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The nuclear symmetry energy is directly connected to stability of matter
in neutron star interior. At low density symmetry energy determines the
crust-core transition. At higher densities, it appears that low values of
symmetry energy leads to phase separation. The two phases may coexist
and lead to new, unexpected structure of neutron star interior.
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1. Introduction

In a neutron star, the prevailing part of its interior is filled with matter
which is in the state of the beta equilibrium [1]. Few meters below neutron
star surface, at densities of ∼ 107 g/cm3 the degenerated electrons become
relativistic and they easily penetrate the nuclei. When their chemical po-
tential µe (or Fermi energy) is greater than neutron–proton mass difference
∆m = 1.3 MeV, electrons are able to convert protons to neutrons. One may
say that nucleons and electrons are in chemical equilibrium with respect to
beta decay and capture reactions:

n ↔ p + e (1)

(we neglect neutrinos here as they leave the system freely). This state of
matter is a beta equilibrium and may be expressed by the constraint on
chemical potentials of particles taking part in the cycle:

µn − µp = µe . (2)

At these conditions the most stable nuclei become more neutron rich than
the most stable terrestrial nucleus 56Fe. For both nucleons their chemical
potentials are smaller than their masses1, µn < mn and µp < mp, what
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1 We mean here the total chemical potential i.e. including the rest mass of a particle.
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means they are confined to the nucleus volume. With increasing density,
the neutron chemical potential increases, whereas for protons it falls down.
At the density ρdrip ∼ 1011 g/cm3 the neutron energy is sufficiently high,
µn > mn, and neutrons are allowed to drip out of nuclei [2]. Above the
neutron drip density one may treat the neutron star matter as a two-phase
system in phase equilibrium although not all Gibbs conditions are fulfilled,
because protons are still confined to nuclei:

P d = P nuc , (3)

µd
e = µnuc

e , (4)

µd
n = µnuc

n , (5)

but µd
p 6= µnuc

p , where superscripts correspond respectively to the dripped
and nuclear phase. In the dripped phase neutrons are stable due to de-
generated electrons presence what is expressed by the relation for chemical
potentials: µd

n < µd
p + µd

e . At higher density, close to the saturation density,
the proton drip occurs as well. The energy of protons, inside nuclei and out
of them is equal

µd
p = µnuc

p (6)

and above this density one gets a two-phase system with all Gibbs condi-
tions Eqs. (3)–(6) satisfied. The two phases have different properties like
baryon density ρ and proton fraction x or charge. The density range where
the two-phase matter appears is rather small, soon after the proton drip
the differences in ρ and x vanish and the star matter represents npl matter
— a homogeneous liquid of nucleons and leptons (also muons start to be
produced at these densities). In the two-phase system, the nuclei form a
lattice leading to a matter with solid state properties, unlike the fluid homo-
geneous system. In this way a neutron star has a dense, liquid core covered
by a solid crust with smaller density. After the inclusion of finite-size effects,
the transition between solid crust and liquid core appears not to be sharp.
The competition between Coulomb and surface energy leads to deformation
of nuclei into non-spherical structures like rods an plates. It is likely that in
the transitional region such “funny phases” make smooth passage between
solid crust and liquid core. In this article we limit ourselves to the bulk
approximation and show that the phase separation is directly connected to
the nuclear symmetry energy. I this way the placement of crust-core tran-
sition is sensitive to symmetry energy behavior. The same analysis applied
to higher density region reveals the possibility of solidification in the central
part of liquid core and formation of new interesting structure in the central
part of neutron star.
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2. The symmetry energy

The symmetry energy is the quantity describing the strength of nuclear
interaction in isovector channel. The energy per baryon for infinite matter
consisting only of nucleons may be expressed by the following expansion

E/B = uN (n, x) = V (n) + Es(n)(1 − 2x)2 + O(1 − 2x)4 , (7)

where n and x is the baryon number density and x is the proton fraction
x = np/n. The isospin symmetry allows for the expansion in even powers of
(1 − 2x) but terms higher than quadratic can be neglected.

For neutron star matter which includes nucleons and leptons subject to
beta equilibrium, Eq. (2), the symmetry energy is the key quantity fixing
the proportion between particles present in the system. The actual density
dependence of symmetry energy is not exactly known. We know only its
value at saturation point, n0 = 0.16 fm−3, where it is about 30 MeV. Recent
analysis of the isospin diffusion in heavy-ion collisions constrained signifi-
cantly the slope of E′

s(n0) and the stiffness E′′
s (n0) at saturation point [5],

however, these results do not determine the high density behavior definitely.
There are no experimental data on values of Es at very high density which
is available in the central parts of a neutron star. In such extrapolations we
must rely on the model calculations. For all of them the symmetry energy at
saturation point has positive slope but at higher densities they lead to differ-
ent conclusions. For most cases the Es is monotonically increasing function
of n but some models lead to the Es which saturates at higher densities or
even bends down at some point and goes to zero [6, 7].

