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BIFURCATION IN THE SHAKURA MODEL∗
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We investigate a Newtonian description of accretion of polytropic per-
fect fluids onto a luminous compact object possessing a hard surface. The
selfgravitation of the fluid and its interaction with luminosity is included
in the model. Using appropriate boundary conditions we find stationary,
spherically symmetric solutions. For a given luminosity, asymptotic mass
of the system and its asymptotic temperature there exist two sub-critical
solutions. They differ by the ratio of fluid mass to the total mass.

PACS numbers: 97.10.Gz, 95.30.Lz

1. Introduction

In the paper we study a Newtonian, spherically symmetric accretion of
selfgravitating gas onto a central compact body with a hard surface. We
want to give an answer to the following question (it may be regarded as
a kind of an inverse problem): assume that one knows (from the astro-
nomical observations) total mass and luminosity of the system, asymptotic
temperature and the equation of state of the accreting gas. Let us also as-
sume the gravitational potential on the surface of the central body. Can we
determine the mass of the central body and the abundance of the gas in the
system? And is this solution unique?

The initial motivation to study the problem of such an accretion was
an idea of gravastars, developed by Mazur and Mottola [1]. Gravastars
are extremely compact objects (more compact than neutron stars), their
radius is only slightly bigger than the radius of a black hole of the same
mass but they do have a hard surface. To build such a hypothetical object
one has to violate energy conditions [2] to avoid the Buchdahl theorem [3].
Have gravastars existed, they would be perfect laboratories to test quantum
gravity effects.
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The next question then arises: can one observationally detect gravas-
tars and distinguish them from black holes and neutron stars? There exist
contradictory opinions with regard to this subject [4, 5].

To address the above questions we chose the simplest model that can
be regarded as a radiating system. Even though we investigated only the
problem of Newtonian accretion we found that for a given set of observational
data one can find two different solutions, having different ratio of the mass
of infalling gas to the total mass of the system. This can be understood
intuitively: for weakly luminous objects one can think of two configurations,
the first, with a small amount of the accreting gas mf/M ≪ 1, and the
second, with a light central object that does not accrete the matter effectively
mf/M ≈ 1.

This result is not surprising. A recent general-relativistic analysis [6],
including self-gravitation of a cloud, but neglecting luminosity, gives similar
results. In this case, the mass accretion rate behaves like y2(1 − y), where
y = Mcore/M is the ratio of the central object mass to the mass of the
system. Thus the accretion is the most effective when the central object
contains 2/3 of the total mass.

More detailed analysis of the problem presented in this paper can be
found in [7].

2. The Shakura model

We will study the stationary accretion of spherically symmetric fluids in
the extended Shakura model [9]. In the following text we will use comoving
(Lagrangian) coordinates (r, t) and areal radius R. The velocity of a particle
is given by U(r, t) = ∂tR, p denotes pressure, LE is the Eddington luminosity,
and L(R) is the local one. By ρ we denote the baryonic mass density of the
infalling gas, so the quasilocal mass is govern by ∂Rm(R) = 4πR2ρ. The
total mass, measured at the boundary R∞ is M = m(R∞). The mass
accretion rate is

Ṁ = −4πR2ρU . (1)

We assume the gas is guided by the polytropic equation of state p = KρΓ ,
where Γ is a constant (1 < Γ ≤ 5/3). The speed of sound is a =

√

∂ρp.
We study the stationary accretion, which means that all values measured

at a fixed areal radius are constant. It is also obvious that any accretion
leads to the growth of the central object’s mass. We will then assume that
the time scale is short and the accretion rate is small enough to ensure the
quasilocal mass m(R) is approximately constant. We also assume that at
the outer boundary of the cloud the following condition holds true:

U2
∞ ≪

m(R∞)

R∞

≪ a2
∞ . (2)
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The full system is governed by a set of differential equations. It consists
of the Euler momentum conservation equation

U∂RU = −
Gm(R)

R2
−

∂Rp

ρ
+ α

L(R)

R2
, (3)

the mass conservation
∂RṀ = 0 , (4)

and the energy conservation

L0 − L(R) = Ṁ

(

a2
∞

Γ − 1
−

a2

Γ − 1
−

U2

2
− φ(R)

)

. (5)

α is a dimensional constant α = σT /4πmpc, L0 is the luminosity measured
at the outer boundary of the fluid ball and

φ(R) = −
m(R)

R
− 4π

R∞
∫

R

rρ(r)dr (6)

is the Newtonian gravitational potential. Actually, in (5) we used (2) to

keep only the biggest term a2
∞

Γ−1 .
The Eddington luminosity can be easily calculated if one knows the mass

of the system: LE = GM/α. The total luminosity L0 can be found from

L0 = Ṁφ0. By φ0 we understand the potential measured at the surface of
the compact object φ0 ≡ |φ(R0)|. Knowing φ0 we define another measure

of the central body size, a modified radius R̃0 = GM/φ0. Shakura [9] found
an expression describing the luminosity at a given radius, for test fluids. Its
generalization,

L(R) = L0 exp

(

−
L0R̃0

LER

)

(7)

holds in our case [7, 8].

