
τ1/3

. Second and third order functions are more complicated and

can be found in [15]. Regularity of metric in the third order requires passing
to the string frame, where the Einstein frame metric g(E) is multiplied by the
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exponent of dilaton field φ(τ, z) so that g(s) = e
1

2
φg(E). Nontrivial dilaton

profile in the bulk corresponds to nonzero trF 2 in the dual field theory —
plasma’s color electric and magnetic fields do not equilibrate.

Recently it was proposed to investigate early time dynamics of energy-
momentum tensor in the Bjorken setting using condition of analyticity of
the metric in the leading order [16]. The features of particular importance
are poles and cuts in the perturbative expansion. It turns out that certain
resummation removes poles from the first order functions (at 1

τ2/3
).

6. Viscosity and relaxation time of N = 4 SYM plasma

Energy density extracted from five-dimensional metric in the second or-
der takes the form

f(τ) =
1

τ4/3
−

√
2

33/4τ2
+

1 + 2 log 2

12
√

3 τ8/3
. (9)

Viscosity and constant r fixing relaxation time can be extracted using second
order hydrodynamics equations. The results are

r =
1 − log 2

9
,

η =
1√

2 33/4 1
τ

. (10)

This gives relaxation time almost 30 times smaller than in the weak coupling
limit and viscosity saturating the bound η

s = 1
4π [15].

7. Time-dependent D7-brane embedding

Having constructed a perturbative dual geometry in the time-dependent
framework, we may proceed to introduce fundamental matter or more pre-
cisely N = 2 hypermultiplet in the fundamental representation [18]. This is
accomplished by placing a probe D7-brane into that geometry

ds2
10 = GMNdxµdxν =

gij(x, z)dxidxj

z2
+

dz2

z2
+ dΩ2

5

=
gij(x, z)dxidxj

z2
+

dz2

z2
+ ρ2dΩ2

3 + (dz8)
2 + (dz9)

2 , (11)

where gij is given by Eq. (6). The SO(2) symmetry in the 8,9-plane can be
used to rotate the embedding of the D7 to

z8 = 0, z9 = φ(τ, ρ) . (12)
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The scalar function φ(τ, ρ) completely describes the profile of the embedded
D7-brane. In order to determine this function we have to consider the action

SD7 = µ7

∫
d8ξ e−ϕ

√
detP [g]ab + Fab , (13)

where P [...] denotes the pull-back to the world-volume. The resulting equa-
tions of motion are as follows

2φ(τ, ρ)+3 tan[φ(τ, ρ)]− 1

2

GMN∂Mφ(τ, ρ)∂N [GKL∂Kφ(τ, ρ)∂Lφ(τ, ρ)]

1 + GAB∂Aφ(τ, ρ)∂Bφ(τ, ρ)
= 0.

(14)
We attempt to extract the quark mass and the quark condensate expectation
value which are given by the UV asymptotic behavior of the solutions to the
supergravity equations of motion. We expect to find the time dependence of
the latter. Being motivated by adiabatic approximation results, we consider
the following ansatz

φ(τ, z) = m +
f(z)

τ8/3
+

h(z, η0)

τ10/3
+ . . . (15)

From the equations of motion we get two differential equations for f(z) and
h(z, η0). The solution reads

f(z) = − m2z2+m8z8

27(2m7−2m9z2)
, (16)

h(z, η0) = 2η0z2(1−m2z2+m4z4)
27m5 . (17)

Close to the boundary the embedding behaves as

φ(τ, z) = m + c(τ)z2 + c1(z, η0)z
2 + . . . = m + c̃z2 + . . . (18)

c̃ is

c̃ = − 1

54m5τ8/3

(
1 − 4η0

τ2/3
+ . . .

)
. (19)

m and c̃ are related to the bare quark mass mq and chiral condensate 〈O〉
by

mq =
m

2πα′
, (20)

〈O〉 = − NfNc

(2πℓ2
s)

3 λ
c̃ , (21)

where λ = g2
YMNc = 2πgsNc = R4/(2ℓ4

s).