The shape of Es at high density is strictly connected to the thermal story
of neutron star. Low Es makes low x and blocks fast cooling by so-called
direct URCA cycle [8]. So, the presence of at least one very cold isolated
neutron star should rule out this type of symmetry energy. However, this
conclusion is simplified because of other possibilities of fast cooling in the
presence of kaon or pion condensates (see [9] for review). In this work
we predict effects of low Es which concern not only thermal properties of
neutron star. In this way we acquire another tool in constraining the shape
of symmetry energy.

The behavior of Es at low density is also a subject of our interest. As was
mentioned above, recent experimental results constrained the values of Es

to some extend. In this work we show that a relation between the thickness
of neutron star crust and the shape of Es(n) below saturation point can be
found. The observations of pulsar glitching allow to estimate the size of the
crust and may constrain, in this way, the symmetry energy at low densities.
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3. Stability conditions

Having neglected the temperature, important only for a young hot star,
the total energy U becomes a function of volume and conserved numbers:
the total charge and the baryon number B. In order to consider stability of
single phase one need to introduce intense (local) quantity u = U/B. In the
case of npl matter the total energy per baryon is a sum of nucleon and lepton
contributions u = uN +uL and may be expressed as a function of quantities
taken per baryon number v = V/B and q = Q/B. The first principle of
thermodynamics takes the following form

du = −P dv − µ dq , (8)

where P is the pressure and µ chemical potential of electric charge. The mi-
nus sign before µ in (8) comes from convention that µ is equal to µe chemical
potential of electron which carries the negative charge. The stability of any
single phase, also called the intrinsic stability, is ensured by the convexity
of u(v, q) [3]. Thermodynamical identities allow to express this requirement
in terms of following inequalities [4]

−

(

∂P

∂v

)

q

> 0 , −

(

∂µ

∂q

)

P

> 0 , (9)

or

−

(

∂P

∂v

)

µ

> 0 , −

(

∂µ

∂q

)

v

> 0 . (10)

Usually, only the positive compressibility is examined, in particular, it is
required for locally neutral matter i.e. −(∂P/∂v)q=0 > 0. However, the
second type of inequalities: (∂µ/∂q) is of the same importance. It concerns
the stability of charge fluctuations and it is connected to the positive value
of the screening length in matter.

For further discussion we introduce the compressibility and electric ca-
pacitance as

Ki = −v2

(

∂P

∂v

)

i

=

(

∂P

∂n

)

i

, i = q, µ , (11)

χj = −

(

∂q

∂µ

)

j

, j = P, v . (12)

Then, the second pair of inequalities (10) applied to the expression for the
nucleon energy, Eq. (7) may be written as [17]

Kµ = n2
(

E′′

s (1 − 2x)2 + V ′′
)

+ 2 n
(

E′

s(1 − 2x)2 + V ′
)

−
2(1 − 2x)2E′2

s n2

Es

> 0 , (13)

χv =
1

8Es(n)
+

µ(ke + kµ)

nπ2
> 0 . (14)
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We used the second pair of stability conditions as they finally lead to much
simpler formulae than the first one and, moreover, it can be shown that [17]

Kµ < Kq and χv < χP . (15)

so Kµ is more proper as it changes its sign before Kq.
The leptonic contribution uL to the total energy does not appear in

the Eqs. (13) and (14) explicitly, however, lepton manifests itself by the
presence of the last term in (13). First two terms in (13) stand for the
“usual” compressibility of pure nucleonic matter and are always positive,
whereas the last term contributes negatively and may break the positivity
condition. Hence, one may conclude that it is the lepton presence which
may get matter unstable. Above equations show explicitly the importance
of symmetry energy in the stability considerations.

4. Nuclear models

In order to present the role played by the symmetry energy we apply a
set of nuclear models. At low densities the isoscalar part is kept the same,
whereas the symmetry energy takes different forms. The isoscalar potential
V (n), was taken from [11] which leads to the compressibility of symmetric
matter equal to 240 MeV at saturation point. For Es we used shapes applied
by Chen et al. in [5]. Here we named them by (a), (b), (c), (d). The model
(e), not belonging to the above family, imitates an interesting result [10]
which shows that the symmetry energy does not vanish at zero density but
rather saturates at about 10 MeV. All the shapes of Es at lower densities
are presented in Fig. 1.
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Fig. 1. The different shapes of the symmetry energy at densities below saturation