3. Sonic point

To simplify our calculations we will assume the configuration possesses
a sonic point, the same analysis leads to non unique results also when there
are no such points.

The sonic point (more precisely: sonic horizon, it is not a point but
a sphere of a given radius) is a point where the infalling velocity becomes
equal to the speed of sound |U | = a. In the following we will denote by an
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asterisk all the values measured at the sonic point. From the Eqs. (3)–(5)
one finds:

a2
∗ = U2

∗ =
GM∗

2R∗

(

1 −
L∗α

GM∗

)

=

(

1 −
L∗M

LEM∗

)

. (8)

From that follows:
L∗M

LEM∗

< 1 . (9)

Let us introduce auxiliary variables: relative luminosity x = L0/LE,
relative mass at the sonic point y = M∗/M and a kind of “compactness”

measure γ = R̃0/R∗. Condition (9) becomes now:

x exp(−xγ) < y . (10)

We assume that γ < 1 and xγ ≪ 1. After simple, but tedious algebra [7],
one can calculate the mass accretion rate as a function of sonic point char-
acteristics:

Ṁ = G2π2M2 ρ∞
a3
∞

(y − x exp(−xγ))2
(

a2
∗

a2
∞

)

5−3Γ

2(Γ−1)

. (11)

This in turn allows us to express the relative luminosity using values mea-
sured during the astronomical observations:

L0 = φ0G
2π2χ∞

M3

a3
∞

(1 − y)(y − x exp(−xγ))2
(

2

5 − 3Γ

)
5−3Γ

2(Γ−1)

, (12)

where χ∞ is roughly the inverse of the volume of the gas outside of the sonic
sphere.

4. Bifurcation

The above equation may be rewritten in the following form:

x = β(1 − y)(y − x exp(−xγ))2 , (13)

where β is a numerical constant whose value is known from the observations
of the specific configuration. We will now restrict our attention to the analy-
sis of this equation. Below we show that for any β, 0 ≤ γ < 1 and x smaller
than certain “critical” value a there exist two solutions y(x).

Theorem: Let us define a function

F (x, y) = x − β(1 − y)(y − x exp(−xγ)) . (14)

Then, for any β, 0 ≤ γ < 1 and x smaller than a certain critical value:
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1. There exists a critical point x = a, y = b of F (F (a, b) = 0 and
∂yF (x, y)|(a,b) = 0). The parameters a and b satisfy 0 < a, b < 1
and 3b = 2 + a exp(−aγ).

2. For any 0 < x < a there exist two solutions y(x)±, bifurcating
from (a, b). They are locally approximated by:

y± = b ±

√

(a − x)(b + a exp(−aγ)(1 − 2aγ))
√

β(b − a exp(−aγ))(1 − a exp(−aγ))
. (15)

3. The relative luminosity is extremized at the critical point (a, b).

Sketch of a proof: Two criticality conditions are:

a − β(1 − b)(b − a exp(−aγ))2 = 0 , (16)

b − a exp(−aγ) = 2(1 − b) . (17)

A straightforward calculation leads to the part 1 of the theorem.

Using the relations between a and b and Eq. (17) we get:

b =
2

3
+

4β

3
(1 − b)3 exp

(

−4β (1 − b)3 γ
)

. (18)

Both sides are continuous functions of b and for b = 0 the right hand
side is bigger than 0, while for b = 1 it is smaller than 1. Therefore
there must exist a solution. It can also be shown that there is just
a single solution. Inserting x = a+ε and y = b+y(ε) into F (x, y) = 0,
and expanding it we finally come to the relation (15).

To prove the last part of the theorem we calculate the derivative of x
along a non-critical solution F (x(y), y) = 0:

dx

dy
= β

(y − xe−xγ) (3y − 2 − xe−xγ)

1 + 2β(1 − y) (y − xe−xγ) (e−xγ − γxe−xγ)
. (19)

The nominator is equal to 0 only at the critical point, while the de-
nominator is always positive.

In Fig. 1 we show a plot of the dependence of the mass of the gas on the
relative luminosity. For luminosities smaller than the critical one there exist
two solutions with different ratio of the gas mass to the whole system mass.
Different values of β lead to plots which are qualitatively the same.
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Fig. 1. Mass abundance y versus relative luminosity x. The critical point is enclosed
in a circle. β = 50.

5. Numerical examples

In the previous sections we described the behavior of a system consisting
of a cloud of gas accreting on a central compact object. To achieve the rela-
tion (13) between relative luminosity and the amount of gas in the system,
we made a few simplifying assumptions. To test the final results a series of
numerical calculations was performed. It turned out that the relative error
of the assumptions was of the order of 10−3.