AdS/CFT Correspondence, Viscous Hydrodynamics and . . . 3815

8. Regularized D7 action

Calculating the D7 action (14) we face IR divergences in the bulk and
UV divergences on the SYM side. The standard procedure to remove these
divergences was presented in [19]. It regularizes the action by introducing
a cut-off and then adding covariant counterterms that cancel divergences
when cut-off is removed. The regularized action takes the form

Sreg =

zmax∫

zmin

LD7 dz +
∑

Li(zmin) , (22)

where the counterterms Li are given by

L1 = −1

4

√
γ ,

L2 = − 1

48

√
γRγ ,

L3 = − ln(zmin)
√

γ
1

32

(
RijR

ij − 1

3
Rγ

)
,

L4 =
1

2

√
γΨ2 ,

L5 = −1

2
ln(zmin)Ψ

(
∂τγ

ττ√γ∂τ +
1

6

√
γRγ

)
Ψ ,

Lf = − 5

12
γΨ4 . (23)

Lf is a finite counterterm with a constant parameter that corresponds to
different renormalization schemes. We fix it by the requirement that in the
supersymmetric setting the on-shell action vanishes. γ is the induced metric
on the z = zmin slice and

Ψ = arcsin(zΦ) (24)

is the embedding coordinate of the D7 expressed as an angle on the internal
S5. Now we construct the regularized action

Sren =
1

2

NcNf

(2πℓ2
s)

4λ

∫
dy d2x⊥dτ τ

[
− 1

108m4τ8/3
+

η0

27m4τ10/3

]
. (25)

We see that for very late times the configuration indeed relaxes to the su-
persymmetric setting.
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9. Summary and open problems

In this talk, solution to fully nonlinear Einstein equations corresponding
to the one-dimensional expansion of N = 4 SYM plasma in the regime of
large proper time is discussed together with the viscosity and relaxation time
calculations. Introduction of the scaling variable is shown to be a valid way of
reproducing an asymptotic behavior of plasma’s energy-momentum tensor.
Condition of nonsingularity of the dual geometry (regularity of RαβγδR

αβγδ)
is shown to fix this behavior to be of the perfect fluid type together with
the form of subasymptotic corrections. A systematic method of seeking
for subasymptotic terms is discussed up to the third order in perturbative
expansion around large proper-time solution. Passing to the string frame
with nontrivial profile of the dilaton field is proposed as a resolution of
logarithmic divergence in the third order of Riemann squared. Turning on
the dilaton field contributes to the nonvanishing expectation value of trF 2

on the dual field theory side, which means that for subasymptotic times the
color magnetic and electric field are not in equilibrium. Viscosity η and
relaxation time r are calculated within the framework of the second order
viscous hydrodynamics with the resulting η satisfying famous viscosity to
entropy density bound and relaxation time being 30 times smaller than the
weak coupling approximation. It would be very interesting to reproduce this
result with the use of other methods.

Finally, it is shown how to introduce the fundamental matter by putting
a probe D7-brane into the time-dependent geometry. Using equations of
motion the D7-brane embedding is calculated. The D7 action is shown to
suffer from divergences, so in the last step this action is regularized using
the holographic renormalization method.

Further investigations into the late proper time dynamics of the energy-
momentum tensor should include the analysis of evolving black hole using
the framework of dynamical horizons [17], turning on other SUGRA fields
and more-dimensional expansion.

Another interesting issue is the small proper time dynamics in case of
one-dimensional expansion using the nonsingularity argument, which re-
cently was argued to result in asymptotically constant energy-momentum
tensor with possible logarithmic corrections [16].

Having found the embedding, one can study small fluctuations of the
brane and calculate the meson spectrum [20]. It would be also interesting to
investigate the thermodynamics of such time-dependent system but up till
now there is no clear definition of thermodynamic quantities.

The authors are sure, that further applications of the AdS/CFT corre-
spondence to the finite temperature QFT will produce many interesting, if
not surprising, results.
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