point.
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At higher densities, much above n0, we introduce two kinds of isoscalar
potential V (n), one from [11] (the same as in low density regime) and the
other from [12]. The isoscalar potential mainly influences the stiffness of
equation of state. In this way one may test how the instability point is
affected by the stiffness of EOS. The latter potential is stiffer and leads
to stars with higher maximal mass and is in better agreement with recent
observations of pulsar with mass 2.1 ± 0.2M⊙ [13]. For Es we applied a
“bent down” function. This type of symmetry energy with low values at
high density was typical in the past variational calculations based on realistic
potentials [6]. This kind of behavior is not obtained in more recent realistic
potential calculations like in [12]. Nevertheless, there are also other modern
approaches based on chiral dynamics [7] and Skyrme effective forces [14] or
relativistic mean field [15], where very low values of Es were obtained. Here,
for numerical simplicity, we introduced the simple polynomial (for details
see [17]) which imitate results of works mentioned above. The shapes of
these functions, named A, B, C are shown in the Fig. 2.
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Fig. 2. Three different shapes of the symmetry energy at densities above saturation

point (solid lines). For comparison the results of realistic potentials (dotted lines).

5. Results

The transition between liquid core and solid crust corresponds to the
breaking one of the conditions (13) and (14). Fig. 3 shows the compressibility
under constant µ and its two contribution: “nuclear” Knuc

µ — the two first

terms in (13), and “beta” Kβ
µ — the last term in (13), which comes from the

leptons presence. The “beta” contribution is always negative, hence there
is always a competition between the positive “nuclear” compressibility and
the beta reactions which tends to destabilize the matter. At some critical
point, nc, the compressibility Kµ vanishes and below nc the matter splits
into two phases. The point of actual splitting does not occur exactly at
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nc, but slightly above nc because the system must find a state where the
two charged phases may coexist to ensure global neutrality. However, the
correction is very tiny so nc may be treated as a good estimation for the
boundary of the liquid core in neutron star.
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Fig. 3. The compressibility Kµ (thick) and its contributions (thin lines). The

dotted line corresponds to the energy per baryon for neutral matter u(n, 0).

Table I shows the critical density. It depends strongly on Es but does
not behave monotonically with the values of Es because the first and the
second derivatives of Es are essential as well.

TABLE I

The critical density for different models.

Model a b c d e

nc, fm−3 0.119 0.092 0.095 0.160 0.053

Let us pass to high density region. When the symmetry energy is in-
creasing function in the whole range of density the matter is stable indeed.
However, the chosen nuclear models, with very low values of Es, lead again
to the same kind of instability as occurs in the crust-core transition region.
For all presented models soft and stiff A, B, C there is a critical density nc

where Kµ vanishes. The behavior of the compressibility Kµ for the model
B with soft isoscalar potential is shown in Fig. 4.

It is worth to notice that if one looks only on the energy per baryon for
homogeneous neutral matter, one may overlook that the matter becomes
unstable at some point. The u(n) has always positive curvature (Kq=0 > 0),
whereas the Kµ becomes negative at some density and signals the actual
phase separation. Table II shows how the value of nc depends on the sym-
metry energy model. The lower Es is at higher density the lower nc is. The
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EOS and B symmetry energy. The dashed line corresponds to Kq and dotted line

energy per baryon for neutral matter, u(n) ≡ u(n, 0).

stiffness of EOS slightly moves nc to higher values. The phase separation at
higher densities occurs if only nc is attainable in a neutron star. Table II
shows basic neutron star properties: the central density ncen of a star with
maximal mass Mmax.

TABLE II

The critical density and neutron star parameters for “soft” and “stiff” equation of
state. All densities are in fm−3.

Soft A B C Stiff A B C

nc 0.74 1.20 1.43 nc 0.85 1.40 > 1.6

ncen 1.92 1.32 1.21 ncen 1.35 1.22 1.17

Mmax/M⊙ 1.64 1.73 1.84 Mmax/M⊙ 2.02 2.08 2.13

As one may notice, in the case A and B for soft, and in the case A for the
stiff EOS the phase instability occurs for the sufficiently massive star. For
such star, the central part of its core must contain separated phases. It does
indeed. Fig. 5 shows the phase equilibrium for a chosen nuclear model. The
line of Kµ = 0 (dashed line) begins at the density nc = 0.85. Above this
line the only stable phase is the phase consisting of neutrons and electrons,
for which beta cycle does not work. The second phase, including protons,
lays in the stable region where Kµ > 0. The two phases indicated by thick
lines fulfill all the Gibbs conditions of phase equilibrium, Eqs. (3)–(6). This
is shown by the contours of chemical potentials µ and µn (thin lines) which
meet at points laying on the phase lines.
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Fig. 5. Phase diagram for the model stiff, A.