To show the bifurcation of the system we chose the following observa-
tional data:

• Total mass is given in the units of solar mass M⊙ = 1.989 × 1033 g,
M = M⊙(M/M⊙).

• Eddington luminosity LE = 1.3 × 1038(M/M⊙) erg/s and for x = 0.1
we have L0 = 1.3 × 1037(M/M⊙) erg/s.

• The asymptotic speed of sound a∞ = c/50 = 6× 108 cm/s, the radius
of the sphere enclosing the gas R∞ = 1.5 × 1011(M/M⊙) cm and the
surface potential φ(R0) = −0.25c2 = −2.25 × 1020 cm2/s2.

• The modified size measure R̃0 = 6 × 105(M/M⊙) cm.
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Now we have two systems which provide the above data:

Solution I:

• (sonic point parameters) R∗ = 8.35 × 107(M/M⊙) cm, a∗ = |U∗| =
8.46 × 108 cm/s;

• (size and mass of the hard core) R0 = 5.93×105(M/M⊙) cm, Mcore =
1.98 × 1033(M/M⊙) g;

• (asymptotic mass density) ρ∞ ≈ 6 × 10−4(M⊙/M)2 g/cm3.

Solution II:

• (sonic point parameters) R∗ = 9.15 × 106(M/M⊙) cm, a∗ = |U∗| =
8.46 × 108 cm/s;

• (size and mass of the hard core) R0 = 1.18×105(M/M⊙) cm, Mcore =
3.92 × 1032(M/M⊙) g;

• (asymptotic mass density) ρ∞ ≈ 1.1 × 10−1(M⊙/M)2 g/cm3.

In Fig. 2 we present a plot of the rescaled infall speed profile for those two

solutions. We plotted U2

2m(R)/R , as in the case of free falling gas (i.e., with

selfgravitation and luminosity effects neglected) the rescaled speed should
equal 1. As expected, when the system consists of a heavy center and a small
amount of infalling matter, the speed is closer to the free-fall limit.
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Fig. 2. The speed of the infalling gas in case of the two solutions. U2

2m(R)/R = 1 for
the freely falling gas.
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We also used numerical calculations to test the assumptions regarding
stationarity of the accretion. Stationary solutions were used as initial data
for full time dependent equations. It turned out that for reasonably long
times the exact solutions do not differ significantly from the stationary ones.

Another aspect, which is currently tested numerically, is the stability of
the solutions. One can add a small initial perturbation to the stationary
profiles and evolve them in time. The analysis performed so far confirms
that the two branches of solution are stable [10]. This issue requires, how-
ever, deeper investigations, we also want to extend it into a two-dimensional
problem.

6. Conclusions

In this short paper we showed that there may exist two radiating systems
having the same mass, luminosity, asymptotic temperature and potential at
the surface of the core. If the luminosity is much smaller than the critical
one (the largest consistent with other observational data) those solutions
correspond to a light central object surrounded by a heavy cloud of gas,
and to a very heavy core on which a small amount of gas accretes. As our
initial motivations was a question whether observations could distinguish
between neutron stars and gravastars — the answer is: even within this
simple framework those objects are observationally identical. We believe
the same result will hold in case of more complicated models as well.

We tested numerically the analytical solutions and proved the validity
of simplifying assumptions used in the derivation of the relative luminos-
ity (12). It turns out that the stationary accretion is a good approximation
for sufficiently long times. We also found that both of the bifurcating solu-
tions are stable with regard to small perturbations of the initial data.

The author wishes to thank the Foundation for Polish Science for finan-
cial support. This paper has been partially supported by the Ministry of
Science and Higher Education grant 1P03B 01229.

REFERENCES

[1] P.O. Mazur, E. Mottola, Proc. Nat. Acad. Sci. 101, 9545 (2004).

[2] S.W. Hawking, G.F.R. Ellis, The Large Scale Strucure of Space-Time, Cam-
bridge University Press, 1975.

[3] A.H. Buchdahl, Phys. Rev. 116, 1027 (1957).

[4] A.E. Broderick, R. Narayan, Astrophys. J. 638, L21 (2006).



Bifurcation in the Shakura Model 3933

[5] M. Abramowicz, W. Kluźniak, J.-P. Lassota, Astron. Astrophys. 396, L31
(2002).

[6] J. Karkowski, B. Kinasiewicz, P. Mach, E. Malec, Z. Świerczyński, Phys. Rev.
D73, 021503(R) (2006).

[7] J. Karkowski, E. Malec, K. Roszkowski, astro-ph/0611393, to appear in As-
tron. Astrophys.

[8] E. Malec, K. Roszkowski, J. Phys. C66, 012062 (2007).

[9] N.I. Shakura, Astron. Zh. 51, 441 (1974).

[10] B. Rachwał, M.Sc. Thesis, Jagellonian University, 2007.