The neutron phase (see its volume fraction V N/V in the Fig. 6) quickly
absorbs the proton–neutron phase. The proton–neutron phase has positive
charge and becomes more and more symmetric with increasing density. It
disappears completely at the point where its proton fraction is 1/2. Disap-
pearance the proton phase occurs at the density of ∼ 1 fm−3. Above that
point the system again becomes homogeneous, consisting of pure neutron
matter.

0.7 0.8 0.9 1 1.1
n @fm-3

D

-0.2

0

0.2

0.4

0.6

0.8

1

x,
V

N
�V

,
qN

,
qP

VN �V

x

xP

xN

qN
�100

qP

Fig. 6. The basic properties of two phase system.

Above discussion leads to an interesting prediction for a possible neutron
star structure which depends on the mass of a star. Figure below shows
various types of neutron stars including different layers in its core.
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Multilayer structure of neutron star core model:
stiff, A RNS = 10.5–9.2 km ∆Rcrust ≈ 0.3 km

M/M⊙ < 1.74 1.74 < M/M⊙ < 1.90 1.90 < M/M⊙ < 2.02

homogeneous, liquid core mixed phase: mixed phase < 20%
< 20% of total mass pure n matter < 35%

It is an open question about the properties of matter in the region where the
phases are separated. One may suspect formation of mixed phase with liquid
properties or solidification of the central part of stellar core. To answer the
question, what actually happens above the critical density, requires more
detailed analysis including the finite-size effects like surface and Coulomb
energy. The presence of such multilayer structure should have consequences
for pulsar observations like precession, glitching and their overall evolution.

6. Summary and discussion

In this report we present the simple connection between the symmetry
energy Es and the phase stability of dense matter filling the neutron star
interior. It was shown that relevant quantity in such considerations is Kµ —
the compressibility under constant chemical potential, rather than Kq — the
compressibility under constant charge. The instability of matter under low
density, below n0 leads to phase separation and corresponds to the transition
from the liquid core to the solid crust. Pulsar glitching phenomenon allows
to estimate the size of neutron star crust [16] so in this way one may get
constraint on Es behavior at low densities coming from pulsar observations.

The stability considerations were also carried out at very high density.
It was shown that for nuclear models with small values of Es the instability
does occur and leads to phase coexistence. The value of critical density
depends mainly on Es but also the stiffness of EOS influences the onset
of instability. The phase separation leads to the formation of unexpected
structures in the core of a star what seems to be especially interesting in
connection to rotational and magnetic properties of pulsars.



Matter Stability in the Neutron Star Interior 3889

This work was supported by the grant of the Polish Ministry of Science
and Higher Education No. NN 203 3866 33.

REFERENCES

[1] S.L. Shapiro, S.A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars:
The Physics of Compact Objects, John Wiley & Sons, Inc., New York 1983.

[2] G. Baym, H.A. Bethe, C. Pethick, Nucl. Phys. A175, 225 (1971).

[3] H.B. Callen, Thermodynamics, John Wiley & Sons, Inc., New York 1960.

[4] S. Kubis, Phys. Rev. C70, 065804 (2004).

[5] L.W. Chen, C.M. Ko, B.A. Li, Phys. Rev. C72, 064309 (2005); L.W. Chen,
C.M. Ko, B.A. Li, Phys. Rev. Lett. 94, 032701 (2005).

[6] R.B. Wiringa, V. Fiks, A. Fabrocini, Phys. Rev. C38, 1010 (1988).

[7] N. Kaiser, S. Fritsch, W. Weise, Nucl. Phys. A697, 255 (2002).

[8] J.M. Lattimer, M. Prakash, C.J. Pethick, P. Haensel, Phys. Rev. Lett. 66,
2701 (1991).

[9] D.G. Yakovlev, C.J. Pethick, Annu. Rev. Astron. Astrophys. 42, 169 (2004).

[10] S. Kowalski et al., Phys. Rev. C75, 014601 (2007).

[11] M. Prakash, T.L. Ainsworth, J.M. Lattimer, Phys. Rev. Lett. 61, 2518 (1988).

[12] A. Akmal, V.R. Pandharipande, D.G. Ravenhall, Phys. Rev. C58, 1804
(1998).

[13] D.J. Nice, E.M. Splaver, I.H.Stairs, O. Loehmer, A. Jessner, M. Kramer,
J.M. Cordes, Astrophys. J. 634, 1242 (2005).

[14] B.K. Agrawal, S.K. Dhiman, R. Kumar, Phys. Rev. C73, 034319 (2006).

[15] S. Typel, Phys. Rev. C71, 064301 (2005).

[16] M.A. Alpar, H.F. Chau, K.S. Cheng, D. Pines, Astrophys. J. 409, 345 (1993).

[17] S. Kubis, Phys. Rev. C76, 025801 (2007).


